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Abstract. We will consider some generative devices inspired by cut and
paste phenomena on DNA molecules under the action of restriction and
ligase enzymes, the splicing systems, introduced by Tom Head in 1987.
We will then survey the most important results obtained in this area,
and evidence how the classical techniques and definitions in automata
theory are a legitimate tool for facing a few unsolved problems.

1 Introduction

We will consider here the splicing systems, generative devices inspired by cut and
paste phenomena on DNA molecules under the action of restriction and ligase
enzymes. A DNA strand can be viewed as a string over a four letter alphabet (the
four deoxyribonucleotides Adenine, Guanine, Cytosine and Thymine). Therefore
the natural way to model DNA computation is within the framework of formal
language theory. In spite of a vast literature on splicing systems, briefly surveyed
here, a few problems related to their computational power are still open. We
intend to evidence how classical techniques and concepts in automata theory are
a legitimate tool for investigating some of these problems.

For example, we quote the concepts of syntactic congruence and of syntactic
monoid [2,28,41], introduced and developed by M.-P. Schiitzenberger’s school
in the framework of the algebraic theory of variable-length codes, that have been
helpful in investigating the class of regular languages, i.e., languages recognized
by finite state automata.

The notion of splicing system was introduced by Tom Head in 1987 [21].
Different variants of the original definition have been proposed briefly; some of
these by Paun and Pixton [36,39,40,44]. A splicing system (or H-system) is a
triple S = (A, I, R), where A is a finite alphabet, I C A* is the initial language
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and R C (A")*, A C A’, is the set of rules for the splicing operation (see Section
3 for the definitions). The formal language generated by the splicing system
is the smallest language containing I and closed under the splicing operation.
The computational power of a splicing system depends on which level in the
Chomsky hierarchy the initial set 7 and the set of the rules R belong to. This
computational power has been deeply investigated [26,40]. According to some
hypotheses on I, R, splicing systems can reach the same power of the Turing
machines [26,36]. At the opposite end of the hierarchy, when we restrict ourselves
to splicing systems with a finite set R of rules and a finite set I of strings,
we get a proper subclass of regular languages, as shown in [12,16,32,44]. The
behaviour of a splicing system under the hypothesis that I belongs to a full
abstract family of languages (full AFL) is studied in [42]. Efficient simulations
between some of these models and finite state automata are designed in [32,44].
Other models, such as Uniterated splicing systems, Extended splicing systems,
Extended splicing systems with multiplicity, Extended splicing systems with
permitting and forbidding contests and Communicating distributed H-systems
are described in [15,26, 30,37, 38]. Some variants of these models have proved to
be computationally equivalent to Turing machines.

The idea of using biological processes as models to compute is the basis of
Adleman’s experiment, performed some years after the introduction of splic-
ing systems [1]. Adleman showed how to solve the (NP-complete) Hamiltonian
Path Problem by manipulating DNA sequences in a lab. This research represents
part of the general trend towards the proposal of new (biological and quantis-
tic) models of computation. These new models do not affect the validity of the
Church-Turing thesis (the intuitive notion of the effective procedure is the same
as the mathematical concept of the Turing machine). Behind these new models
there is rather the attempt to approximate the unbounded parallelism of non de-
terministic Turing machines, with a reduction of the time and space required for
the solutions of the so-called intractable problems, pointed out in the framework
of the computational complexity theory.

Nowadays, developments in both directions have been achieved. On one side,
other systems such as Watson-Crick Automata, Insertion and Deletion Systems,
Sticker systems, P-systems have been presented [40]. On the other, Adleman’s
experiment has implemented the performing of new experiments in the lab, thus
solving other NP-complete problems [24,27,29,40].

In detail, and as we have already stated, a DNA strand can be considered as
a word on a finite alphabet, therefore, splicing operations on DNA strands can
be regarded as operations on strings [21,26,30]. As DNA occurs in both linear
and circular form, two kinds of splicing operations (linear and circular splicing)
were defined.

In nature, linear splicing occurs in two steps. First, restriction enzymes (pro-
teins) recognize a specific pattern in a DNA sequence and cut the molecule in
a specific point inside the pattern. The site and the shape of the cut ends are
specific for each enzyme. Then ligase enzymes paste together properly matched
fragments, under specific chemical conditions. This operation is performed on



two DNA molecules. Therefore, two new sequences are produced from the two
DNA sequences. This phenomenon can be easily translated into a formal lan-
guage framework. There are at least three definitions of linear splicing systems,
given by Head, Paun and Pixton respectively and the computational power of
these systems is different in the three cases.

Considering that linear splicing has already been investigated thoroughly, we
will now focus on its relationship with regular languages. It 1s known that this
class of languages coincides with the class of the languages generated by splicing
systems with a regular initial set of words and a finite set of rules, whereas
finite linear splicing systems (splicing systems with finite set of rules and finite
initial language) generate a proper subclass of regular languages [44]. One of
Head’s results shows that finite linear splicing systems with a special type of
rules always generate strictly locally testable languages, a well-known subclass
of regular languages [13,23]. The search for a characterization of the subclass of
regular languages generated by finite linear splicing systems is one of the open
problems proposed by Head.

One of the aims of this paper is to show that classical notions in automata
theory (syntactic monoid, constant) can be useful in solving this problem. We
recall that the syntactic monoid associated with a language L is the quotient
monoid M(L) w.r.t. the syntactic congruence =r. In [7,8] the authors give a
construction of finite linear (Paun) splicing systems, each of which generates a
regular language defined by a condition that uses the notion of syntactic monoid
(see Section 3.3). Recently, Goode and Pixton proved that it is possible to decide
whether a regular language is generated by a finite Paun linear splicing system
[17,25].

We will now consider circular splicing systems limited to the aspect of their
relationship with regular languages. Obviously a string of circular DNA will
be represented as a circular word, i.e., as the equivalence class with respect to
the conjugacy relation ~, defined by zy ~ yz, for =,y € A* [33]. A circular
language is a set of circular words and we can also give a definition of regular
circular language. We will notice that when we look at regular circular languages
it is the same as when we look at regular languages closed under the conjugacy
relation. The structure of the latter languages is still unknown except for one
special case [3,45]. The search for a characterization of the structure of regular
languages closed under the conjugacy relation is one of the interesting problems
in this framework (see Section 5).

There are three definitions of circular splicing respectively given by Head,
Paun and Pixton. Biological circular splicing occurs in a recombinant mechanism
(transposition) between bacteria and plasmids. In this case, a restriction enzyme
recognizes a pattern inside a circular DNA molecule and then opens the molecule
inside the pattern. This operation is performed on two circular DNA molecules.
Ligase enzymes paste them together, producing a new circular DNA sequence
(see [21,26,40] for further details). Depending on whether or not these ligase
enzymes substitute the recognized pattern, we have Pixton’s definition or Head’s
and Paun’s definition.



A circular splicing system is once again a triple (A, I, R) where A is a finite
alphabet, I is the initial circular language and R is the set of rules. The cir-
cular splicing language generated by a circular splicing system is defined as in
the linear case. Of course, the computational power of these models has been
investigated, but few results are known. One important result, obtained by Pix-
ton, states that with a regular initial set and finite set of rules, under additional
hypotheses (reflexivity, symmetry) on the rules and adding self-splicing, the lan-
guage generated is regular [44]. Even in the finite case (I, R finite sets), the
computational power of circular splicing systems is unknown. We do not know
which class of languages they generate and we do not even know which regular
languages belong to this class (indeed both regular and non regular languages
may be generated). We know that they cannot generate all circular regular lan-
guages. Indeed, ~((A%)* U (A3)*)) cannot be generated by finite circular splicing
systems, even if the more powerful Pixton definition of circular splicing is applied
[7].

We will now present partial results to this problem. In particular, we will
present a family of circular regular languages generated by finite circular splic-
ing systems, namely the so-called star languages ~X* [5]. A main example of
languages belonging to this class is provided by free monoids X* generated by
regular group codes X (see Section 5.1 for further details).

We will indicate the complete characterization of the languages over a one-
letter alphabet generated by finite (Paun) circular splicing systems. In particular
these languages are exactly the regular languages L = LiU{a9 | g € G} T, where
Ly is a finite subset of a* and all the words in L; are shorter than the words
in {a? | g € G}*. There is also a positive integer n and a subgroup G’ of 7,
so that GG is a set of representatives of the elements in G'. We have also given a
characterization of these languages in terms of automata, proving that we can
decide whether a regular language over a one-letter alphabet can be generated
by finite (Paun) circular splicing systems [6,7].

In this paper basics on words and languages are gathered in Section 2; Section
3 is devoted to linear splicing and Section 3.2 presents the general framework
and a short description of a few results obtained on the relationship between
splicing systems and regular languages. In Section 3.3 we have limited our study
to the case of regular languages generated by finite linear splicing systems. The
last two sections concern circular splicing. Definitions are presented in Section 4
and the results on the relationship between finite circular splicing systems and
circular regular languages are represented in Section 5.

2 Basics

2.1 Words

Let A* be the free monoid over a finite alphabet A and let AT = A* \ 1, where
1 is the empty word. For a word (or string) w € A*, |w] is the length of w and,
for a subset X of A*  we denote |X| the cardinality of X.



In the following A = (@, A, J, qo, F') will be a finite state automaton, where
@ is a finite set of states, qo € @ is the initial state, F C @ is the set of final
states and § is the transition function [28,41]. A finite state automaton A is
deterministic if, for each ¢ € @, a € A, there is at most one state ¢’ € @ so that
d(q,a) = ¢'. Furthermore, A is trim if each state is accessible and coaccessible,
i.e., if for each state ¢ € @ there are z,y € A* such that §(go,z) = ¢ and
5(q,y) € F.

Given a regular language I C A*, it is well known that there is a minimal
finite state automaton A recognizing it, i.e. L = L(.A). This automaton is unique
up to a possible renaming of the states, is trim and has the minimal number of
states. It can be obtained thanks to standard construction algorithms and is
related to the syntactic monoid of L [28].

The syntactic monoid associated with L is the quotient monoid M (L) with
respect to the syntactic congruence =y, [41]. Let us recall that two words w, w’
are equivalent with respect to the syntactic congruence if they have the same set
of conterts C(w) = {(z,y) € A* x A* | zwy € L}, i.e,

w=pw & [Ve,ye A zwye L & zw'yel] & Cw)=C(w)

In the following, [w] will be the congruence class of w modulo =;,. If L is a
regular language then the index (i.e., the number of congruence classes) of the
syntactic congruence is finite and therefore, M(L) is a finite monoid. A useful
characterization of the syntactic congruence states that, given a regular language
L recognized by the minimal automaton A = (Q, 4,6, 90, F), w =1, w' if and
only if for each ¢ € @ we have d(q, w) = d(q, w') [34].

Let us recall the definition of a constant. Let .4 be the minimal finite state
automaton recognizing a regular language L and let w € A*. We will set
Qu(A) = {q € Q| d(q,w) is defined }, simply indicated @, when the con-
text makes the meaning evident. Observe that the notation can be extended to
Q) with z € A*. The left and right contexts of a word w € A* are therefore
defined as follows. Notice that these definitions are slightly different from the
ones given in [41].

Cr(w)={z€ A" | 3¢ € Qu : d(q0,2) = q}

Crq(w) = {y € A" | 5(g,wy) € F}, Cr(w) = | Cryq(w)
IEQuw

A word w € A* is a constant for a regular language L if C'(w) = Cr(w) x
Cr(w) [46]. Obviously, if w is a constant for L and w’ € A* with w = w’, then
w' is also a constant for L.

Finally, we will name FIN, REG,LIN,CF,CS, RE the class of finite, reg-
ular, linear, context-free, context sensitive, recursive enumerable languages, re-
spectively.



2.2 Circular words

Circular words have already been exhaustively examined in formal language
theory (see [2,11,33]). For a given word w € A*, the circular word ~w is the
equivalence class of w with respect to the conjugacy relation ~ defined by zy ~
yz, for z,y € A*. The notation |~w| will be defined as |w|, for any representative
w of ~Yw. When the context does not make it ambiguous, we will use the notation
w for a circular word ~w. Furthermore, ~ A* is the set of all circular words over
A, i.e., the quotient of A* with respect to ~. If L C A* “L = {~w | w € L}
is the circularization of L, i.e., the set of all circular words corresponding to
the elements of L, while every language L such as ¥ L = ', for a given circular
language C' C~A*, is called a linearization of C. The set Lin(~L) = {w' €
A* | Jw € L. w' ~ w} of all the strings in A* corresponding to the elements of
~ L is the full linearization of ~ L.

If F' A is a family of languages in the Chomsky hierarchy, FFA™ is the set of all
those circular languages C' which have some linearization in F'A. In this paper
we only deal with REG™. It is known that given a regular language L C A*, its
circularization ~ L is a regular circular language if and only if its full linearization
Lin(~ L) is a regular language [28].

Consider that circular splicing deals with circular strings and circular lan-
guages. Therefore, it deals with formal languages which are closed under the
conjugacy relation and with the action of circular splicing over their circulariza-
tion. The result is that handling of a regular circular language is the same as
handling of a regular language closed under the conjugacy relation (see Section

5).

2.3 Cycles

In this section we will determine a few notations and give definitions for handling
of the labels ¢ (cycles) of some special closed paths in the transition diagram
of a finite state automaton A [6,7]. Indeed, if a rational infinite language L is
generated by splicing, we must exhibit a finite number of rules which are able to
generate words with an unbounded number of occurrences of cycles as factors.
The following observation arises in [7]. Let L be a regular language recognized by
the minimal finite state automaton A = (Q, A4,d, qo, F'). Let ¢ € AT be the label
of a closed path in the transition diagram of A4, i.e., there exists ¢ € @) such that
d(g,¢) = q. Consider the corresponding internal states crossed by the transition
d(q,¢) = q. These internal states can either be different from ¢ or not different
from ¢. Furthermore, in the first case, these internal states can be either different
from each other or not different from each other. This idea is formalized in an
accurate statement in [7]. Furthermore, we can visualize these three cases when
we take into account Figure 1: the closed path labelled a is an example of the
first case; bab is the label of a closed path which satisfies the second condition,
whereas ad is the label of a closed path which satisfies the third condition.



Definition 1 (Cycle). [6] A word ¢ € At is a cycle (resp. simple cycle) in
A if ¢ € Q exists such that §(q,¢) = q and the internal states crossed by the
transition are different from q (resp. from each other and with respect to q).

In addition, if ¢ is a cycle in A and ¢ is not simple, then there are uy, ... upy1 €
A*, cycles c1,...,cp € AT and positive integers py, . .., px such that ¢ = uich usy
~~~ukczkuk+1, where each u; 1s the label of a path in which no state is crossed
twice and uy, up41 # 1. Furthermore, if i,j € {1,... k} exist such that ¢; = ¢;,
with j > i+ 2, ¢; # ¢y, for i <1 < j, then ujqq - -u; # 1.

For example, given the finite state automaton A depicted in Figure 1, we have
that a, bb, bab, badb are cycles, whereas aa, baabbb, badab, ad are not cycles.

b
6K

Fig. 1. Automaton for (b(a + d)*b)*

3 Linear splicing

3.1 Linear splicing systems

Below are three definitions of linear splicing systems, respectively by Head, Paun
and Pixton. The difference between the three definitions depends on the biolog-
ical phenomena that they want to model, but these biological motivations will
not be discussed here.

Head’s definition [21]. A Head splicing system is a 4-uple Sy = (A, I, B,
C'), where T C A* is a finite set of strings, called initial language, B and C' are
finite sets of triples (a, u, B), called patterns, with a;, 3, p € A* and p called the
crossing of the triple. Given two words uapfv, pa’uf'q € A* and two patterns
(a, p, B) and (o, p, ') that have the same crossing and are both in B or both in
C, the splicing operation produces uapuf'q and pa’ufBv (we also say that aug,
a'upB' are sites of splicing).

Paun’s definition [36]. A Paun splicing system is a triple Spa = (A, I, R),
where I C A* is a set of strings, called initial language, R is a set of rules
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Fig. 3. Paun’s splicing: (a) sites recognition, (b) cut, (c) paste.

r = ui|usSus|ua, with u; € A*,i = 1,2,3,4 and |,$ € A. Given two words
T = TiujUs®a, Y = YrUsUaYa, T1, T2, Y1, Y2 € A" and the rule r = wuy|usSus|uy,
the splicing operation produces w = ziujusys and w’ = yjuzusrs.

Pixton’s definition [44]. A Pizton splicing system is a triple Spr = (A, I,
R), where I C A* is a set of strings, called initial language, R is a finite collection
of rules r = (o, a’; B), a,a’, p € A*. Given two words z = ean, y = €'a’n’ and
the rule r = (e, a’; ), the splicing operation produces w = ¢y’ and w’ = ¢ 3.

Given a splicing system Sx, with X € {PA, PI}, (z,y)Fr (v, w") indicates
that the two strings w’, w' are produced from (or spliced by) z,y when a rule r
is applied. Let L C A* and let Sx be a splicing system. We denote

o' (L) = {w,w € A* | (z,y), (w,v'), z,y€ L,r € R}

We can analogously define /(L) for Head’s splicing systems Sy by substituting
R with the sets B, C' of triples and r with two patterns. Thus, we also denote
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o* (L) = | a'(L)

Definition 2 (Linear splicing language). Given a splicing system Sx, with
initial language I and X € {H,PA, PI}, the language L(Sx) = o*(I) is the
language generated by Sx. A language L is Sx generated if a splicing system
Sx exists such that L. = L(Sx).

The problem of comparing the computational power of the three types of
splicing operations is examined here below.

Problem 1. Given L = L(Sx), with X € {H,PA, PI}, does Sy exist, with
Y € {H,PA,PI}\ X, such that L = L(Sy)?

Problem 1 has been solved for finite linear splicing systems (I, R, B, C' finite
sets): the computational power increases when we substitute Head’s systems with
Paun’s systems and Paun’s systems with Pixton’s systems. This result has been
demonstrated in [10], together with examples of regular languages separating
the above mentioned classes of splicing languages.

3.2 Computational power of H-systems

In this section we will describe the well-known results on the computational
power of (iterated) linear splicing systems. Our study will consider having an



unlimited number of copies of each word in the set, so that a pair of strings
(z,y) can generate more than one pair of words with the use of different rules.
We will consider words which model single stranded structures of DNA instead
of double stranded structures. A model for the latter could be domino languages,
as already used in [12]. It would be more realistic to consider the bidimensional
structure of DNA, but this is too difficult. Furthermore, as observed in [21, 38],
there is no loss of information if the double stranded DNA molecule is identified
with a single stranded DNA sequence.

We repeat that the computational power of splicing systems depends on
which level of the Chomsky hierarchy I, R belong to. Precisely, let Fy, Fy €
{FIN, REG, LIN,CF,CS, RE}, we denote H(Fy, F3) = {o*(I) | Spa = (A, I,
R) with T € Fi,R € Fy} the class of languages generated by Paun splicing
systems, where the initial language I belongs to F; and the set of rules R belongs
to Fy. In a similar way, we can give analogous definitions with respect to Head’s
or Pixton’s splicing systems, but they will be not used in the next part of this
paper.

The following table, reported in [26], collects the results we already know
on the level of the Chomsky hierarchy H(Fy, F2) belongs to. These results have
been obtained in separate papers. Furthermore, if we look at the table, either
H(F1, F3) is a specific class of languages in the above hierarchy (one entry in
the table), or it is strictly intermediate between two of them (two entries in the

table).

T\R| FIN | REG | LIN CF CS RE
FIN [FIN,REG| FIN,RE | FIN,RE | FIN,RE | FIN,RE | FIN,RE
REG| REG |REG,RE[REG,REREG,REREG,REREG,RE
LIN | LIN, CF | LIN,RE | LIN,RE | LIN,RE | LIN,RE | LIN,RE
CF| CF |CF, RE|CF, RE|CF, RE |CF, RE |CF, RE
CS | CS, RE | CS, RE | CS, RE | CS, RE | CS, RE | CS, RE
RE| RE RE RE RE RE RE

The above table lets us answer some classical decision problems regard-
ing computational models, namely whether or not emptyness, membership and
equivalence are decidable or undecidable for a given language generated by a
splicing system. Indeed, for a given splicing system, the answer to these ques-
tions directly follows as a byproduct of the computational power of the equivalent
classical model. In particular, it is obvious that the above mentioned questions
are decidable for splicing systems which are equivalent to finite state automata.

If we look at the table, we see that H(REG, FIN) = REG for Paun’s splicing
systems. The same equation for Pixton’s splicing systems is stated below and
was presented for the first time in [44].

Theorem 1. [{4] (Regularity preserving theorem) Given a Pizton splicing sys-
tem Spr = (A, I, R), where I € REG and R € FIN, we have L(Spr) € REG.



Theorem 1 has been proved after partial results on the characterization of the
subclass of the splicing systems which are equivalent to finite state automata.
These partial results can be found in [12,14, 21, 32,42]. In some of these papers,
many efforts have been made in effectively contructing finite state automata as-
sociated to a given splicing system. In particular, Head and Gatterdam studied
a specific type of finite Head splicing systems (persistent in [21]; persistent, re-
duced and crossing disjoint in [16]), whereas non persistent Head splicing systems
have been studied by Culik and Harju [12], via domino languages. For Head’s
splicing systems Sy with regular initial language and a finite set of rules, Kim
showed the regularity of L(Sg) by designing an algorithm which constructs a
finite state automaton recognizing the splicing language generated by Sy [32].
An extension of Theorem 1 for both Paun’s and Pixton’s definitions to full AFL
is given by Pixton in Theorem 2. Observe that REG, C'F and RE are full AFL.

Theorem 2. [26, 43] If FA is a full AFL, then H(FA,FIN) C FA.

Finally, in [9] the authors show how REG coincides with finite marked splic-
ing systems (systems which have a different definition of the splicing operation
and with “marked rules”).

3.3 Finite linear splicing systems

The already known results stress that H(FIN, FIN) is strictly intermediate
between FIN and REG [26]. Infact, (aa)*b is a regular language which belongs
to H(FIN, FIN) (Example 1). Furthermore, no finite linear splicing system can
generate (aa)*. This result has been proved for Head’s systems in [16] and it is
easy to state it for Pixton’s systems. Indeed, on the contrary, let us suppose that
there is a finite Pixton splicing system Spy = (A, I, R) such that L(Spr) = (aa)*.
It 1s clear that each rule in R must have the form (ai, al; ak),i,j, k > 0. Now,
for each i,j,k € N, let us consider n,m € N with 2n > ¢ and 2m > j. For
each t,# € N with 0 <t < 2n—1i, 0 <# < 2m — j, the rule (a’, a’; a*) applied
to (aa)”, (aa)™ generates a2 +(F=+E'=t) and ¢2m+E=)+E=t") Thus we can
always choose n,m,t,t' so that 2n+ (k— i)+ (' —¢) or 2m+ (k—j) + (t — t')
is an odd number, i.e., a2t (=i (t'=t) op g2m+(k=i)+(=t) does not belong to
(aa)”.

Now two problems arise and, as we have already said, Problem 3 is the special
question we will focus on in this paper.

Problem 2. Given L € REG, can we decide whether L € H(FIN, FIN)?
Problem 3. Characterize regular languages which belong to H(FIN, FIN).

Kim has faced Problem 2 for Head’s systems in [31]. In particular, he designed
an algorithm that, for a given regular language L and a given finite set of triples
X, allows us to decide whether a (initial) language I C L exists such that L is
generated by Sgp = (A, I, X) (Kim’s algorithm does not need to separate the
triples into the two disjoint sets B and C).



Another partial result has been provided by Head in [22]. In that paper, the
author considers the generating power of the (Paun) finite splicing systems with
a one-sided contert, i.e., each rule has the form u|1$v|1 (resp. 1]|u$1|v). It is also
supposed that for each rule having the above form, rules u|1$u|1, v|1$v|1 (resp.
1u$1|u, 1|v$1|v) are also in R (reflexive hypothesis). Head proved that we can
decide whether a regular language is generated by one-sided context splicing
systems. Very recently, Goode and Pixton showed that we can decide whether
a regular language is generated by a finite Paun linear splicing system [17,25].
Their characterization uses the notions of constant and syntactic monoid (see
Section 2.1).

As far as Problem 3 is concerned, efforts have been made in comparing the
class of languages generated by finite splicing systems with already known sub-
classes of regular languages (we refer to [34,41] for the definitions of these sub-
classes). An example worth being mentioned is that H(FIN, FIN) is not com-
parable with LT (locally testable) languages [4].

Head has given different characterizations of the family of SLT (strictly lo-
cally testable) languages. He has proved that this family of languages coincides
with the family of languages generated by Head’s splicing systems with the
triples presenting the form (1,z,1) (null context splicing systems - NCH) [21].
He also pointed out in [23] that the same class of SLT languages is the union
of the families of languages generated by a special hierarchy of splicing systems
(simple H-systems - SH, each crossing of a triple is a letter), introduced in [35]
as a subclass of NCH systems. We can decide whether a regular language is
generated by SH systems and in the case of unary languages I C a*, they have
a very simple regular expression (L = a* or L = a™).

In [18] simple H-systems are generalized by considering semi-simple Paun
splicing systems where all rules have the form a|1$b|1,a,b € A. These systems are
a particular case of the Paun systems with one-sided context, and by applying a
result in [22], the authors demonstrated that semi-simple Paun splicing languages
are SLT languages.

In [7] the authors introduced a family of languages, called marker languages,
and showed that marker languages are generated by (Paun) finite linear splicing
systems. Let us sketch their definition that uses the above mentioned classical
notions of syntactic congruence and constants. Consider a regular language L
and the minimal finite state automaton .A recognizing it. Suppose that a word
w and a syntactic congruence class [z] exists so that in the transition diagram
of A we find only a path =, starting from ¢ € @, with label w2 and this is the
only path that allows us to read the labels w and x. Also suppose that = is the
label of a closed path. In addition, when we consider the transition graph of
the classical automaton recognizing the reverse of L, the part of this transition
graph starting from ¢ is deterministic. Thus, w(z] is a marker. Let qq, g¢ be the
initial state and a final state in A, respectively. Then we can generate, through
a finite linear splicing system the language L(w[z]) of all the words in I which
are labels of paths going from ¢ to ¢; and having wz’ as a factor, with 2’ in [z].



Theorem 3. [7] Let L be a regular language and let w[z] be a marker for L.
Then there is a finite splicing system Spa = (A, I, R) such that L(w[z]) = {z €
L|z=zmzy,mewlz]} = L(Spa).

Ezample 1. The regular language L = (aa)*b is a marker language (with marker

b). L is generated by Spa = (A, I, R), where I = {b,aab} and R = {1 | aab$1 | b}.

The construction of a splicing system generating L(w[z]), is indicated in
the proof of Theorem 3. This construction is obtained thanks to a relationship
between syntactic congruence and linear splicing. A generalization of Theorem
3 will be discussed in a future paper [8].

4 Circular splicing

4.1 Models

As in linear splicing, there are at least three basic definitions for circular splicing;
many variants are also known, some are obtained by adding new hypotheses on

R.

Head’s definition [48]. A Head circular splicing system is a 4-uple SCy =
(A, I,T, P), where I C~A* is the initial circular language, T C A* x A* x
A* and P is a binary relation on 7', such that, if (p,z,q),(u,y,v) € T and
(p,z,q)P(u,y,v) then z = y. Thus, given ~hpzq, ~kuzv €~ A* with (p, z, q) P(u,
z,v), the splicing operation produces ~hpzvkuzq.

Paun’s definition [26, 42]. A Paun circular splicing systemis a triple SCp
= (A, I, R), where I C~A* is the initial circular language and R C A*|A*
$A*|A*, with |,$ & A, is the set of rules. Then, given a rule r = uj|us$us|uq
and two circular words ~hujus,~kusug, the rule cuts and linearizes the two
strings obtaining ushu; and uskus, and pastes and circularizes them obtaining
NUQhU1U4]i'U3.

Pixton’s definition [44]. A Pizton circular splicing system is a triple SCpy
= (A, I, R) where A is a finite alphabet, 7 C~ A* is the initial circular language,
R C A* x A* x A* is the set of rules. R is such that if r = (a,a’; 8) € R then
there exists 8’ such that 7 = (a/,a;8") € R. Thus, given two circular words
~ae,~a'€e, the two rules r, 7 cut and linearize the two strings, obtaining ea, ¢'a’
and then paste, substitute and circularize them, producing ~efe’' 3.

As in the linear case, we suppose we have an unlimited number of copies
of each word in the set, so that a pair of words (z,y) can generate more than
one pair of words by applying different rules. Usually 7" and R are finite sets
in the three definitions of the circular splicing indicated above. This paper is
limited to examining finite (resp. regular) circular splicing systems according to
Paun’s and Pixton’s definitions, without additional hypotheses (even without
self-splicing, which is usually incorporated in Paun’s definition). We recall that
a finite (resp. regular) circular splicing system is a circular splicing system with
a circular finite (resp. regular) initial language.



Given a circular splicing system SCx, with X € {PA, P}, (v, w")F, z
indicates that z is spliced by w’, w”, through the use of rule r, with respect
to one of the two definitions. It is clear that in Pixton’s systems, the splicing
operation is the combined action of a pair of rules, r and 7, not necessarily
different.

Given a circular splicing system SCx, with X € {PA, PI}, and a language
C C~A*, we denote

o (C)y={z€ ~A" | ' v €C, Ire R (v, v, z}

We can analogously define ¢/(C') for Head’s circular splicing systems SCy by
substituting R with the set T of triples and r with two triples. Thus, we define
o*(C) as in the linear case.

Definition 3 (Circular splicing language). Given a splicing system SCx,
with initial language I C~A* and X € {H,PA, PI}, the circular language
C(SCx) = o*(I) is the language generated by SCx. A circular language C
is C'x generated (or C' is a circular splicing language) if a splicing system SCx
erists such that C = C(SCx).

Naturally, we can compare the three definitions of the circular splicing and
Proposition 1 below shows that the computational power of circular splicing
systems increases when we substitute Head’s systems with Paun’s systems and
Paun’s systems with Pixton’s systems.

Proposition 1. [5] If C C~A* is generated by a finite Head circular splicing
system then C 1s Cpa generated. Moreover, if C C~ A* is generated by a finite
Paun circular splicing system, then C is Cpr generated.

Ezample 2. We can check that {~(aa)”|n > 0} is Cpa generated, by choosing
SCpa = (A, I,R), with A = {a},T = {~aa} U1, R = {aa|1$1]aa} [6] (see [48]
for Head’s systems).

Moreover, let us consider C' ="~ (aa)*b. We can see that C' cannot be Cr or Cpa
generated (see also [6]). On the contrary, C'is Cpy generated if we choose SCpr =
(A, I, R), with A = {a,b}, I = {~b,~a?h,~a*b}, R = {(a?, a®b;a?), (a®b, a?; 1)}.

Obviously, we can find analogies and differences between linear and circular
splicing. Therefore, we must consider languages which are closed under the con-
jugacy relation and the action of these two types of splicing operations on them.
As a matter of fact, these two types of splicing operations are not comparable:
we have already seen that the regular language (aa)* is not generated by a finite
linear splicing system (see Section 3.3), but the corresponding circular language
~(aa)* is Cpa generated (Example 2). Furthermore, the regular language (aa)*b
is generated by a finite linear splicing system (Example 1), but the correspond-
ing circular language ~((aa)*b) cannot be Cps generated [6] . Some ideas on
this matter can be found in the proof of Theorem 4.

Notice that any set R of rules in Paun’s or Pixton’s circular splicing system
is implicitly supposed to be symmetric, i.e., for each rule r = uy |usSus|ug (resp.



r = (a, a’; 8)) in the splicing system SCpa (resp. SCpr), rule ¥ = ug|us$us|usg
(resp. T = (a/, a; §’)) belongs to R.

In [26,42-44] additional hypotheses are considered for Paun’s or Pixton’s
definitions, namely

Hypothesis 1. R is a reflezive scheme, i.e., for each rule uy|us$us|us (resp.
(a, @'y B)) in the splicing system SCpa (resp. SCpr), rules uq|us$us|us and
uslusSuslus (resp. (o, ;) and (o', a’; @’)) belong to R.

Hypothesis 2. Self-splicing. Self-splicing is defined in a splicing system
SCpa (resp. SCpr) producing ~uszu; and ~usyus from ~zujusyusus and the
rule uy|usSus|ug (resp. ~ B¢’ ,~ 3 ¢ starting from ~aca’e’ and the rules (e, a’; 8),

(o, a;8)).

We will end this section with a very short survey on other variants of these
models. One main variant, described in [20,44, 48], considers the so-called mized
splicing, in which both linear and circular words are allowed. In [48] the authors
proposed several splicing operations, either acting on circular strings only (for
instance self-splicing) or dealing with mixed splicing.

In [49] a new type of circular extended splicing system (CH systems) is pro-
posed and the universality of this model is demonstrated. In particular, linear
and circular strings are involved, without multiplicity, and with 7, R both fi-
nite sets. Starting from [49], the CH systems have been considered in [47] as
components of a Communicated Distributed circular H-system, i.e., the circular
splicing counterpart of the parallel communicating grammar systems.

4.2 Computational power of circular splicing systems

As in the linear case, one main question is the investigation of the computa-
tional power of circular splicing systems. Once again, we denote C(Fy, Fy) =
{e*(I) | SCpa = (A,I,R) with I € F,R € Fy} where Fy, F; are families of
languages in the Chomsky hierarchy. Clearly, the same definition may be given
for the other two definitions of circular splicing systems.

Few results are known and the problem can be split into several subproblems,
each of them concerning a level of the Chomsky hierarchy containing 7 and by
adding or not adding Hypothesis 1 and/or Hypothesis 2.

As in the linear case, in this paper we will focus on finite circular splicing
systems and on their relationship with regular circular languages. In other words,
we will consider the following problem.

Problem 4. Characterize REG~ N C(FIN,FIN).

Note that an answer to this problem does not describe the computational
power of finite circular splicing systems. Indeed, it is known that in contrast
with the linear case, C(FIN, FIN) is not intermediate between two classes of



languages in the Chomsky hierarchy. For example, ~a”b" is a circular context-
free language which is not a circular regular language (since its full linearization
is not regular). Moreover, it is quite easy to check that ~a"b™ is generated by
SChx = (A, I, R) with I = 1U~ab and R = {(a,1,b), (b, 1,a)} (also see [48]).

On the other hand, ~(aa)*b is a regular circular language that cannot be
generated by a finite SCpa splicing system (Example 2), whereas the circular
regular language ~ ((A?)* U(A3)*) cannot be generated by a finite SCp; splicing
system (without any additional hypotheses) [7]. Furthermore, there are exam-
ples of circular regular languages which cannot be generated by finite circular
splicing systems with additional Hypotheses 1-2 [44,48]. Tt is not yet clear if
C(FIN, FIN) contains any context-sensitive or recursive enumerable language
which is not context-free.

One of the first results regarding the computational power of Head’s circular
splicing systems has been proved in [48]. This result states that a finite Head
circular splicing system with rules having the form (1, z, 1), with |z| = 1, always
generates regular circular languages. This result has been reinforced by Pixton
as stated in Theorem 4 below.

Theorem 4. [{4] Let SCpr = (A, I, R) be a circular splicing system with I a
circular regular language and R reflexive and symmetric. Then C = C(SCpy) is
reqular.

A similar closure property of splicing has been demonstrated for Paun’s sys-
tems with 7 in a full AFL [26,42,43]. This result is the counterpart for circular
splicing of Theorem 2. In [44] a link between regular circular languages and au-
tomata is pointed out, along with examples of circular splicing languages which
are not regular and which are generated by finite circular splicing systems, lead-
ing to Hypotheses 1,2. Proof of Theorem 4 is obtained by indicating the con-
struction of an automaton which accepts the circular splicing language. In [43]
the author gives a simpler demonstration of Theorem 4 together with a version
of this theorem for mixed splicing.

5 Finite circular splicing systems

5.1 Star languages and codes

We will now present a class of regular languages whose circularization is Cpa
generated [5]. As we have already said, we will consider languages L closed under
the conjugacy relation, and the action of circular splicing over their circulariza-
tion YL =C.

Definition 4. [5] A star language is a language L C A* which is closed under
the conjugacy relation and such that L. = X*, where X is a reqular language.

As already observed, the crucial point in generating languages through splic-
ing 1s the existence of a finite set of rules producing an unbounded number of
occurrences of labels ¢ of a closed path in A. Even if we limit ourselves to a fixed



automaton A, ¢ can be a cycle in A and also the label of another (not necessar-
ily closed) path in .A. In [5] the authors overcome this difficulty, by considering
star languages L satisfying the requirement that a special representation of each
cycle ¢ (fingerprint of ¢) belongs to L.

Given L = L(A), for every cycle cin A, the fingerprint F(c) of ¢ is inductively
defined as follows: if ¢ is a simple cycle, then F(c) = {c}; if ¢ is not simple (i.e.,
c= U16€1U2652 . ~ukczk Ug4+1, Where u; are labels of transitions in which no state
is crossed twice, uy, upq1 # 1, ¢; are cycles, p; > 1, and if ¢; = ¢;, with j > i+ 2,
c; #cp, for i < i’ < j, then wjqq - u; #1), F(er),---, F(cx) are fingerprints of
€1, ... ¢k, then F(c) = ui F(er)uaF(ca) - - -ux F(ck)ugyr.

A language I = L(A) is a fingerprint closed language with respect to A
whenever C(L) = U, .yq. F(c) € L, where C(L) is the union of the fingerprints
F(c) for every cycle ¢ 1n A.

Theorem 5. [5, 6] Let X* be a fingerprint closed star language with respect to
a trim deterministic automaton A recognizing X*. Then ~X* € C(Fin, Fin).

Proof. (Sketch) Let C(X™*) be the set of the fingerprints of X* with respect to
Aandlet I = C(X*)U Iy, I = {w € A* | §(q0,w) € F and [Vz,z € A* ce AT,
q € Q if w= zc*2 with §(go,2) = ¢, d(q,¢) = ¢, then ¢ = F(c) is a cycle and
k = 1]}. Let us define SCpa = (A, I, R) where I =~1; and R = {1|181|3; B €
F(e), F(e) € C(X*), ¢ cycle}. The languages I1, I, R are finite sets ([; is a set
of labels of paths in A4 in which no state is crossed more than twice). We can
prove that Y X* C C(SCpa) by induction on the length of words in ~X*. In
addition, C'(SCpa) C~X*, since I C~X* and X* is a submonoid closed under
the conjugacy relation.

As an example of fingerprint closed star languages, let us consider free monoids
X* generated by a regular group code X. We recall that X is a group code if a
group G and a surjective morphism ¢: A* — G exist such that X* = ¢~ !(H),
where H is a subgroup of G [2]. As an example, uniform codes A%, d > 1 are
regular group codes. We also know that a free monoid X* is closed under the
conjugacy relation if and only if X is a regular group code [2,3,45]. So, X* is a
star language. Furthermore, group codes are biprefix codes. Therefore, it is easy
to see that for every cycle ¢ in a trim deterministic finite state automaton .4
recognizing X*, we have that ¢ € X*. As a consequence star languages X*, with
X being a regular group code, are fingerprint closed languages.

5.2 The case of a one-letter alphabet

Contrarily to the general case, the structure of unary languages generated by
finite (Paun) circular splicing systems can be described exhaustively. Each lan-
guage L C a* is closed under the conjugacy relation since we have ~w = {w}, so
L =~ L and we can identify each word (resp. language) with its circularization.

Below, Z,, indicates the cyclic group of order n € N, Fact(L) is the set
of all the factors of the elements of L C A* and, for D C N, we can set
aP? = {a® | d € D}.



Proposition 2. [6] A subset L =~ L of a* is Cpa generated if and only if there
erists a finite subset Ly of a*, a positive integer n and a (periodic) subgroup
G' of Z,, such that L = Ly U (a®)t, where G is a set of representatives of the
elements in G' and a® N Fact(L,) = (. Furthermore, G = {m+ A\un | m € G'}
with Ay, = min{p | a™T#" € (a%)t}.

The reader should compare this result with the known characterization of
unary regular languages: a language L C a* 1s regular if and only if L is ulti-
mately periodic, i.e., there exist h > 0 and g > 0 such that for all m > h we have
a™ € L if and only if ¢™*9 € L [19]. Furthermore, Proposition 2 can be easily
extended to a particular class of languages over A with |[A| > 1, i.e., languages
with the form L = A7 = UjEJAj, with J C N [7].

A decidability question obviously follows this result. If L C a*, can we decide
whether L is a Cpa generated language? If no hypothesis is made over L, the
answer to this question is no, according to the Rice theorem [28]. Proposition
3 gives a positive answer to this question when L is supposed to be a regular
language.

We recall that results already obtained describe the structure of every de-
terministic finite state automaton A= ({a}, @,d, qo, F) recognizing a regular
language L C a*: the transition graph of 4 has a (frying-)pan shape. For exam-
ple, consider the regular Cpa generated language L = {a3 a*} U {a® a'* a'®}+.
A deterministic finite state automata recognizing I is depicted in Figure 5.

a a a a a a a a a a
Ar O—=O0—0—0—0—0—0O—0 q
9 9 % G 4 O g a; 12

a
Y % %0 %
Fig. 5. Automaton for L = {a®,a*} U {a®,a"*, a'®}*.

Thus, in Proposition 3 two conditions are given for the minimal finite state
automaton recognizing L: we must check that .4 satisfies these two conditions
in order to state that the language L(A) recognized by the automaton A is a
Cpa generated language. Intuitively, in the minimal automaton 4 recognizing
a Cpa generated language I = L(A), we have a unique final state ¢, on the
closed path in A and there exist p,s € N such that n’ = psand p=v—1+11s
the length of this closed path. No conditions are given for the handle. Integers n
(Proposition 2) and n’ (Proposition 3) are related to each other since the proof
of Proposition 3 points out that n’ = An with A € N.

Proposition 3. Let I C a* be a regular language. Let A= ({a}, @,d, qo, F) be
the minimal finite state automaton recognizing L, where Q = {qo,q1,...,qu},
for each i € {0,...v — 1} we have 6(q;,a) = qiy1 and there exists | € {0, ... v}
such that 6(q,,a) = q;. We have that L = L(A) is Cpa generated if and only if
either q,, € F, for all h > 1 or there exist n',p,s € N such that A satisfies the
two conditions that follow.



L | gn€Q, h>1}NF = qpnr.
2. n =psandv—1+1=p.

For example, the (minimal) automaton in Figure 5 satisfies the two conditions
reported in Proposition 3.

This section ends with a result concerning the descriptional complexity of a
circular splicing system generating a circular language L C a*. The notion of
minimal splicing system was naturally introduced in [36,40] as a counterpart of
the minimal automaton for regular languages. Here the minimality of the system
could be referred to the cardinality of the set of the rules (resp. triples) or to
the length of the rules (resp. triples). Some initial steps towards this notion
and for Head’s linear splicing systems were implicitely taken in [16]. Superfluous
patterns were individuated and an algorithm reducing the size of BUC' without
changing the generated language, was designed. In this sense a result for one-
letter alphabet languages and Paun’s systems has been achieved in Theorem

6.

Theorem 6. [6] Let L C a* be a Cpa generated language. Then, there is a
(minimal) circular finite splicing system SCpa = (A, I, R) generating L with
either R=0 or R = {r} containing only one rule.
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