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ABSTRACT

This paper presents a fundamental law for parallel performance:
it shows that parallel performance is not only limited by sequen-
tial code (as suggested by Amdahl’s law) but is also fundamen-
tally limited by synchronization through critical sections. Extend-
ing Amdahl’s software model to include critical sections, we derive
the surprising result that the impact of critical sections on parallel
performance can be modeled as a completely sequential part and a
completely parallel part. The sequential part is determined by the
probability for entering a critical section and the contention proba-
bility (i.e., multiple threads wanting to enter the same critical sec-
tion).
This fundamental result reveals at least three important insights
for multicore design. (i) Asymmetric multicore processors deliver
less performance benefits relative to symmetric processors than sug-
gested by Amdahl’s law, and in some cases even worse perfor-
mance. (ii) Amdahl’s law suggests many tiny cores for optimum
performance in asymmetric processors, however, we find that fewer
but larger small cores can yield substantially better performance.
(iii) Executing critical sections on the big core can yield substantial
speedups, however, performance is sensitive to the accuracy of the
critical section contention predictor.
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1. INTRODUCTION
Amdahl’s law, in spite of its simplicity, has important conse-

quences for the multicore or chip-multiprocessor (CMP) era [10].
The software model in Amdahl’s law is simple though: it assumes
either completely sequential code or completely parallel code. This
paper augments Amdahl’s software model with the notion of syn-
chronization through critical sections. Assuming that part of the
parallel code needs to be executed within critical sections and as-
suming that critical sections are entered at random times, we derive
a simple analytical (probabilistic) model for how long it takes to
execute a critical section (including the time waiting for the critical
section to be released). This simple model reveals a novel and sur-
prising insight: it shows that the time spent in critical sections can
be modeled as a completely sequential part plus a completely par-
allel part. The sequential part is proportional to the probability for
a critical section and the contention probability (multiple threads
competing for the same critical section).
Augmenting Amdahl’s law with this probabilistic model for crit-

ical sections reveals that parallel performance is not only limited
by sequential code (as suggested by Amdahl’s law) but is also fun-
damentally limited by synchronization. Although it is well un-
derstood that fine-grain synchronization and low contention rates
lead to better performance, this paper is the first, to the best of our
knowledge, to provide a theoretical underpinning.
This fundamental law has important implications for multicore

design. For one, asymmetric multicore processors (with one big
core for sequential code and many small cores for parallel code)
offer smaller performance benefits relative to symmetric multicore
processors than suggested by Amdahl’s law. In some cases, asym-
metric processors may even yield worse performance than symmet-
ric processors, the reason being that contending critical sections are
executed on the small cores rather than on the relatively larger cores
in a symmetric multicore processor. Second, Amdahl’s law sug-
gests that optimum performance is achieved with many tiny cores
in an asymmetric processor, however, we find it is beneficial to
make these cores larger, and thus have fewer cores for the same
hardware budget. Larger small cores speed up the execution of
critical sections, thereby improving overall parallel performance
(although there are fewer cores). Third, accelerating critical sec-
tions (ACS) [22] by migrating critical sections to the big core can
yield substantial speedups, provided that a highly accurate critical
section contention predictor is available. Naive ACS which mi-
grates all critical sections to the big core results in false serializa-
tion which deteriorates performance, especially for low contention
probabilities. The gap with perfect ACS, which executes only con-
tending critical sections on the big core, is huge. Future research
in ACS contention prediction is likely to yield substantial perfor-

362



sequential part

n parallel threads

Figure 1: Amdahl’s software model.

mance benefits, and should focus on both eliminating false serial-
ization and predicting contending critical sections.

2. AMDAHL’S LAW AND EXTENSIONS
We first briefly revisit Amdahl’s law.

2.1 Amdahl’s law
Define speedup as the original execution time divided by the en-
hanced execution time, and assume that a fraction f of a program’s
execution time is indefinitely parallelizable. Amdahl’s law [1] then
provides a formula for the speedup S that can be achieved by par-
allelizing the fraction f across n processors (see also Figure 1); the
remaining fraction (1 − f) is executed sequentially:

S =
1

(1 − f) + f

n

. (1)

The significance of Amdahl’s law for parallel computing is that it
shows that the speedup is bound by a program’s sequential part:

lim
n→∞

S =
1

1 − f
. (2)

2.2 Amdahl’s law for asymmetric CMPs
Asymmetric multicore processors have one or more cores that
are more powerful than the others [2, 4, 6, 10, 13]. Amdahl’s law
suggests that only one core should get more resources; the oth-
ers should be as small as possible. The reason is that the parallel
part gets a linear speedup from adding cores; the sequential part
gets only sublinear speedup, i.e., core performance increases sub-
linearly with resources [5]. Assume now that the parallel part is ex-
ecuted on the n small cores at performance of one; further, assume
that the sequential part is executed on the big core which yields a
speedup of p relative to small core execution. Hence, asymmetric
multicore speedup is computed as [10]:

S =
1

1−f

p
+ f

n+p

. (3)

3. MODELING CRITICAL SECTIONS
Amdahl assumes a simple parallel software model: the program’s
execution time is either parallelizable or it is totally sequential.
Amdahl’s law does not take into account the impact of critical
sections. We now extend Amdahl’s law to model synchronization
among parallel threads through critical sections.

sequential part

n parallel threads

critical section

Figure 2: Amdahl’s software model including critical sections.

Consider a program’s sequential execution, and split it up in
three fractions (see also Figure 2). We define fseq as the totally
sequential fraction of the program’s execution that cannot be paral-
lelized; this is the time required to spawn threads, distribute the data
across the parallel threads, merge the data produced by the parallel
worker threads, etc. Further, we define fpar,ncs as the paralleliz-
able fraction of the program’s execution; this fraction is assumed
to be indefinitely parallelizable, and does not need synchronization
and is thus executed outside critical sections. Finally, we define
fpar,cs as the fraction of the program’s execution time that can be
parallelized but requires synchronization and is to be executed in-
side critical sections. If two or more threads compete for entering
the same critical section at the same time, their execution will be
serialized; if not, their execution can proceed in parallel. We define
these fractions to sum up to one, i.e., fseq +fpar,ncs +fpar,cs = 1,
i.e., the fractions are all with respect to sequential execution.

3.1 Total execution time
We now compute what the execution time will be on a parallel

machine. We therefore make a distinction between two cases, based
on whether the total execution time can be approximated by the av-
erage per-thread execution time (i.e., all threads execute equally
long, hence the total execution time can be approximated by the
‘average’ thread), or whether the total execution time is determined
by the slowest thread (i.e., the time spent in critical sections is sig-
nificant and the average thread is not representative for computing
the total execution time).

3.1.1 Case #1:
Execution time determined by average thread

The sequential part does not scale with parallelism (Tseq ∝ fseq);
the parallel fraction executed outside critical sections on the other
hand is indefinitely parallelizable (Tpar,ncs ∝ fpar,ncs/n). The
difficulty now is to determine how long it will take to execute the
parallel fraction due to critical sections (Tpar,cs). For computing
the average time spent in critical sections Tpar,cs, we propose an
analytical, probabilistic model.
We define the probability for a critical section during parallel

execution Pcs as

Pcs = Pr[critical section | parallel] =
fpar,cs

fpar,ncs + fpar,cs

(4)

The probability for i threads out of n threads to be executing in
critical sections is binomially distributed, assuming that critical
sections are entered at random times — this is an example of a
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Bernoulli experiment — hence:

Pr[i of n threads in critical section] =

 

n

i

!

P i
cs (1 − Pcs)

n−i

(5)
We now define the contention probability Pctn, or the probability
for two critical sections to contend, i.e., both critical sections ac-
cess the same shared memory state and hence they require serial
execution, i.e., both critical sections are guarded by the same lock
variable or both critical sections are executed within contending
transactions.1 Assuming that critical sections contend randomly,
the probability for j threads out of these i threads to contend for
the same critical section is also binomially distributed:

Pr[j of i threads contend for the same critical section] =
 

i

j

!

P j
ctn (1 − Pctn)i−j

(6)

We are now ready to compute the average time spent in critical
sections. Consider a thread entering a critical section. The proba-
bility for i out of the remaining n−1 threads to also enter a critical
section is determined by Equation 5; the probability for j out of
these i threads to contend with the given critical section is deter-
mined by Equation 6. If j other critical sections contend with the
current critical section, then in total j + 1 critical sections will se-
rialize, and hence it takes (j + 1)fpar,cs/n time units to execute
this critical section: j · fpar,cs/n time units for executing the other
critical sections (while the given critical section waits for the criti-
cal section to be released), plus fpar,cs/n time units to execute the
given critical section (once the thread acquires the critical section).
Putting it all together, the average time spent in a critical section is
computed as:

Tpar,cs ∝

n−1
X

i=0

 

n − 1

i

!

P i
cs (1 − Pcs)

n−1−i ·

i
X

j=0

 

i

j

!

P j
ctn (1 − Pctn)i−j ·

j + 1

n
· fpar,cs

(7)

Exploiting the property
Pn

i=0

`

n

i

´

P i(1 − P )n−i = nP (average
of a binomial distribution), we can simplify this expression to the
following equation:

Tpar,cs ∝ fpar,cs ·

„

PcsPctn + (1 − PcsPctn) ·
1

n

«

(8)

This expression reveals a novel, interesting and surprising insight:
it shows that the average time spent in critical sections can be mod-
eled as a completely sequential part plus a completely parallel part
(see also Figure 3 for a graphical illustration). The sequential part
is proportional to the probability for a critical section multiplied by
the contention probability. The parallel part can be significant if the
critical sections are small and show low contention probabilities.
Assuming that the total execution time of a parallel program can
be approximated by the execution time of the ‘average’ thread, then
the total execution time is proportional to

T ∝ fseq + fpar,csPcsPctn +
fpar,cs(1 − PcsPctn) + fpar,ncs

n
(9)

1For a parallel program with only one lock variable for all critical
sections, Pctn = 1 and hence all critical sections will serialize;
Pctn is smaller than one for fine-grained locking with multiple lock
variables and/or through rarely contending transactions.

sequential part

critical section

n parallel threads

sequential part

parallel part

Figure 3: Critical sections can be modeled as a sequential part

plus a parallel part.

sequential part

n parallel threads

critical section

Figure 4: Example illustrating the case in which the total exe-

cution time is determined by the slowest thread.

3.1.2 Case #2:
Execution time determined by slowest thread

The assumption that a parallel program’s execution time equals
the average per-thread execution time does not always hold true,
especially in case the time spent in critical sections is high and/or
contention probability is high — this is a case in which the total
execution time is determined by the slowest thread, see Figure 4
for an example. We now derive a formula for the total execution
time as the execution time of the slowest thread — we assume that
the execution of the slowest thread is determined by the serialized
execution of all the contending critical sections. The average ex-
ecution time of the slowest thread is determined by three compo-
nents: (i) the sequential part (Tseq ∝ fseq), (ii) the total time spent
in contending critical sections which involves sequential execution
(Tseq,cs ∝ fpar,csPctn), and (iii) the time spent executing parallel
code including indefinitely parallel code and non-contending criti-
cal sections (Tpar ∝ (fpar,cs(1− Pctn) + fpar,cs)/2n; given that
we assume that critical section occur randomly, we need to add the
factor 2 in the denominator, i.e., on average half the parallel code
will be executed before the contending critical sections and half
the parallel code will be executed after the contending critical sec-
tions). The total execution time then equals the average execution
time of the slowest thread:

T ∝ fseq + fpar,csPctn +
fpar,cs(1 − Pctn) + fpar,ncs

2n
(10)
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Figure 5: Validation of the analytical probabilistic model

against a synthetic simulator.

3.1.3 Putting it together

We now have two expressions for the total execution time, each
expression with its own set of assumptions. The former (case #1)
assumes that the total execution time of the parallel program can
be approximated by the average per-thread execution time; the lat-
ter (case #2) makes the observation that this assumption no longer
holds true once the serialized execution of contending critical sec-
tions exceeds the average per-thread execution time. Hence, we
conjecture the overall execution time can be computed as the max-
imum of these two expressions:

T ∝fseq+

max
“

fpar,csPcsPctn +
fpar,cs(1 − PcsPctn) + fpar,ncs

n
;

fpar,csPctn +
fpar,cs(1 − Pctn) + fpar,ncs

2n

”

(11)

Because this formula is fairly complicated and builds on assump-
tions and probabilistic theory, we validate the formula against a
synthetic simulator that generates and simulates a synthetic par-
allel workload. The validation was done across a wide range of
possible values for fpar,cs, fpar,ncs, Pctn and n; the average ab-
solute error across all of these experiments equals 3%. Figure 5
shows the execution time as a function of the number of threads
n for fpar,cs = 0.5, fpar,ncs = 0.5 and Pctn = 0.5. For a
small number of threads, then formula 9 (case #1) is more ac-
curate, and for a large number of threads then formula 10 (case
#2) is more accurate and converges towards 0.25 which equals the
fpar,cs · Pctn = 0.5 · 0.5 = 0.25. This graph illustrates that the
max operator is a reasonable approximation.

3.2 Extending Amdahl’s law
Integrating the above in Amdahl’s law yields the following result
for n → ∞:

lim
n→∞

S =
1

fseq + max(fpar,csPcsPctn; fpar,csPctn)

=
1

fseq + fpar,csPctn

(12)

This is a novel fundamental law for parallel performance: it shows
that parallel speedup is not only limited by the sequential part (as
suggested by Amdahl’s law) but is also fundamentally limited by
synchronization. In other words, the larger the time spent in critical
sections, the lower the maximum speedup. Similarly, the larger the
contention probability, the lower the maximum speedup. Although
it is intuitively well understood that fine-grained critical sections

and low contention rates lead to better performance, this paper is
the first to provide a theoretical underpinning for this insight. It
shows that parallel performance is fundamentally limited by syn-
chronization, and more specifically, critical section size and their
contention probability.

4. IMPLICATIONS FOR CMP DESIGN
The above fundamental finding has important implications for

multicore design, especially in the context of asymmetric multicore
processors.

4.1 Asymmetric multicores
One compelling argument for asymmetric multicore processors

is that the sequential fraction of a program’s execution can be ex-
ecuted on the big core whereas the parallel work can be done on
the small cores [2, 3, 4, 10, 15]. Given Amdahl’s law, this may
yield substantially higher speedups compared to symmetric multi-
core processors.
Critical sections however limit the potential benefit from asym-

metric multicore processors, because the parallel part of the pro-
gram’s execution time is not indefinitely parallelizable. Instead
there is a sequential part due to critical sections that will be ex-
ecuted on the small cores. Assuming n small cores with perfor-
mance of one, along with a big core that yields a speedup of p
compared to the small cores, the execution time on an asymmetric
processor is:

T ∝
fseq

p
+

max
“

fpar,csPcsPctn +
fpar,cs(1 − PcsPctn) + fpar,ncs

n + p
;

fpar,csPctn +
fpar,cs(1 − Pctn) + fpar,ncs

2(n + p)

”

(13)

The key insight from this equation is that the sequential part due
to critical sections has an even bigger (relative) impact on perfor-
mance for an asymmetric multicore processor than is the case for
a symmetric multicore processor. This is because the sequential
fraction of the execution time is sped up on the asymmetric proces-
sor (by a factor p) relative to the symmetric processor which is not
the case for the sequential fraction due to critical sections (compare
Equation 13 against Equation 11). The impact of sequential execu-
tion of critical sections increases further with increasing probability
for a critical section and contention probability.
This, in its turn, has an important implication on how to de-

sign an asymmetric multicore processor. For asymmetric multicore
processors, the original Amdahl’s law suggests that the maximum
speedup is achieved with the small cores being as small as possi-
ble. Tiny cores imply that more cores can be put on the die, which
yields a linear performance speedup for parallel code; larger cores
(and thus fewer cores) do not yield as much performance bene-
fit because of sublinear core performance improvements with re-
sources [5]. Now, the new Amdahl’s law for asymmetric proces-
sors (Equation 13) which includes the effect of critical sections,
suggests that the small cores in asymmetric processors should be
sufficiently large (and not be as small as possible as suggested by
Amdahl’s law) because they will be executing the sequential part of
the critical sections. In other words, it is important that critical sec-
tions be executed fast so that other threads can enter their critical
sections as soon as possible.
To verify this intuition, we now consider a simple design prob-

lem in which we have a total number of 256 base core equivalents
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(a) Pctn = 0.1 (b) Pctn = 0.2
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(c) Pctn = 0.5 (d) Pctn = 1
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Figure 6: Speedup for an asymmetric processor as a function of the big core size (b) and small core size (s) for different contention
rates, assuming a total number of 256 BCEs.
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Figure 7: Optimum number of small cores and their size as a

function of the fraction of time spent in critical sections, assum-

ing Pctn = 0.1.

(BCEs), following the approach taken by Hill and Marty [10]. We
now divide these BCEs among the big core (b BCEs) and the small
cores (s BCEs per core). Figure 6 shows the attainable speedup as
a function of the size of the big core (b) and the size of the small
cores (s); we assume a square-root relationship between resources
(number of BCEs) and performance [5] (also known as Pollack’s
law). For low contention rates, small cores yield the best speedup
(see Figure 6(a)). However, for higher contention rates, larger cores
yield the best performance. For example, for a contention rate of
20% (Figure 6(b)), optimum performance is achieved for a large
core of size 40 BCEs and 27 small cores of size 8 BCEs. Fig-
ure 7 further confirms this finding and shows the optimum number
of small cores and their size as a function of fpar,cs, or the frac-
tion of the program’s execution in critical sections. The larger the
fraction spent in critical sections, the larger the small cores should
be, and (hence) the fewer small cores there need to be for optimum
performance.

4.2 Accelerating critical sections
A solution to mitigate the large impact of critical sections on

parallel performance, is to execute the critical sections on the big
core in an asymmetric multicore processor. The basic idea is that
if critical sections are released earlier, other threads can enter the
critical section faster. This technique is called Accelerating Critical
Sections (ACS) [22].
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4.2.1 Naive ACS

Naive ACS would execute all critical sections serially on the
large core, which yields the following execution time:

T ∝
fseq + fpar,cs

p
+

fpar,ncs

n + p
. (14)

Compared to Equation 13, we observe that the sequential part due
to synchronization is sped up by a factor p, however, the parallel
part gets slowed down by a factor (n + p)/p. Naive ACS may lead
to serialized execution of non-contending critical sections (false
serialization) which potentially has a detrimental effect on perfor-
mance.

4.2.2 Perfect ACS

Perfect ACS, which would yield optimum ACS performance,
would execute only the sequential part due to synchronization (i.e.,
the contending critical sections) on the big core; the parallel part
(including the non-contending critical sections) would still be ex-
ecuted on the small cores. The execution time under perfect ACS
equals:

T ∝
fseq

p
+

max
“fpar,csPcsPctn

p
+

fpar,cs(1 − PcsPctn) + fpar,ncs

n + p
;

fpar,csPctn

p
+

fpar,cs(1 − Pctn) + fpar,ncs

2(n + p)

”

(15)

Perfect ACS is hard (if not impossible) to achieve because it re-
quires a predictor that perfectly predicts whether critical sections
will contend (and thus need to be serialized and executed on the
big core).

4.2.3 Selective ACS

Suleman et al. [22] also recognized that in order to mitigate false
serialization, one needs to predict whether critical sections will
contend or not — this is called Selective ACS. Predicting whether
critical sections will contend or not is non-trivial, and mispredic-
tions have significant impact on performance. Predicting that a
critical section will contend and needs to be executed on the big
core, which eventually does not contend — a false positive — re-
sults in false serialization. Predicting that a critical section will
not contend and execute that critical section on a small core, which
eventually results in a contention— a false negative— unnecessar-
ily prolongs the critical section’s execution. Assuming a contention
predictor with sensitivity α (ability to predict true positives) and
specificity β (ability to predict true negatives), the execution time
under selective ACS is given by (define Pcf = PcsPctn):

T ∝
fseq

p
+

max
“fpar,cs(αPcf + (1 − β)(1 − Pcf ))

p
+

(1 − α)fpar,csPcf +
fpar,csβ(1 − Pcf ) + fpar,ncs

n + p
;

fpar,cs(αPctn + (1 − β)(1 − Pctn))

p
+

(1 − α)fpar,csPctn +
fpar,csβ(1 − Pctn) + fpar,ncs

2(n + p)

”

(16)

Note that for α = 1 and β = 0, selective ACS equals naive ACS;

for α = 0 and β = 1, selective ACS equals a conventional asym-
metric multicore processor (see Equation 13); perfect ACS means
α = 1 and β = 1. We will evaluate ACS performance and its de-
pendence on specificity and sensitivity as part of the next section.

4.3 High-level CMP design space exploration
Having obtained the above formulas, we can now perform a

high-level design space exploration for multicore processors in which
we compare symmetric multicore processors and asymmetric mul-
ticore processors against naive, perfect ACS and selective ACS,
while varying the number of cores, their size and the fraction of
the program’s execution time spent in critical sections. We will
vary the fraction of the time spent in critical sections and their con-
tention rates, and reason about which processor architecture yields
the best performance. Similar as before, we assume 256 BCEs and
a square-root relationship between resources (number of BCEs)
and core-level performance [5]. We consider the following pro-
cessor architectures:

• Symmetric multicore. The symmetric multicore processor
is optimized for maximum speedup, i.e., we optimize the
number of cores (and their size) for optimum speedup.

• Asymmetric multicore with tiny cores. The asymmetric
multicore processor has tiny small cores (single-BCE with
performance of one). We optimize the big core for optimum
speedup. This corresponds to the asymmetric processor as-
sumed by Hill and Marty [10], and is the optimum asymmet-
ric processor according to the original Amdahl’s law.

• Asymmetric multicore with optimized cores. Both the big
core and the small cores are optimized for optimum perfor-
mance. The small cores are potentially larger than a single
BCE in order to execute serialized critical sections faster.

• Naive ACS. The big core is optimized for optimum perfor-
mance; the optimum small core size is one BCE. All critical
sections are executed on the big core.

• Perfect ACS. Same as for naive ACS, however, only the con-
tending critical sections are serialized on the big core; the
non-contending critical sections are executed in parallel on
the small cores.

Figure 8 shows the speedup for each of these processor architec-
tures for different contention rates (different graphs show different
contention rates) and different fractions of the time spent in critical
sections (fpar,cs on the horizontal axes). One percent of the code is
completely sequential (fseq = 0.01). We derive some interesting
insights.
Asymmetric versus symmetric multicore processors. The ben-

efit of asymmetric processing over symmetric processing is limited
by critical sections (see the symmetric and asymmetric (s = 1)
curves in Figure 8). In the absence of critical sections, asymmetric
processors offer a substantial performance benefits over symmet-
ric processors, see the leftmost points on the graphs (fpar,cs =
0) — these points correspond to the data presented by Hill and
Marty [10]. However, as the time spent in critical sections and
their contention rate increases, the relative benefit from asymmet-
ric multicore processing decreases. For large critical sections and
high contention rates, symmetric multicore processors even yield
worse performance compared to asymmetric processors with tiny
small cores. The reason is that the contending critical sections se-
rialize on the small single-BCE cores in the asymmetric processor;
on a symmetric processor, the critical sections are executed on rel-
atively larger cores.
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(a) Pctn = 0.1 (b) Pctn = 0.2
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(c) Pctn = 0.5 (d) Pctn = 1
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Figure 8: High-level design space exploration across symmetric, asymmetric and ACSmulticore processors while varying the fraction

of the time spent in critical sections and their contention rates. Fraction spent in sequential code equals 1%.

Because critical sections serialize on the small cores, it is bene-
ficial to increase the small core size to be larger than a single BCE.
By optimizing the big core and small core sizes, one can optimize
asymmetric multicore processor performance to achieve the best of
both worlds and achieve at least as good performance as symmet-
ric processors and asymmetric processors with single-BCE small
cores (see the asymmetric curve with optimum s in Figure 8).
Naive ACS. Naive ACS serializes all critical sections on the big
core, even though these critical sections may not contend with each
other (false serialization). Naive ACS performance quickly dete-
riorates for even small increases in the time spent in critical sec-
tions, see left part of the graphs (0 < fpar,cs < 0.1). Naive ACS
performs worse than an asymmetric processor with optimum small
core size for low contention rates (see Pctn = 0.1), however, for
larger contention rates, naive ACS performs better than asymmetric
(and symmetric) processors. This is because naive ACS executes
all critical sections on the big core, whereas the asymmetric and
symmetric processors execute these critical sections on relatively
small cores.
Huge gap between naive and perfect ACS. There is a huge
gap between naive and perfect ACS for low contention probabil-
ities (see Pctn = 0.1 and Pctn = 0.2). Perfect ACS predicts
whether or not critical sections will contend; if they do contend,
the critical sections are executed on the big core; if not, they are
executed in parallel on the small cores. This suggests that signif-
icant performance benefits are to be gained from improving ACS
contention predictors — a good avenue for future work. However,
for higher contention probabilities, this gap becomes smaller (see
Pctn = 0.5 and Pctn = 1), and naive ACS is likely to achieve most
of the benefits of perfect ACS.

Selective ACS. Figure 9 shows speedup as a function of the
ACS contention predictor’s specificity and sensitivity, and fraction
in critical sections fpar,cs on the horizontal axis. The important
insight here is that for selective ACS to yield speedup compared
to naive ACS, the contention predictor’s sensitivity is more im-
portant than its specificity. (ACS with α = 0.98 and β = 0.50
yields better performance than naive ACS across all critical section
sizes.) Hence, the ability to predict contending critical sections
(that will be executed on the big core) is more important than elim-
inating false serialization (i.e., executing non-contending critical
sections on the small cores). Optimizing and balancing both sensi-
tivity and specificity yields even better performance (see the curve
with α = 0.85 and β = 0.85 in Figure 9), especially for smaller
fractions of time spent in critical sections.

5. LIMITATIONS
Arguably, the synchronization model presented in this paper has

its limitations. For one, it is limited to critical sections only and
does not tackle other forms of synchronization. Further, it assumes
that the parallel workload is homogeneous, i.e., all threads execute
the same code and exhibit the same probability for a critical section
and the same contention probability. We also assume that the crit-
ical sections are entered at random times. The original Amdahl’s
law and its extension for multicore hardware also has its limitations,
as discussed by Hill and Marty [10]. Some researchers even ques-
tion the validity of Amdahl’s law, see for example [7, 19]. However,
and more importantly though, the goal of the model is not to present
accurate quantitative performance numbers and predictions, but to
provide insight and intuition, and stimulate discussion and future
work.
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Figure 9: Speedup as a function of the ACS contention pre-

dictor’s specificity and sensitivity. Fraction spent in sequential

code equals 1%, and the contention probability equals 0.2.

6. RELATEDWORK

6.1 Asymmetric processors
Asymmetric processors have been proposed to improve perfor-
mance by many researchers, see for example [10, 15, 18]. As sug-
gested by Amdahl’s law, the big core executes the sequential part
whereas the parallel part is executed on the small cores. None
of these prior works incorporated the notion of critical sections
though. However, when incorporated in Amdahl’s law, critical sec-
tions significantly change the view on asymmetric processors in a
number of ways — as described extensively in this paper.

6.2 Other architecture paradigms
The insights from this paper could also inspire other architec-
ture paradigms. For example, multicore processors with each core
supporting simultaneous multithreading (SMT) [24] could benefit
from a critical section contention predictor in a similar way as we
discussed for ACS on asymmetric multicores. The thread enter-
ing a predicted contending critical section could be given more or
even all fetch slots by the SMT fetch policy (i.e., throttle the other
threads), so that the critical section can execute faster and is not
slowed down by other co-executing threads. Core fusion [11] can
benefit in a similar way: the critical section contention predictor
can predict when to fuse multiple small cores to form a more pow-
erful core at runtime. Also, a conflict contention predictor would
enable applying core-level DVFS [12] on a multicore processor
to contending critical sections which would optimize performance
(execute the critical sections faster) while limiting power consump-
tion (by not boosting non-contending critical sections).

6.3 Feedback-driven threading
Suleman et al. [23] propose feedback-driven threading, a frame-
work for dynamically controlling the number of threads during run-
time. They propose a simple analytical model to derive the opti-
mum number of threads. The model proposed for applications that
are bounded by synchronization is similar to the model discussed
in Section 3.1.2 which assumes that the total execution time is de-
termined by the slowest thread and the serialized execution of the
contending critical sections.

6.4 Reducing impact of critical sections
Reducing the impact of critical sections on parallel performance
is a very active field of research. It is well known that fine-grain
synchronization (i.e., small critical sections) generally lead to bet-
ter performance than coarse-grain synchronization (i.e., large criti-

cal sections) — at the cost of significant programming effort. The
critical section model presented in this paper provides a theoreti-
cal underpinning for this well-known insight: critical section size
relates to the probability for a critical section Pcs and has a sub-
stantial impact on parallel performance.
Several recent enhancements reduce contention (Pctn) compared

to lock-based critical sections. Techniques such as transactional
memory (TM) [8, 17, 9], speculative lock elision [20], transac-
tional lock removal [21] and speculative synchronization [14] exe-
cute critical sections speculatively without acquiring the lock, and
if they do not access the same shared data, they are committed suc-
cessfully.

6.5 Workload characterization
Stanford’s TCC group proposed and characterized the STAMP

TM benchmark suite [16]. They found that several of these bench-
marks spend a substantial amount of time in critical sections (trans-
actions) — this relates to Pcs in our model. Only 2 of the 8 bench-
marks spend less than 20% in transactions, one benchmarks spends
around 40% of its time in transactions, and the remaining 5 bench-
marks spend over 80% and up to 100% in transactions. The pa-
per does not report contention probabilities, but instead reports the
number of retries per transaction: depending on the TM system,
some benchmarks exhibit anything between zero retries (no con-
tention) up to 10 retries per transaction. We thus believe that the
values assumed in this paper for Pcs and Pctn are reasonably real-
istic.

7. CONCLUSION
This paper augments Amdahl’s law with the notion of critical

sections. A simple analytical (probabilistic) model reveals that the
impact of critical sections can be split up in a completely sequen-
tial and a completely parallel part. This leads to a new fundamen-
tal law: parallel performance is not only limited by the sequential
part (as suggested by Amdahl’s law) but is also fundamentally lim-
ited by critical sections. This result provides a theoretical under-
pinning for research efforts towards fine-grain synchronization and
low contention rates.
This fundamental result has important implications for asym-

metric multicore processor design. (i) The performance benefit of
asymmetric multicore processors may not be as high as suggested
by Amdahl’s law, and may even be worse than symmetric multi-
core processors for workloads with many and large critical sections
and high contention probabilities. (ii) The small cores should not
be tiny as suggested by Amdahl’s law, but should instead be larger
to execute critical sections faster. (iii) Accelerating critical sections
through execution on the big core may yield substantial speedups,
however, performance is very sensitive to the critical section con-
tention predictor.
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