Lezione 2

Sommario della Lezione

Primi Esempi di Progettazione di Algoritmi

Siano dati un intero $n \ge 1$ ed una sequenza $a = a[0]a[1] \cdots a[n-1]$ di numeri (che possono essere sia positivi o negativi),

Siano dati un intero $n \geq 1$ ed una sequenza $a = a[0]a[1]\cdots a[n-1]$ di numeri (che possono essere sia positivi o negativi), per ogni coppia di indici $0 \leq i \leq j \leq n-1$, denotiamo con V(i,j) la somma

$$V(i,j) = a[i] + a[i+1] + \ldots + a[j]$$

Siano dati un intero $n \geq 1$ ed una sequenza $a = a[0]a[1]\cdots a[n-1]$ di numeri (che possono essere sia positivi o negativi), per ogni coppia di indici $0 \leq i \leq j \leq n-1$, denotiamo con V(i,j) la somma

$$V(i,j) = a[i] + a[i+1] + \ldots + a[j] = \sum_{k=i}^{j} a[k],$$

Siano dati un intero $n \geq 1$ ed una sequenza $a = a[0]a[1]\cdots a[n-1]$ di numeri (che possono essere sia positivi o negativi), per ogni coppia di indici $0 \leq i \leq j \leq n-1$, denotiamo con V(i,j) la somma

$$V(i,j) = a[i] + a[i+1] + \ldots + a[j] = \sum_{k=i}^{j} a[k],$$

Denotiamo con V(a) la quantità

$$V(a) = \max_{0 \le i \le j \le n-1} V(i,j),$$

Siano dati un intero $n \ge 1$ ed una sequenza $a = a[0]a[1] \cdots a[n-1]$ di numeri (che possono essere sia positivi o negativi), per ogni coppia di indici $0 \le i \le j \le n-1$, denotiamo con V(i,j) la somma

$$V(i,j) = a[i] + a[i+1] + \ldots + a[j] = \sum_{k=i}^{j} a[k],$$

Denotiamo con V(a) la quantità

$$V(a) = \max_{0 \le i \le j \le n-1} V(i,j),$$

cioè V(a) è il *masssimo valore* che possiamo ottenere sommando sottosequenze di elementi *consecutivi* della sequenza a.

Siano dati un intero $n \ge 1$ ed una sequenza $a = a[0]a[1] \cdots a[n-1]$ di numeri (che possono essere sia positivi o negativi), per ogni coppia di indici $0 \le i \le j \le n-1$, denotiamo con V(i, j) la somma

$$V(i,j) = a[i] + a[i+1] + \ldots + a[j] = \sum_{k=i}^{j} a[k],$$

Denotiamo con V(a) la quantità

$$V(a) = \max_{0 \le i \le j \le n-1} V(i,j),$$

cioè V(a) è il masssimo valore che possiamo ottenere sommando sottosequenze di elementi consecutivi della sequenza a.

Problema computazionale:

Input: sequenza di numeri
$$a = a[0]a[1] \cdots a[n-1]$$

Input: sequenza di numeri
$$a = a[0]a[1] \cdots a[n-1]$$
Output: $V(a) = \max_{0 \le i \le j \le n-1} V(i,j) = \max_{0 \le i \le j \le n-1} \sum_{k=i}^{j} a[k]$.

Esempio: $a = a[0]a[1] \cdots a[15]$ dato da

1 -5 4 2 -7 3 6 -1 2 -4 7 -10 2 6 1 -3	1	-5	4	2	-7	3	6	-1	2	-4	7	-10	2	6	1	-3
---	---	----	---	---	----	---	---	----	---	----	---	-----	---	---	---	----

Esempio: $a = a[0]a[1] \cdots a[15]$ dato da

Abbiamo varie possibili soluzioni, ad es.

In questo caso $S_1 = [3, 6]$ con valore 3 + 6 = 9, e $S_2 = [2, 6, 1]$ con valore 2 + 6 + 1 = 9.

Esempio: $a = a[0]a[1] \cdots a[15]$ dato da

Abbiamo varie possibili soluzioni, ad es.

In questo caso $S_1 = [3,6]$ con valore 3+6=9, e $S_2 = [2,6,1]$ con valore 2+6+1=9.

Oppure

con valore della soluzione pari a 3+6-1+2-4+7=13.

Calcoliamo la somma di *tutte* le possibili sottosequenze di elementi consecutivi di *a*,

Calcoliamo la somma di tutte le possibili sottosequenze di elementi consecutivi di a, ovvero calcoliamo tutti i possibili valori $V(i,j) = \sum_{k=i}^{j} a[k]$, per ogni coppia di indici (i,j) per cui $0 \le i \le j \le n-1$, e diamo in output la somma massima.

MaxConsecutivaSomma1(a)

- MaxConsecutivaSomma1(a)
- 2. SommaMassima= a[0]

- MaxConsecutivaSomma1(a)
- 2. SommaMassima= a[0]
- 3. FOR(i = 0; i < n; i = i + 1){

- MaxConsecutivaSomma1(a)
- 2. SommaMassima= a[0]
- 3. FOR(i = 0; i < n; i = i + 1){
- 4. FOR(j = i; j < n; j = j + 1){

- MaxConsecutivaSomma1(a)
- 2. SommaMassima= a[0]
- 3. FOR(i = 0; i < n; i = i + 1){
- 4. FOR(j = i; j < n; j = j + 1){
- 5. SommaCorrente= 0

- 1. MaxConsecutivaSomma1(a)
- 2. SommaMassima= a[0]
- 3. FOR(i = 0; i < n; i = i + 1){
- 4. FOR(j = i; j < n; j = j + 1){
- 5. SommaCorrente= 0
- 6. FOR(k = i; k < j + 1; k = k + 1){

```
1. \texttt{MaxConsecutivaSomma1}(a)
2. \texttt{SommaMassima} = a[0]
3. \texttt{FOR}(i=0;i< n;i=i+1)\{
4. \texttt{FOR}(j=i;j< n;j=j+1)\{
5. \texttt{SommaCorrente} = 0
6. \texttt{FOR}(k=i;k< j+1;k=k+1)\{
7. \texttt{SommaCorrente} = \texttt{SommaCorrente} + a[k]
```

```
1. MaxConsecutivaSomma1(a)
2. SommaMassima= a[0]
3. FOR(i = 0; i < n; i = i + 1){
      FOR(j = i; j < n; j = j + 1){
4.
5.
         SommaCorrente= 0
         FOR(k = i; k < i + 1; k = k + 1){
6.
7.
            SommaCorrente = SommaCorrente + a[k]
8.
         IF(SommaCorrente>SommaMassima){
9.
10.
            SommaMassima=SommaCorrente
```

```
1. MaxConsecutivaSomma1(a)
2. SommaMassima= a[0]
3. FOR(i = 0; i < n; i = i + 1){
      FOR(i = i; i < n; i = i + 1){
4.
5.
         SommaCorrente= 0
         FOR(k = i; k < i + 1; k = k + 1){
6.
7.
            SommaCorrente = SommaCorrente + a[k]
8.
         IF(SommaCorrente>SommaMassima){
9.
10.
           SommaMassima=SommaCorrente
   RETURN SommaMassima
```

```
    MaxConsecutivaSomma1(a)

2. SommaMassima= a[0]
3. FOR(i = 0; i < n; i = i + 1){
       FOR(i = i; i < n; i = i + 1){
4.
5.
           SommaCorrente= 0
6.
           FOR(k = i; k < j + 1; k = k + 1)
              SommaCorrente = SommaCorrente + a[k]
7
8.
9.
           IF(SommaCorrente>SommaMassima){
10.
             SommaMassima=SommaCorrente
11. RETURN SommaMassima
```

```
    MaxConsecutivaSomma1(a)

2. SommaMassima= a[0]
3. FOR(i = 0; i < n; i = i + 1){
      FOR(i = i; i < n; i = i + 1){
4.
5.
          SommaCorrente= 0
6.
          FOR(k = i; k < i + 1; k = k + 1){
7
              SommaCorrente = SommaCorrente + a[k]
8
9
          IF(SommaCorrente>SommaMassima){
10
             SommaMassima=SommaCorrente
11. RETURN SommaMassima
```

II ciclo FOR delle istruzioni 6. e 7. calcola $V(i,j) = \sum_{k=i}^{j} a[k]$.

```
1. MaxConsecutivaSomma1(a)
2. SommaMassima= a[0]
3. FOR(i = 0; i < n; i = i + 1){
      FOR(i = i; i < n; i = i + 1){
4.
5.
          SommaCorrente= 0
          FOR(k = i; k < i + 1; k = k + 1){
6.
7
              SommaCorrente = SommaCorrente + a[k]
8
9
           IF(SommaCorrente>SommaMassima){
10
             SommaMassima=SommaCorrente
11. RETURN SommaMassima
```

II ciclo FOR delle istruzioni 6. e 7. calcola $V(i,j) = \sum_{k=j}^{j} a[k]$. Le istruzioni all'interno del FOR(k=i;k< j+1;k=k+1) possono essere eseguite al più n volte,

```
1. MaxConsecutivaSomma1(a)
2. SommaMassima= a[0]
3. FOR(i = 0; i < n; i = i + 1){
      FOR(j = i; j < n; j = j + 1){
4.
5.
          SommaCorrente= 0
          FOR(k = i; k < i + 1; k = k + 1){
6.
7
              SommaCorrente = SommaCorrente + a[k]
8
9
           IF(SommaCorrente>SommaMassima){
10
             SommaMassima=SommaCorrente
11. RETURN SommaMassima
```

Il ciclo FOR delle istruzioni 6. e 7. calcola $V(i,j) = \sum_{k=i}^{j} a[k]$. Le istruzioni all'interno del FOR(k=i;k< j+1;k=k+1) possono essere eseguite al più n volte, così come il codice all'interno del ciclo FOR(j=i;j< n;j=j+1)

```
1. MaxConsecutivaSomma1(a)
2. SommaMassima= a[0]
3. FOR(i = 0; i < n; i = i + 1){
      FOR(i = i; i < n; i = i + 1){
4.
5.
          SommaCorrente= 0
          FOR(k = i; k < i + 1; k = k + 1){
6.
              SommaCorrente=SommaCorrente+a[k] n; i = i + 1),
7
8
9
          IF(SommaCorrente>SommaMassima){
10
             SommaMassima=SommaCorrente
11. RETURN SommaMassima
```

Il ciclo FOR delle istruzioni 6. e 7. calcola $V(i,j) = \sum_{k=i}^{j} a[k]$. Le istruzioni all'interno del FOR(k=i;k<j+1;k=k+1) possono essere eseguite al più n volte, così come il codice all'interno del ciclo FOR(j=i;j< n;j=j+1) ed anche del ciclo FOR(i=0;i< n;i=i+1),

```
1. MaxConsecutivaSomma1(a)
2. SommaMassima= a[0]
3. FOR(i = 0; i < n; i = i + 1){
       FOR(i = i; i < n; i = i + 1){
4.
5.
          SommaCorrente= 0
          FOR(k = i; k < i + 1; k = k + 1){
6.
              SommaCorrente = SommaCorrente + a[k]
7
8
9
           IF(SommaCorrente>SommaMassima){
10
             SommaMassima=SommaCorrente
11. RETURN SommaMassima
```

Il ciclo FOR delle istruzioni 6. e 7. calcola $V(i,j) = \sum_{k=i}^{j} a[k]$. Le istruzioni all'interno del FOR(k=i;k< j+1;k=k+1) possono essere eseguite al più n volte, così come il codice all'interno del ciclo FOR(j=i;j< n;j=j+1) ed anche del ciclo FOR(i=0;i< n;i=i+1), per cui l'algoritmo MaxConsecutivaSomma1(a) eseguirà al più $c \times n \times n \times n = cn^3$ operazioni elementari.

```
1. MaxConsecutivaSomma1(a)
2. SommaMassima= a[0]
3. FOR(i = 0; i < n; i = i + 1){
       FOR(i = i; i < n; i = i + 1){
4.
5.
           SommaCorrente = 0
          FOR(k = i; k < i + 1; k = k + 1){
6.
              SommaCorrente = SommaCorrente + a[k]
7
8
9
           IF(SommaCorrente>SommaMassima){
10
             SommaMassima=SommaCorrente
11. RETURN SommaMassima
```

Il ciclo FOR delle istruzioni 6. e 7. calcola $V(i,j) = \sum_{k=i}^{j} a[k]$. Le istruzioni all'interno del FOR(k=i;k< j+1;k=k+1) possono essere eseguite al più n volte, così come il codice all'interno del ciclo FOR(j=i;j< n;j=j+1) ed anche del ciclo FOR(i=0;i< n;i=i+1), per cui l'algoritmo MaxConsecutivaSomma1(a) eseguirà al più $c \times n \times n \times n = cn^3$ operazioni elementari.

In altri termini, la complessità dell'algoritmo ${\tt MaxConsecutivaSomma1}(a)$ su di un input composto da una sequenza di n numeri è $O(n^3)$.

Calcoliamo sempre la somma di tutte le possibili sottosequenze di elementi consecutivi di $a=a[0]a[1]\cdots a[n-1]$, ma in maniera più furba.

Calcoliamo sempre la somma di tutte le possibili sottosequenze di elementi consecutivi di $a=a[0]a[1]\cdots a[n-1]$, ma in maniera più furba. Osserviamo che

$$V(i,j) = \sum_{k=i}^{j} a[k] =$$

Calcoliamo sempre la somma di tutte le possibili sottosequenze di elementi consecutivi di $a=a[0]a[1]\cdots a[n-1]$, ma in maniera più furba. Osserviamo che

$$V(i,j) = \sum_{k=i}^{j} a[k] = \sum_{k=i}^{j-1} a[k] + a[j] =$$

Calcoliamo sempre la somma di tutte le possibili sottosequenze di elementi consecutivi di $a=a[0]a[1]\cdots a[n-1]$, ma in maniera più furba. Osserviamo che

$$V(i,j) = \sum_{k=i}^{j} a[k] = \sum_{k=i}^{j-1} a[k] + a[j] = V(i,j-1) + a[j].$$
 (1)

Calcoliamo sempre la somma di tutte le possibili sottosequenze di elementi consecutivi di $a=a[0]a[1]\cdots a[n-1]$, ma in maniera più furba. Osserviamo che

$$V(i,j) = \sum_{k=i}^{j} a[k] = \sum_{k=i}^{j-1} a[k] + a[j] = V(i,j-1) + a[j].$$
 (1)

L'osservazione (1) ci permette di risparmiare tempo, in quanto con *una sola* somma possiamo calcolare V(i,j) come V(i,j) = V(i,j-1) + a[j],

Calcoliamo sempre la somma di tutte le possibili sottosequenze di elementi consecutivi di $a=a[0]a[1]\cdots a[n-1]$, ma in maniera più furba. Osserviamo che

$$V(i,j) = \sum_{k=i}^{j} a[k] = \sum_{k=i}^{j-1} a[k] + a[j] = V(i,j-1) + a[j].$$
 (1)

L'osservazione (1) ci permette di risparmiare tempo, in quanto con *una sola* somma possiamo calcolare V(i,j) come V(i,j) = V(i,j-1) + a[j], invece di eseguire il FOR(k=i; k < j+1; k=k+1), come facevamo nel precedente algoritmo.

Calcoliamo sempre la somma di tutte le possibili sottosequenze di elementi consecutivi di $a=a[0]a[1]\cdots a[n-1]$, ma in maniera più furba. Osserviamo che

$$V(i,j) = \sum_{k=i}^{j} a[k] = \sum_{k=i}^{j-1} a[k] + a[j] = V(i,j-1) + a[j].$$
 (1)

L'osservazione (1) ci permette di risparmiare tempo, in quanto con *una sola* somma possiamo calcolare V(i,j) come V(i,j) = V(i,j-1) + a[j], invece di eseguire il FOR(k=i; k < j+1; k=k+1), come facevamo nel precedente algoritmo.

MaxConsecutivaSomma2(a) SommaMassima= a[0]

Calcoliamo sempre la somma di tutte le possibili sottosequenze di elementi consecutivi di $a=a[0]a[1]\cdots a[n-1]$, ma in maniera più furba. Osserviamo che

$$V(i,j) = \sum_{k=i}^{j} a[k] = \sum_{k=i}^{j-1} a[k] + a[j] = V(i,j-1) + a[j].$$
 (1)

```
\label{eq:maxconsecutivaSomma2} \begin{split} & \texttt{MaxConsecutivaSomma2}(a) \\ & \texttt{SommaMassima} = a[0] \\ & \texttt{FOR}(i=0; i < n; i=i+1) \{ \\ & \texttt{SommaCorrente} = 0 \end{split}
```

Calcoliamo sempre la somma di tutte le possibili sottosequenze di elementi consecutivi di $a=a[0]a[1]\cdots a[n-1]$, ma in maniera più furba. Osserviamo che

$$V(i,j) = \sum_{k=i}^{j} a[k] = \sum_{k=i}^{j-1} a[k] + a[j] = V(i,j-1) + a[j].$$
 (1)

```
\begin{split} & \texttt{MaxConsecutivaSomma2}(a) \\ & \texttt{SommaMassima} = a[0] \\ & \texttt{FOR}(i=0;i < n;i=i+1) \{ \\ & \texttt{SommaCorrente} = 0 \\ & \texttt{FOR}(j=i;j < n;j=j+1) \{ \\ & \texttt{SommaCorrente} = \texttt{SommaCorrente} + a[j] \end{split}
```

Calcoliamo sempre la somma di tutte le possibili sottosequenze di elementi consecutivi di $a=a[0]a[1]\cdots a[n-1]$, ma in maniera più furba. Osserviamo che

$$V(i,j) = \sum_{k=i}^{j} a[k] = \sum_{k=i}^{j-1} a[k] + a[j] = V(i,j-1) + a[j].$$
 (1)

```
\begin{split} & \texttt{MaxConsecutivaSomma2}(a) \\ & \texttt{SommaMassima} = a[0] \\ & \texttt{FOR}(i=0;i< n;i=i+1) \{ \\ & \texttt{SommaCorrente} = 0 \\ & \texttt{FOR}(j=i;j< n;j=j+1) \{ \\ & \texttt{SommaCorrente} = \texttt{SommaCorrente} + a[j] \\ & \texttt{IF}(\texttt{SommaCorrente} > \texttt{SommaMassima}) \{ \end{split}
```

Calcoliamo sempre la somma di tutte le possibili sottosequenze di elementi consecutivi di $a=a[0]a[1]\cdots a[n-1]$, ma in maniera più furba. Osserviamo che

$$V(i,j) = \sum_{k=i}^{j} a[k] = \sum_{k=i}^{j-1} a[k] + a[j] = V(i,j-1) + a[j].$$
 (1)

```
\begin{split} & \texttt{MaxConsecutivaSomma2}(a) \\ & \texttt{SommaMassima} = a[0] \\ & \texttt{FOR}(i=0;i< n;i=i+1) \{ \\ & \texttt{SommaCorrente} = 0 \\ & \texttt{FOR}(j=i;j< n;j=j+1) \{ \\ & \texttt{SommaCorrente} = \texttt{SommaCorrente} + a[j] \\ & \texttt{IF}(\texttt{SommaCorrente} > \texttt{SommaMassima}) \{ \\ & \texttt{SommaMassima} = \texttt{SommaCorrente} \end{split}
```

Calcoliamo sempre la somma di tutte le possibili sottosequenze di elementi consecutivi di $a=a[0]a[1]\cdots a[n-1]$, ma in maniera più furba. Osserviamo che

$$V(i,j) = \sum_{k=i}^{j} a[k] = \sum_{k=i}^{j-1} a[k] + a[j] = V(i,j-1) + a[j].$$
 (1)

```
\begin{split} & \texttt{MaxConsecutivaSomma2}(a) \\ & \texttt{SommaMassima} = a[0] \\ & \texttt{FOR}(i=0; i < n; i=i+1) \{ \\ & \texttt{SommaCorrente} = 0 \\ & \texttt{FOR}(j=i; j < n; j=j+1) \{ \\ & \texttt{SommaCorrente} = \texttt{SommaCorrente} + a[j] \\ & \texttt{IF}(\texttt{SommaCorrente} > \texttt{SommaMassima}) \{ \\ & \texttt{SommaMassima} = \texttt{SommaCorrente} \\ & \texttt{} \} \  \, \} \end{split}
```

Calcoliamo sempre la somma di tutte le possibili sottosequenze di elementi consecutivi di $a=a[0]a[1]\cdots a[n-1]$, ma in maniera più furba. Osserviamo che

$$V(i,j) = \sum_{k=i}^{j} a[k] = \sum_{k=i}^{j-1} a[k] + a[j] = V(i,j-1) + a[j].$$
 (1)

```
\label{eq:maxconsecutivaSomma2} \begin{split} & \operatorname{MaxConsecutivaSomma2}(a) \\ & \operatorname{SommaMassima} = a[0] \\ & \operatorname{FOR}(i=0;i< n;i=i+1) \big\{ \\ & \operatorname{SommaCorrente} = 0 \\ & \operatorname{FOR}(j=i;j< n;j=j+1) \big\{ \\ & \operatorname{SommaCorrente} = \operatorname{SommaCorrente} + a[j] \\ & \operatorname{IF}(\operatorname{SommaCorrente} > \operatorname{SommaMassima}) \big\{ \\ & \operatorname{SommaMassima} = \operatorname{SommaCorrente} \\ & \big\} \quad \big\} \quad \big\} \\ & \operatorname{RETURN} \quad \operatorname{SommaMassima} \end{split}
```

```
\begin{split} & \operatorname{MaxConsecutivaSomma2}(a) \\ & \operatorname{SommaMassima} = a[0] \\ & \operatorname{FOR}(i=0;i < n;i=i+1) \{ \\ & \operatorname{SommaCorrente} = 0 \\ & \operatorname{FOR}(j=i;j < n;j=j+1) \{ \\ & \operatorname{SommaCorrente} = \operatorname{SommaCorrente} + a[j] \\ & \operatorname{IF}(\operatorname{SommaCorrente} > \operatorname{SommaMassima}) \{ \\ & \operatorname{SommaMassima} = \operatorname{SommaCorrente} \\ & \} & \} & \} \\ & \operatorname{RETURN} & \operatorname{SommaMassima} \end{split}
```

```
\begin{split} & \operatorname{MaxConsecutivaSomma2}(a) \\ & \operatorname{SommaMassima} = a[0] \\ & \operatorname{FOR}(i=0;i < n;i=i+1) \{ \\ & \operatorname{SommaCorrente} = 0 \\ & \operatorname{FOR}(j=i;j < n;j=j+1) \{ \\ & \operatorname{SommaCorrente} = \operatorname{SommaCorrente} + a[j] \\ & \operatorname{IF}(\operatorname{SommaCorrente} > \operatorname{SommaMassima}) \{ \\ & \operatorname{SommaMassima} = \operatorname{SommaCorrente} \\ & \} & \} & \} \\ & \operatorname{RETURN} & \operatorname{SommaMassima} \end{split}
```

Le istruzioni all'interno del ${
m FOR}(j=i;j< n;j=j+1)$ possono essere eseguite al più n volte,

```
\begin{split} & \operatorname{MaxConsecutivaSomma2}(a) \\ & \operatorname{SommaMassima} = a[0] \\ & \operatorname{FOR}(i=0;i< n;i=i+1) \{ \\ & \operatorname{SommaCorrente} = 0 \\ & \operatorname{FOR}(j=i;j< n;j=j+1) \{ \\ & \operatorname{SommaCorrente} = \operatorname{SommaCorrente} + a[j] \\ & \operatorname{IF}(\operatorname{SommaCorrente} > \operatorname{SommaMassima}) \{ \\ & \operatorname{SommaMassima} = \operatorname{SommaCorrente} \\ & \} & \} & \} \\ & \operatorname{RETURN} & \operatorname{SommaMassima} \end{split}
```

Le istruzioni all'interno del $\begin{aligned} & \text{FOR}(j=i;j < n; j=j+1) \text{ possono essere eseguite al più } n \text{ volte, così come le istruzioni all'interno del} \\ & \text{FOR}(i=0;i < n;i=i+1), \end{aligned}$

```
\begin{split} & \texttt{MaxConsecutivaSomma2}(a) \\ & \texttt{SommaMassima} = a[0] \\ & \texttt{FOR}(i=0;i < n;i=i+1) \{ \\ & \texttt{SommaCorrente} = 0 \\ & \texttt{FOR}(j=i;j < n;j=j+1) \{ \\ & \texttt{SommaCorrente} = \texttt{SommaCorrente} + a[j] \\ & \texttt{IF}(\texttt{SommaCorrente} > \texttt{SommaMassima}) \{ \\ & \texttt{SommaMassima} = \texttt{SommaCorrente} \\ & \texttt{} \} \  \  \} \  \  \} \end{split}
```

Le istruzioni all'interno del ${\rm FOR}(j=i;j< n;j=j+1)$ possono essere eseguite al più n volte, così come le istruzioni all'interno del ${\rm FOR}(i=0;i< n;i=i+1)$, per cui l'algoritmo ${\rm MaxConsecutivaSomma2}(a)$ eseguirà al più $d\times n\times n=n^2$ operazioni elementari, per qualche costante d.

```
\begin{split} & \operatorname{MaxConsecutivaSomma2}(a) \\ & \operatorname{SommaMassima} = a[0] \\ & \operatorname{FOR}(i=0;i < n;i=i+1) \{ \\ & \operatorname{SommaCorrente} = 0 \\ & \operatorname{FOR}(j=i;j < n;j=j+1) \{ \\ & \operatorname{SommaCorrente} = \operatorname{SommaCorrente} + a[j] \\ & \operatorname{IF}(\operatorname{SommaCorrente} > \operatorname{SommaMassima}) \{ \\ & \operatorname{SommaMassima} = \operatorname{SommaCorrente} \\ & \} & \} & \} \\ & \operatorname{RETURN} & \operatorname{SommaMassima} \end{split}
```

Le istruzioni all'interno del FOR(j = i; j < n; j = j + 1) possono essere eseguite al più n volte, così come le istruzioni all'interno del FOR(i = 0; i < n; i = i + 1), per cui l'algoritmo MaxConsecutivaSomma2(a) eseguirà al più $d \times n \times n = n^2$ operazioni elementari, per qualche costante d. In altri termini. complessità dell'algoritmo MaxConsecutivaSomma2(a) un input composto da una seguenza di n numeri è $O(n^2)$.

Applichiamo la tecnica Divide-et-Impera.

Applichiamo la tecnica Divide-et-Impera.

Idea: Data la sequenza input di n numeri $a=a[0a[1]\dots a[n-1],$ calcoliamo $m=\lfloor n/2\rfloor.$

Applichiamo la tecnica Divide-et-Impera.

Idea: Data la sequenza input di n numeri $a=a[0a[1]\dots a[n-1]$, calcoliamo $m=\lfloor n/2\rfloor$. La massima somma consecutiva (MSC) della sequenza $a=a[0]a[1]\cdots a[n-1]$ deve necessariamente essere una delle seguenti:

$$S_1 = \mathsf{Ia}\ \mathsf{MSC}\ \mathsf{della}\ \mathsf{sottosequenza}\ a[0]a[1]\cdots a[m-1]$$

S_1		
	m-1	m

Applichiamo la tecnica Divide-et-Impera.

Idea: Data la sequenza input di n numeri $a=a[0a[1]\dots a[n-1]$, calcoliamo $m=\lfloor n/2\rfloor$. La massima somma consecutiva (MSC) della sequenza $a=a[0]a[1]\cdots a[n-1]$ deve necessariamente essere una delle seguenti:

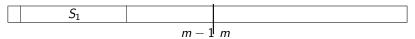
$$S_1 = \mathsf{Ia}\ \mathsf{MSC}\ \mathsf{della}\ \mathsf{sottosequenza}\ a[0]a[1]\cdots a[m-1]$$

oppure S_2 : la MSC della sottosequenza $a[m]a[m+1]\cdots a[n-1]$

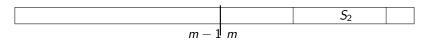
Applichiamo la tecnica Divide-et-Impera.

Idea: Data la sequenza input di n numeri $a=a[0a[1]\dots a[n-1]$, calcoliamo $m=\lfloor n/2\rfloor$. La massima somma consecutiva (MSC) della sequenza $a=a[0]a[1]\cdots a[n-1]$ deve necessariamente essere una delle seguenti:

$$S_1 = \mathsf{Ia}\ \mathsf{MSC}\ \mathsf{della}\ \mathsf{sottosequenza}\ a[0]a[1]\cdots a[m-1]$$



oppure S_2 : la MSC della sottosequenza $a[m]a[m+1]\cdots a[n-1]$



oppure è a "cavallo" di a[m-1], ovvero la massima somma consecutiva di a è della forma $A=A_1\cup A_2$, con

A_1	A_2	
m - 1	m	

Esempio

Vediamo un esempio. Sia $a = a[0]a[1] \cdots a[15]$ dato da:

1 -5 4 2 -7 3 6 -1 2 -4 7 -10 2 6 1

Esempio

Vediamo un esempio. Sia $a = a[0]a[1] \cdots a[15]$ dato da:

1	-5	4	2	-7	3	6	-1	2	-4	7	-10	2	6	1	-3	
---	----	---	---	----	---	---	----	---	----	---	-----	---	---	---	----	--

In questo caso $S_1 = [3, 6]$ con valore 3 + 6 = 9, e $S_2 = [2, 6, 1]$ con valore 2 + 6 + 1 = 9.

Esempio

Vediamo un esempio. Sia $a = a[0]a[1] \cdots a[15]$ dato da:

1	-5	4	2	-7	3	6	-1	2	-4	7	-10	2	6	1	-3	
---	----	---	---	----	---	---	----	---	----	---	-----	---	---	---	----	--

In questo caso $S_1 = [3, 6]$ con valore 3 + 6 = 9, e $S_2 = [2, 6, 1]$ con valore 2 + 6 + 1 = 9.

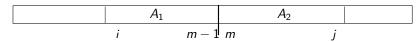
Ma abbiamo anche $A_1=[3,6,-1]$, $A_2=[2,-4,7]$, con $A=A_1\cup A_2=[3,6,-1,2,-4,7]$, di valore totale 3+6-1+2-4+7=13.

▶ il valore S_1 lo si trova determinando la MSC di $a[0]a[1]\cdots a[m-1]$, ovvero chiamando l'algoritmo **ricorsivamente** sulla parte sinistra $a[0]a[1]\cdots a[m-1]$ della sequenza $a[0]a[1]\cdots a[n-1]$

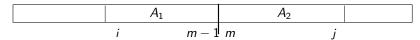
- ▶ il valore S_1 lo si trova determinando la MSC di $a[0]a[1]\cdots a[m-1]$, ovvero chiamando l'algoritmo ricorsivamente sulla parte sinistra $a[0]a[1]\cdots a[m-1]$ della sequenza $a[0]a[1]\cdots a[n-1]$
- ▶ il valore S_2 lo si trova determinando la MSC di $a[m]a[m+1]\cdots a[n-1]$, ovvero chiamando l'algoritmo **ricorsivamente** sulla parte destra $a[m]a[m+1]\cdots a[n-1]$ della sequenza $a[0]a[1]\cdots a[n-1]$

- ▶ il valore S_1 lo si trova determinando la MSC di $a[0]a[1]\cdots a[m-1]$, ovvero chiamando l'algoritmo ricorsivamente sulla parte sinistra $a[0]a[1]\cdots a[m-1]$ della sequenza $a[0]a[1]\cdots a[n-1]$
- ▶ il valore S_2 lo si trova determinando la MSC di $a[m]a[m+1]\cdots a[n-1]$, ovvero chiamando l'algoritmo **ricorsivamente** sulla parte destra $a[m]a[m+1]\cdots a[n-1]$ della sequenza $a[0]a[1]\cdots a[n-1]$
- ► Come trovare il valore A lo vediamo nella prossima slide...

- ▶ il valore S_1 lo si trova determinando la MSC di $a[0]a[1]\cdots a[m-1]$, ovvero chiamando l'algoritmo **ricorsivamente** sulla parte sinistra $a[0]a[1]\cdots a[m-1]$ della sequenza $a[0]a[1]\cdots a[n-1]$
- ▶ il valore S_2 lo si trova determinando la MSC di $a[m]a[m+1]\cdots a[n-1]$, ovvero chiamando l'algoritmo **ricorsivamente** sulla parte destra $a[m]a[m+1]\cdots a[n-1]$ della sequenza $a[0]a[1]\cdots a[n-1]$
- ► Come trovare il valore A lo vediamo nella prossima slide...
- ▶ La MSC dell'intera sequenza $a[0]a[1]\cdots a[n-1]$ sará quindi quel valore tra S_1 , S_2 , ed A, che ha valore massimo.

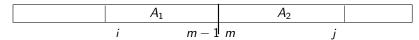


▶ A_1 è la massima somma contigua della forma $a[i] \dots a[m-1]$ per qualche valore di $i \in \{0, \dots, m-1\}$ (m è fissato e solo i può variare):



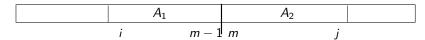
▶ A_1 è la massima somma contigua della forma $a[i] \dots a[m-1]$ per qualche valore di $i \in \{0, \dots, m-1\}$ (m è fissato e solo i può variare):

ci sono $solo \ m \leq n$ tali sequenze, tante quanti sono i corrispondenti valori di $i, 0 \leq i \leq m-1$.

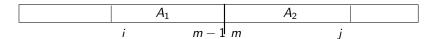


▶ A_1 è la massima somma contigua della forma $a[i] \dots a[m-1]$ per qualche valore di $i \in \{0, \dots, m-1\}$ (m è fissato e solo i può variare):

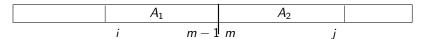
ci sono solo $m \le n$ tali sequenze, tante quanti sono i corrispondenti valori di $i, 0 \le i \le m-1$. Pertanto la sequenza contigua A_1 di valore massimo puó essere trovata usando al piú $m \le n$ operazioni, con un semplice ciclo FOR, con l'indice i del FOR che varia tra 0 e m-1.



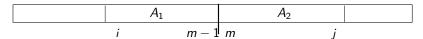
- ▶ A_1 è la massima somma contigua della forma $a[i] \dots a[m-1]$ per qualche valore di $i \in \{0, \dots, m-1\}$ (m è fissato e solo i può variare): ci sono solo $m \le n$ tali sequenze, tante quanti sono i corrispondenti valori di i. $0 \le i \le m-1$. Pertanto la seguenza contigua A_1 di valore
 - valori di $i, 0 \le i \le m-1$. Pertanto la sequenza contigua A_1 di valore massimo puó essere trovata usando al piú $m \le n$ operazioni, con un semplice ciclo FOR, con l'indice i del FOR che varia tra $0 \in m-1$.
- ▶ Analogamente, A_2 é della forma $a[m] \dots a[j]$. per qualche valore di $j \in \{m, \dots n-1\}$ (m è fissato e solo j può variare):



- ▶ A_1 è la massima somma contigua della forma $a[i] \dots a[m-1]$ per qualche valore di $i \in \{0, \dots, m-1\}$ (m è fissato e solo i può variare): ci sono solo $m \le n$ tali sequenze, tante quanti sono i corrispondenti valori di i, $0 \le i \le m-1$. Pertanto la sequenza contigua A_1 di valore massimo puó essere trovata usando al piú $m \le n$ operazioni, con un semplice ciclo FOR, con l'indice i del FOR che varia tra $0 \in m-1$.
- Analogamente, A₂ é della forma a[m]...a[j]. per qualche valore di j ∈ {m,...n-1} (m è fissato e solo j può variare):
 ci sono solo n-m≤n tali sequenze, tante quanti sono i corrispondenti valori di j, m≤ j ≤ n-1.



- ▶ A_1 è la massima somma contigua della forma $a[i] \dots a[m-1]$ per qualche valore di $i \in \{0, \dots, m-1\}$ (m è fissato e solo i può variare):
 - ci sono $solo m \le n$ tali sequenze, tante quanti sono i corrispondenti valori di $i, 0 \le i \le m-1$. Pertanto la sequenza contigua A_1 di valore massimo puó essere trovata usando al piú $m \le n$ operazioni, con un semplice ciclo FOR, con l'indice i del FOR che varia tra $0 \ em m = 1$.
- Analogamente, A_2 é della forma $a[m] \dots a[j]$. per qualche valore di $j \in \{m, \dots n-1\}$ (m è fissato e solo j può variare):
 - ci sono solo $n-m \leq n$ tali sequenze, tante quanti sono i corrispondenti valori di $j, m \leq j \leq n-1$. Pertanto la sequenza contigua A_2 di valore massimo puó essere trovata in $n-m \leq n$ operazioni, sempre con un semplice ciclo FOR, con l'indice j del FOR che varia tra m ed n-1.



- ▶ A_1 è la massima somma contigua della forma $a[i] \dots a[m-1]$ per qualche valore di $i \in \{0, \dots, m-1\}$ (m è fissato e solo i può variare):
 - ci sono solo $m \le n$ tali sequenze, tante quanti sono i corrispondenti valori di $i, 0 \le i \le m-1$. Pertanto la sequenza contigua A_1 di valore massimo puó essere trovata usando al piú $m \le n$ operazioni, con un semplice ciclo FOR, con l'indice i del FOR che varia tra 0 e m-1.
- Analogamente, A_2 é della forma $a[m] \dots a[j]$. per qualche valore di $j \in \{m, \dots n-1\}$ (m è fissato e solo j può variare):
 - ci sono solo $n-m \leq n$ tali sequenze, tante quanti sono i corrispondenti valori di $j, m \leq j \leq n-1$. Pertanto la sequenza contigua A_2 di valore massimo puó essere trovata in $n-m \leq n$ operazioni, sempre con un semplice ciclo FOR, con l'indice j del FOR che varia tra m ed n-1. Riassumendo

 $A = A_1 \cup A_2$ può essere trovato in O(n) operazioni

MaxConsecutivaSomma3(a, i, j)

MaxConsecutivaSomma3(a, i, j)1. IF i == j RETURN a[i]

```
MaxConsecutivaSomma3(a, i, j)
```

- 1. If i == j RETURN a[i] ELSE
- 2. $S_1 = \text{MaxConsecutivaSomma3}(a, i, \lfloor (i+j)/2 \rfloor)$

MaxConsecutivaSomma3(a, i, j)

- 1. IF i == j RETURN a[i] ELSE
- 2. $S_1 = \text{MaxConsecutivaSomma3}(a, i, \lfloor (i+j)/2 \rfloor)$
- 3. $S_2 = \text{MaxConsecutivaSomma3}(a, \lfloor (i+j)/2 \rfloor + 1, j)$

```
MaxConsecutivaSomma3(a, i, j)
1. If i == j RETURN a[i] ELSE
2. S_1 = \text{MaxConsecutivaSomma3}(a, i, \lfloor (i+j)/2 \rfloor)
3. S_2 = \text{MaxConsecutivaSomma3}(a, \lfloor (i+j)/2 \rfloor + 1, j)
4. A_1 = 0, B_1 = a[\lfloor (i+j)/2 \rfloor]
```

```
MaxConsecutivaSomma3(a, i, j)
1. IF i == j RETURN a[i] ELSE
2. S_1 = \text{MaxConsecutivaSomma3}(a, i, \lfloor (i+j)/2 \rfloor)
3. S_2 = \text{MaxConsecutivaSomma3}(a, \lfloor (i+j)/2 \rfloor + 1, j)
4. A_1 = 0, B_1 = a[\lfloor (i+j)/2 \rfloor]
5. FOR(s = \lfloor (i+j)/2 \rfloor; s > i-1; s = s-1){
```

```
MaxConsecutivaSomma3(a, i, j)
1. IF i == j RETURN a[i] ELSE
2. S_1 = \text{MaxConsecutivaSomma3}(a, i, \lfloor (i+j)/2 \rfloor)
3. S_2 = \text{MaxConsecutivaSomma3}(a, \lfloor (i+j)/2 \rfloor + 1, j)
4. A_1 = 0, B_1 = a[\lfloor (i+j)/2 \rfloor]
5. FOR(s = \lfloor (i+j)/2 \rfloor; s > i-1; s = s-1){
6. A_1 = A_1 + a[s]
```

```
MaxConsecutivaSomma3(a, i, j)
1. IF i == j RETURN a[i] ELSE
2. S_1 = \text{MaxConsecutivaSomma3}(a, i, \lfloor (i+j)/2 \rfloor)
3. S_2 = \text{MaxConsecutivaSomma3}(a, \lfloor (i+j)/2 \rfloor + 1, j)
4. A_1 = 0, B_1 = a[\lfloor (i+j)/2 \rfloor]
5. FOR(s = \lfloor (i+j)/2 \rfloor; s > i-1; s = s-1){
6. A_1 = A_1 + a[s]
7. IF(A_1 > B_1) {
```

```
MaxConsecutivaSomma3(a, i, j)
1. IF i == i RETURN a[i] ELSE
2. S_1 = \text{MaxConsecutivaSomma3}(a, i, |(i+j)/2|)
3. S_2 = \text{MaxConsecutivaSomma3}(a, |(i+j)/2| + 1, j)
4. A_1 = 0, B_1 = a[|(i+j)/2|]
5. FOR(s = |(i+i)/2|; s > i-1; s = s-1){
6. A_1 = A_1 + a[s]
7. IF(A_1 > B_1) {
            B_1 = A_1
8.
    A_2 = 0, B_2 = a[|(i+i)/2| + 1]
```

```
MaxConsecutivaSomma3(a, i, j)
1. IF i == i RETURN a[i] ELSE
2. S_1 = \text{MaxConsecutivaSomma3}(a, i, |(i+j)/2|)
3. S_2 = \text{MaxConsecutivaSomma3}(a, |(i+j)/2| + 1, j)
4. A_1 = 0, B_1 = a[|(i+i)/2|]
5. FOR(s = |(i+i)/2|; s > i-1; s = s-1){
6. A_1 = A_1 + a[s]
7.
        IF(A_1 > B_1) {
              B_1 = A_1
8.
    A_2 = 0, B_2 = a[|(i+j)/2| + 1]
        FOR(t = |(i + i)/2| + 1; t < i + 1; t = t + 1)
10.
```

```
MaxConsecutivaSomma3(a, i, j)
1. IF i == i RETURN a[i] ELSE
2. S_1 = \text{MaxConsecutivaSomma3}(a, i, |(i+j)/2|)
3. S_2 = \text{MaxConsecutivaSomma3}(a, |(i+j)/2| + 1, j)
4. A_1 = 0, B_1 = a[|(i+i)/2|]
5. FOR(s = |(i+i)/2|; s > i-1; s = s-1){
6.
   A_1 = A_1 + a[s]
7.
        IF(A_1 > B_1) {
             B_1 = A_1
8.
     A_2 = 0, B_2 = a[|(i+j)/2| + 1]
10. FOR(t = |(i+j)/2| + 1; t < j+1; t = t+1){
11.
         A_2 = A_2 + a[t]
```

```
MaxConsecutivaSomma3(a, i, j)
1. IF i == i RETURN a[i] ELSE
2. S_1 = \text{MaxConsecutivaSomma3}(a, i, |(i+j)/2|)
3. S_2 = \text{MaxConsecutivaSomma3}(a, |(i+j)/2| + 1, j)
4. A_1 = 0, B_1 = a[|(i+i)/2|]
5. FOR(s = |(i+i)/2|; s > i-1; s = s-1){
6.
    A_1 = A_1 + a[s]
7.
        IF(A_1 > B_1) {
             B_1 = A_1
8.
     A_2 = 0, B_2 = a[|(i+i)/2| + 1]
       FOR(t = |(i+i)/2| + 1; t < i+1; t = t+1){
10.
11.
       A_2 = A_2 + a[t]
         IF(A_2 > B_2) {
12.
```

```
MaxConsecutivaSomma3(a, i, j)
1. IF i == i RETURN a[i] ELSE
2. S_1 = \text{MaxConsecutivaSomma3}(a, i, |(i+j)/2|)
3. S_2 = \text{MaxConsecutivaSomma3}(a, |(i+j)/2| + 1, j)
4. A_1 = 0, B_1 = a[|(i+i)/2|]
5. FOR(s = |(i+j)/2|; s > i-1; s = s-1){
6.
    A_1 = A_1 + a[s]
7.
        IF(A_1 > B_1) {
              B_1 = A_1
8.
     A_2 = 0, B_2 = a[|(i+j)/2| + 1]
       FOR(t = |(i+i)/2| + 1; t < i+1; t = t+1){
10.
11.
       A_2 = A_2 + a[t]
        IF(A_2 > B_2) {
12.
13.
            B_2 = A_2
```

```
MaxConsecutivaSomma3(a, i, j)
1. IF i == i RETURN a[i] ELSE
2. S_1 = \text{MaxConsecutivaSomma3}(a, i, |(i+j)/2|)
3. S_2 = \text{MaxConsecutivaSomma3}(a, |(i+j)/2| + 1, j)
4. A_1 = 0, B_1 = a[|(i+i)/2|]
5. FOR(s = |(i+j)/2|; s > i-1; s = s-1){
6.
   A_1 = A_1 + a[s]
7. IF(A_1 > B_1) {
              B_1 = A_1
8.
     A_2 = 0, B_2 = a[|(i+j)/2| + 1]
     FOR(t = |(i + i)/2| + 1; t < i + 1; t = t + 1)
10.
11.
      A_2 = A_2 + a[t]
         IF(A_2 > B_2) {
12.
13.
              B_2 = A_2
14. S_3 = B_1 + B_2
```

```
MaxConsecutivaSomma3(a, i, j)
1. IF i == i RETURN a[i] ELSE
2. S_1 = \text{MaxConsecutivaSomma3}(a, i, |(i+j)/2|)
3. S_2 = \text{MaxConsecutivaSomma3}(a, |(i+j)/2| + 1, j)
4. A_1 = 0, B_1 = a[|(i+i)/2|]
5. FOR(s = |(i+i)/2|; s > i-1; s = s-1){
6.
     A_1 = A_1 + a[s]
7.
        IF(A_1 > B_1) {
              B_1 = A_1
8.
     A_2 = 0, B_2 = a[|(i+j)/2| + 1]
     FOR(t = |(i + i)/2| + 1; t < i + 1; t = t + 1)
10.
11.
       A_2 = A_2 + a[t]
          IF(A_2 > B_2) {
12.
              B_2 = A_2
13.
14. S_3 = B_1 + B_2
     RETURN MAX(S_1, S_2, S_3)
15.
```

```
MaxConsecutivaSomma3(a, i, j)
1. IF i == j RETURN a[i] ELSE
2. S_1 = \text{MaxConsecutivaSomma3}(a, i, |(i+i)/2|)
3. S_2 = \text{MaxConsecutivaSomma3}(a, |(i+j)/2| + 1, j)
4. A_1 = 0, B_1 = a[|(i+j)/2|]
5. FOR(s = |(i+i)/2|; s > i-1; s = s-1){
6. A_1 = A_1 + a[s]
7. IF(A_1 > B_1) {
          B_1 = A_1
    A_2 = 0, B_2 = a[|(i+j)/2| + 1]
9.
     FOR(t = |(i+j)/2| + 1; t < j + 1; t = t + 1){
10.
11. A_2 = A_2 + a[t]
12. IF(A_2 > B_2) {
13.
              B_2 = A_2
14. S_3 = B_1 + B_2
15. RETURN MAX(S_1, S_2, S_3)
```

```
MaxConsecutivaSomma3(a, i, j)
1. IF i == j RETURN a[i] ELSE
2. S_1 = \text{MaxConsecutivaSomma3}(a, i, |(i+i)/2|)
3. S_2 = \text{MaxConsecutivaSomma3}(a, |(i+j)/2| + 1, j)
4. A_1 = 0, B_1 = a[|(i+j)/2|]
5. FOR(s = |(i+i)/2|; s > i-1; s = s-1){
6. A_1 = A_1 + a[s]
7. IF(A_1 > B_1) {
          B_1 = A_1
    A_2 = 0, B_2 = a[|(i+i)/2| + 1]
9.
     FOR(t = |(i+j)/2| + 1; t < j+1; t = t+1){
10.
11.
   A_2 = A_2 + a[t]
12. IF(A_2 > B_2) {
13.
              B_2 = A_2
14. S_3 = B_1 + B_2
     RETURN MAX(S_1, S_2, S_3)
15.
```

```
MaxConsecutivaSomma3(a, i, j)
1. IF i == j RETURN a[i] ELSE
2. S_1 = \text{MaxConsecutivaSomma3}(a, i, |(i+i)/2|)
3. S_2 = \text{MaxConsecutivaSomma3}(a, |(i+j)/2| + 1, j)
4. A_1 = 0, B_1 = a[|(i+j)/2|]
5. FOR(s = |(i+i)/2|; s > i-1; s = s-1){
6. A_1 = A_1 + a[s]
7. IF(A_1 > B_1) {
         B_1 = A_1
    A_2 = 0, B_2 = a[|(i+i)/2| + 1]
9.
     FOR(t = |(i+j)/2| + 1; t < j+1; t = t+1){
10.
11.
   A_2 = A_2 + a[t]
12. IF(A_2 > B_2) {
              B_2 = A_2
13.
14. S_3 = B_1 + B_2
15. RETURN MAX(S_1, S_2, S_3)
```

Sia T(n) il numero di operazioni di MaxConsecutivaSomma3(a, 0, n-1), abbiamo:

• l'istruzione 1. richiede tempo O(1).

```
MaxConsecutivaSomma3(a, i, j)
1. IF i == j RETURN a[i] ELSE
2. S_1 = \text{MaxConsecutivaSomma3}(a, i, |(i+i)/2|)
3. S_2 = \text{MaxConsecutivaSomma3}(a, |(i+j)/2| + 1, j)
4. A_1 = 0, B_1 = a[|(i+j)/2|]
5. FOR(s = |(i+i)/2|; s > i-1; s = s-1){
6. A_1 = A_1 + a[s]
7. IF(A_1 > B_1) {
        B_1 = A_1
    A_2 = 0, B_2 = a[|(i+i)/2| + 1]
9.
10.
   FOR(t = |(i + j)/2| + 1; t < j + 1; t = t + 1)
11.
   A_2 = A_2 + a[t]
12. IF(A_2 > B_2) {
             B_2 = A_2
13.
14. S_3 = B_1 + B_2
15. RETURN MAX(S_1, S_2, S_3)
```

- l'istruzione 1. richiede tempo O(1).
- Le istruzioni 2. e 3. richiedono tempo T(n/2), ciascheduna.

```
MaxConsecutivaSomma3(a, i, i)
1. IF i == j RETURN a[i] ELSE
2. S_1 = \text{MaxConsecutivaSomma3}(a, i, |(i+i)/2|)
3. S_2 = \text{MaxConsecutivaSomma3}(a, |(i+j)/2| + 1, j)
4. A_1 = 0, B_1 = a[|(i+j)/2|]
5. FOR(s = |(i+i)/2|; s > i-1; s = s-1){
6. A_1 = A_1 + a[s]
7. IF(A_1 > B_1) {
         B_1 = A_1
    A_2 = 0, B_2 = a[|(i+i)/2| + 1]
9.
10.
     FOR(t = |(i + j)/2| + 1; t < j + 1; t = t + 1)
11.
    A_2 = A_2 + a[t]
   IF(A_2 > B_2) {
12.
              B_2 = A_2
13.
14. S_3 = B_1 + B_2
     RETURN MAX(S_1, S_2, S_3)
15.
```

- l'istruzione 1. richiede tempo O(1).
- Le istruzioni 2. e 3. richiedono tempo T(n/2), ciascheduna, in quanto in ciascuna di esse eseguiamo il nostro algoritmo MSC su di una sequenza lunga la $met \grave{a}$ di quella di partenza.

```
MaxConsecutivaSomma3(a, i, i)
1. IF i == j RETURN a[i] ELSE
2. S_1 = \text{MaxConsecutivaSomma3}(a, i, |(i+i)/2|)
3. S_2 = \text{MaxConsecutivaSomma3}(a, |(i+j)/2| + 1, j)
4. A_1 = 0, B_1 = a[|(i+j)/2|]
5. FOR(s = |(i+i)/2|; s > i-1; s = s-1){
6. A_1 = A_1 + a[s]
        IF(A_1 > B_1) {
         B_1 = A_1
    A_2 = 0, B_2 = a[|(i+i)/2| + 1]
9.
     FOR(t = |(i+j)/2| + 1; t < j+1; t = t+1){
10.
11.
    A_2 = A_2 + a[t]
12. IF(A_2 > B_2) {
13.
              B_2 = A_2
14.
    S_3 = B_1 + B_2
     RETURN MAX(S_1, S_2, S_3)
15.
```

- l'istruzione 1. richiede tempo O(1).
- Le istruzioni 2. e 3. richiedono tempo T(n/2), ciascheduna, in quanto in ciascuna di esse eseguiamo il nostro algoritmo MSC su di una sequenza lunga la $met\grave{a}$ di quella di partenza.
- Le istruzioni 4-15 richiedono in totale tempo O(n).

```
MaxConsecutivaSomma3(a, i, i)
1. IF i == j RETURN a[i] ELSE
2. S_1 = \text{MaxConsecutivaSomma3}(a, i, |(i+i)/2|)
3. S_2 = \text{MaxConsecutivaSomma3}(a, |(i+j)/2| + 1, j)
4. A_1 = 0, B_1 = a[|(i+j)/2|]
5. FOR(s = |(i+i)/2|; s > i-1; s = s-1){
6.
    A_1 = A_1 + a[s]
        IF(A_1 > B_1) {
          B_1 = A_1
    A_2 = 0, B_2 = a[|(i+i)/2| + 1]
9.
     FOR(t = |(i+j)/2| + 1; t < j+1; t = t+1){
10.
11.
    A_2 = A_2 + a[t]
12.
   IF(A_2 > B_2) {
13.
              B_2 = A_2
14. S_3 = B_1 + B_2
     RETURN MAX(S_1, S_2, S_3)
15.
```

- l'istruzione 1. richiede tempo O(1).
- Le istruzioni 2. e 3. richiedono tempo T(n/2), ciascheduna, in quanto in ciascuna di esse eseguiamo il nostro algoritmo MSC su di una sequenza lunga la $met\grave{a}$ di quella di partenza.
- Le istruzioni 4-15 richiedono in totale tempo O(n). In totale

$$T(n) = 2T(n/2) + O(n)$$

```
MaxConsecutivaSomma3(a, i, i)
1. IF i == j RETURN a[i] ELSE
2. S_1 = \text{MaxConsecutivaSomma3}(a, i, |(i+i)/2|)
3. S_2 = \text{MaxConsecutivaSomma3}(a, |(i+j)/2| + 1, j)
4. A_1 = 0, B_1 = a[|(i+j)/2|]
5. FOR(s = |(i+i)/2|; s > i-1; s = s-1){
6.
     A_1 = A_1 + a[s]
         IF(A_1 > B_1) {
           B_1 = A_1
    A_2 = 0, B_2 = a[|(i+i)/2| + 1]
9.
        FOR(t = |(i+j)/2| + 1; t < j + 1; t = t + 1){
10.
11.
    A_2 = A_2 + a[t]
12.
       IF(A_2 > B_2) {
13.
               B_2 = A_2
14.
    S_3 = B_1 + B_2
      RETURN MAX(S_1, S_2, S_3)
15.
```

- l'istruzione 1. richiede tempo O(1).
- Le istruzioni 2. e 3. richiedono tempo T(n/2), ciascheduna, in quanto in ciascuna di esse eseguiamo il nostro algoritmo MSC su di una sequenza lunga la $met\grave{a}$ di quella di partenza.
- Le istruzioni 4-15 richiedono in totale tempo O(n). In totale

$$T(n) = 2T(n/2) + O(n)$$

$$\downarrow \downarrow$$

$$T(n) = O(n \log n)$$

Dato il problema computazionale:

Input: sequenza di numeri
$$a = a[0]a[1] \cdots a[n-1]$$

Input: sequenza di numeri
$$a=a[0]a[1]\cdots a[n-1]$$
Output: $V(a)=\max_{0\leq i\leq j\leq n-1}V(i,j)=\max_{0\leq i\leq j\leq n-1}\sum_{k=i}^{j}a[k]$

Dato il problema computazionale:

Input: sequenza di numeri
$$a=a[0]a[1]\cdots a[n-1]$$
Output: $V(a)=\max_{0\leq i\leq j\leq n-1}V(i,j)=\max_{0\leq i\leq j\leq n-1}\sum_{k=i}^{j}a[k]$

abbiamo progettato 3 differenti algoritmi per la sua soluzione:

Dato il problema computazionale:

Input: sequenza di numeri
$$a=a[0]a[1]\cdots a[n-1]$$
Output: $V(a)=\max_{0\leq i\leq j\leq n-1}V(i,j)=\max_{0\leq i\leq j\leq n-1}\sum_{k=i}^{j}a[k]$

abbiamo progettato 3 differenti algoritmi per la sua soluzione:

1. MaxConsecutivaSomma1(a) richiede tempo $O(n^3)$

Dato il problema computazionale:

Input: sequenza di numeri
$$a=a[0]a[1]\cdots a[n-1]$$
Output: $V(a)=\max_{0\leq i\leq j\leq n-1}V(i,j)=\max_{0\leq i\leq j\leq n-1}\sum_{k=i}^{j}a[k]$

abbiamo progettato 3 differenti algoritmi per la sua soluzione:

- 1. MaxConsecutivaSomma1(a) richiede tempo $O(n^3)$
- 2. MaxConsecutivaSomma2(a) richiede tempo $O(n^2)$

Riassumiamo

Dato il problema computazionale:

Input: sequenza di numeri
$$a=a[0]a[1]\cdots a[n-1]$$
Output: $V(a)=\max_{0\leq i\leq j\leq n-1}V(i,j)=\max_{0\leq i\leq j\leq n-1}\sum_{k=i}^{j}a[k]$

abbiamo progettato 3 differenti algoritmi per la sua soluzione:

- 1. MaxConsecutivaSomma1(a) richiede tempo $O(n^3)$
- 2. MaxConsecutivaSomma2(a) richiede tempo $O(n^2)$
- 3. MaxConsecutivaSomma3(a) richiede tempo $O(n \log n)$

Riassumiamo

Dato il problema computazionale:

Input: sequenza di numeri
$$a=a[0]a[1]\cdots a[n-1]$$
Output: $V(a)=\max_{0\leq i\leq j\leq n-1}V(i,j)=\max_{0\leq i\leq j\leq n-1}\sum_{k=i}^{j}a[k]$

abbiamo progettato 3 differenti algoritmi per la sua soluzione:

- 1. MaxConsecutivaSomma1(a) richiede tempo $O(n^3)$
- 2. MaxConsecutivaSomma2(a) richiede tempo $O(n^2)$
- 3. MaxConsecutivaSomma3(a) richiede tempo $O(n \log n)$

Possiamo fare ancora meglio?

M(i) = il valore della massima somma consecutiva che ha come *ultimo* termine il valore a[i].

M(i) = il valore della massima somma consecutiva che ha come *ultimo* termine il valore a[i].

Ovviamente vale che

$$V(a) = \max_{0 \le i \le j \le n-1} \sum_{k=i}^{j} a[k] =$$

M(i) = il valore della massima somma consecutiva che ha come *ultimo* termine il valore a[i].

Ovviamente vale che

$$V(a) = \max_{0 \le i \le j \le n-1} \sum_{k=i}^{j} a[k] = \max\{M(0), M(1), \dots, M(n-1)\},\$$

visto che la somma consecutiva di valore massimo da qualche parte deve pur terminare.

M(i) = il valore della massima somma consecutiva che ha come *ultimo* termine il valore a[i].

Ovviamente vale che

$$V(a) = \max_{0 \le i \le j \le n-1} \sum_{k=i}^{j} a[k] = \max\{M(0), M(1), \dots, M(n-1)\},\$$

visto che la somma consecutiva di valore massimo da qualche parte deve pur terminare. Inoltre, vale che

$$M(i) = \max\{M(i-1) + a[i], a[i]\}.$$
 (2)

M(i) = il valore della massima somma consecutiva che ha come *ultimo* termine il valore a[i].

Ovviamente vale che

$$V(a) = \max_{0 \le i \le j \le n-1} \sum_{k=i}^{j} a[k] = \max\{M(0), M(1), \dots, M(n-1)\},\$$

visto che la somma consecutiva di valore massimo da qualche parte deve pur terminare. Inoltre, vale che

$$M(i) = \max\{M(i-1) + a[i], a[i]\}.$$
 (2)

Se M(i) = a[i], non c'è niente da provare.

M(i) = il valore della massima somma consecutiva che ha come *ultimo* termine il valore a[i].

Ovviamente vale che

$$V(a) = \max_{0 \le i \le j \le n-1} \sum_{k=i}^{j} a[k] = \max\{M(0), M(1), \dots, M(n-1)\},\$$

visto che la somma consecutiva di valore massimo da qualche parte deve pur terminare. Inoltre, vale che

$$M(i) = \max\{M(i-1) + a[i], a[i]\}.$$
 (2)

Se M(i) = a[i], non c'è niente da provare. Se M(i) = x + a[i],

M(i) = il valore della massima somma consecutiva che ha come *ultimo* termine il valore a[i].

Ovviamente vale che

$$V(a) = \max_{0 \le i \le j \le n-1} \sum_{k=i}^{j} a[k] = \max\{M(0), M(1), \dots, M(n-1)\},$$

visto che la somma consecutiva di valore massimo da qualche parte deve pur terminare. Inoltre, vale che

$$M(i) = \max\{M(i-1) + a[i], a[i]\}.$$
 (2)

Se M(i) = a[i], non c'è niente da provare. Se M(i) = x + a[i], allora la somma x ha come ultimo termine il valore a[i-1],

M(i) = il valore della massima somma consecutiva che ha come *ultimo* termine il valore a[i].

Ovviamente vale che

$$V(a) = \max_{0 \le i \le j \le n-1} \sum_{k=i}^{j} a[k] = \max\{M(0), M(1), \dots, M(n-1)\},$$

visto che la somma consecutiva di valore massimo da qualche parte deve pur terminare. Inoltre, vale che

$$M(i) = \max\{M(i-1) + a[i], a[i]\}.$$
 (2)

Se M(i) = a[i], non c'è niente da provare. Se M(i) = x + a[i], allora la somma x ha come ultimo termine il valore a[i-1], e necessariamente vale che x = M(i-1).

M(i) = il valore della massima somma consecutiva che ha come *ultimo* termine il valore a[i].

Ovviamente vale che

$$V(a) = \max_{0 \le i \le j \le n-1} \sum_{k=i}^{j} a[k] = \max\{M(0), M(1), \dots, M(n-1)\},\$$

visto che la somma consecutiva di valore massimo da qualche parte deve pur terminare. Inoltre, vale che

$$M(i) = \max\{M(i-1) + a[i], a[i]\}.$$
 (2)

Se M(i) = a[i], non c'è niente da provare. Se M(i) = x + a[i], allora la somma x ha come ultimo termine il valore a[i-1], e necessariamente vale che x = M(i-1). Se non fosse così, ovvero se x < y = M(i-1),

M(i) = il valore della massima somma consecutiva che ha come *ultimo* termine il valore a[i].

Ovviamente vale che

$$V(a) = \max_{0 \le i \le j \le n-1} \sum_{k=i}^{j} a[k] = \max\{M(0), M(1), \dots, M(n-1)\},$$

visto che la somma consecutiva di valore massimo da qualche parte deve pur terminare. Inoltre, vale che

$$M(i) = \max\{M(i-1) + a[i], a[i]\}.$$
 (2)

Se M(i) = a[i], non c'è niente da provare. Se M(i) = x + a[i], allora la somma x ha come ultimo termine il valore a[i-1], e necessariamente vale che x = M(i-1). Se non fosse così, ovvero se x < y = M(i-1), allora esisterebbe un'altra somma che termina con a[i], di valore y + a[i] > x + a[i] = M(i),

Per un generico indice $0 \le i < n$, denotiamo con M(i) la quantità:

M(i) = il valore della massima somma consecutiva che ha come *ultimo* termine il valore a[i].

Ovviamente vale che

$$V(a) = \max_{0 \le i \le j \le n-1} \sum_{k=i}^{j} a[k] = \max\{M(0), M(1), \dots, M(n-1)\},$$

visto che la somma consecutiva di valore massimo da qualche parte deve pur terminare. Inoltre, vale che

$$M(i) = \max\{M(i-1) + a[i], a[i]\}.$$
 (2)

Se M(i) = a[i], non c'è niente da provare. Se M(i) = x + a[i], allora la somma x ha come ultimo termine il valore a[i-1], e necessariamente vale che x = M(i-1). Se non fosse così, ovvero se x < y = M(i-1), allora esisterebbe un'altra somma che termina con a[i], di valore y + a[i] > x + a[i] = M(i), contro l'ipotesi che M(i) è il valore della massima somma che ha come ultimo termine a[i].

$$M(i) = \max\{M(i-1) + a[i], a[i]\}$$

$$M(i) = \max\{M(i-1) + a[i], a[i]\}$$

 ${\tt MaxConsecutivaSomma4}(a)$ ${\tt SommaMassima} = a[0]$

$$M(i) = \max\{M(i-1) + a[i], a[i]\}$$

$$\label{eq:maxConsecutivaSomma4} \begin{split} &\texttt{MaxConsecutivaSomma4}(a) \\ &\texttt{SommaMassima} = a[0] \\ &\texttt{SommaMassimaFAQ} = a[0] \end{split}$$

$$M(i) = \max\{M(i-1) + a[i], a[i]\}$$

```
\begin{split} & \texttt{MaxConsecutivaSomma4}(a) \\ & \texttt{SommaMassima} = a[0] \\ & \texttt{SommaMassimaFAQ} = a[0] \\ & \texttt{FOR}(i=1;i < n;i=i+1) \{ \\ & \texttt{IF}(\texttt{SommaMassimaFAQ} + a[i] > a[i]) \{ \end{split}
```

$$M(i) = \max\{M(i-1) + a[i], a[i]\}$$

```
\label{eq:maxConsecutivaSomma4} \begin{split} & \texttt{MaxConsecutivaSomma4}(a) \\ & \texttt{SommaMassima} = a[0] \\ & \texttt{SommaMassimaFAQ} = a[0] \\ & \texttt{FOR}(i=1;i < n;i=i+1) \{ \\ & \texttt{IF}(\texttt{SommaMassimaFAQ} + a[i] > a[i]) \{ \\ & \texttt{SommaMassimaFAQ} = \texttt{SommaMassimaFAQ} + a[i] \end{split}
```

$$M(i) = \max\{M(i-1) + a[i], a[i]\}$$

```
\begin{split} & \texttt{MaxConsecutivaSomma4}(a) \\ & \texttt{SommaMassima} = a[0] \\ & \texttt{SommaMassimaFAQ} = a[0] \\ & \texttt{FOR}(i=1;i < n;i=i+1) \{ \\ & \texttt{IF}(\texttt{SommaMassimaFAQ} + a[i] > a[i]) \{ \\ & \texttt{SommaMassimaFAQ} = \texttt{SommaMassimaFAQ} + a[i] \\ & \texttt{ELSE SommaMassimaFAQ} = a[i] \\ & \} \end{split}
```

$$M(i) = \max\{M(i-1) + a[i], a[i]\}$$

```
\label{eq:maxconsecutivaSomma4} \begin{split} & \operatorname{MaxConsecutivaSomma4}(a) \\ & \operatorname{SommaMassimaFAQ} = a[0] \\ & \operatorname{FOR}(i=1;i < n;i=i+1) \{ \\ & \operatorname{IF}(\operatorname{SommaMassimaFAQ} + a[i] > a[i]) \{ \\ & \operatorname{SommaMassimaFAQ} = \operatorname{SommaMassimaFAQ} + a[i] \\ & \operatorname{ELSE} \operatorname{SommaMassimaFAQ} = a[i] \\ & \} \\ & \operatorname{IF}(\operatorname{SommaMassimaFAQ} > \operatorname{SommaMassima}) \ \{ \end{split}
```

$$M(i) = \max\{M(i-1) + a[i], a[i]\}$$

```
MaxConsecutivaSomma4(a)
SommaMassima= a[0]
SommaMassimaFAQ= a[0]
FOR(i = 1; i < n; i = i + 1){
   IF(SommaMassimaFAQ+a[i] > a[i])
      SommaMassimaFAQ=SommaMassimaFAQ+a[i]
      ELSE SommaMassimaFAQ= a[i]
   IF(SommaMassimaFAQ>SommaMassima) {
      SommaMassima=SommaMassimaFAQ
```

$$M(i) = \max\{M(i-1) + a[i], a[i]\}$$

```
MaxConsecutivaSomma4(a)
SommaMassima= a[0]
SommaMassimaFAQ= a[0]
FOR(i = 1; i < n; i = i + 1){
   IF(SommaMassimaFAQ+a[i] > a[i])
      SommaMassimaFAQ=SommaMassimaFAQ+a[i]
      ELSE SommaMassimaFAQ= a[i]
   IF(SommaMassimaFAQ>SommaMassima) {
      SommaMassima=SommaMassimaFAQ
return SommaMassima
```

```
MaxConsecutivaSomma4(a)
SommaMassima = a[0]
SommaMassimaFAQ= a[0]
FOR(i = 1; i < n; i = i + 1){
    IF(SommaMassimaFAQ+a[i] > a[i])
       SommaMassimaFAQ=SommaMassimaFAQ+a[i]
       ELSE SommaMassimaFAQ= a[i]
    IF(SommaMassimaFAQ>SommaMassima) {
       SommaMassima=SommaMassimaFAQ
return SommaMassima
```

```
\label{eq:maxconsecutivaSomma4} \begin{tabular}{ll} MaxConsecutivaSomma4(a) \\ SommaMassima= a[0] \\ SommaMassimaFAQ= a[0] \\ FOR(i=1;i<n;i=i+1) \{ \\ IF(SommaMassimaFAQ+a[i]>a[i]) \{ \\ SommaMassimaFAQ=SommaMassimaFAQ+a[i] \\ ELSE SommaMassimaFAQ= a[i] \\ \} \\ IF(SommaMassimaFAQ>SommaMassima) \{ \\ SommaMassima=SommaMassimaFAQ \\ \} \\ \} \\ return SommaMassima \end{tabular}
```

Dopo ogni esecuzione del ciclo FOR(i=1;i< n;i=i+1), la variabile SommaMassimaFAQ contiene il valore M(i).

```
\label{eq:maxconsecutivaSomma4} \begin{tabular}{ll} MaxConsecutivaSomma4(a) \\ SommaMassima= a[0] \\ SommaMassimaFAQ= a[0] \\ FOR(i=1;i<n;i=i+1) \{ \\ IF(SommaMassimaFAQ+a[i]>a[i]) \{ \\ SommaMassimaFAQ=SommaMassimaFAQ+a[i]\\ ELSE SommaMassimaFAQ=a[i]\\ \} \\ IF(SommaMassimaFAQ>SommaMassima) \{ \\ SommaMassima=SommaMassimaFAQ\\ \} \\ \} \\ return SommaMassima \end{tabular}
```

Dopo ogni esecuzione del ciclo FOR(i=1;i< n;i=i+1), la variabile SommaMassimaFAQ contiene il valore M(i).

Visto che l'algoritmo consta di un solo ciclo FOR, esso eseguirà al più cn operazioni elementari, per qualche costante c.

```
\label{eq:maxconsecutivaSomma4} \begin{tabular}{ll} MaxConsecutivaSomma4(a) \\ SommaMassima= a[0] \\ FOR(i=1;i < n;i=i+1) \{ \\ IF(SommaMassimaFAQ+a[i] > a[i]) \{ \\ SommaMassimaFAQ=SommaMassimaFAQ+a[i] \\ ELSE SommaMassimaFAQ= a[i] \\ \} \\ IF(SommaMassimaFAQ>SommaMassima) \{ \\ SommaMassima=SommaMassimaFAQ \\ \} \\ \} \\ return SommaMassima \end{tabular}
```

Dopo ogni esecuzione del ciclo FOR(i=1;i< n;i=i+1), la variabile SommaMassimaFAQ contiene il valore M(i).

Visto che l'algoritmo consta di *un solo* ciclo F0R, esso eseguirà al più *cn* operazioni elementari, per qualche costante *c*.

In altri termini, la complessità di ${\tt MaxConsecutivaSomma4}(a)$ su input a di dimensione n è O(n).

A mò di esempio numerico, supponiamo di eseguire i quattro algoritmo sopra elencati su di un calcolatore che esegue *un miliardo* di operazioni al secondo,

A mò di esempio numerico, supponiamo di eseguire i quattro algoritmo sopra elencati su di un calcolatore che esegue un miliardo di operazioni al secondo, per input di dimensione $10^3, 10^4, 10^5, 10^6, 10^8$.

A mò di esempio numerico, supponiamo di eseguire i quattro algoritmo sopra elencati su di un calcolatore che esegue un miliardo di operazioni al secondo, per input di dimensione $10^3, 10^4, 10^5, 10^6, 10^8$.

	n	$n \log n$	n^2	n^3	
10^{3}	0.000001s	0.00000996578s	0.001s	1s	

A mò di esempio numerico, supponiamo di eseguire i quattro algoritmo sopra elencati su di un calcolatore che esegue un miliardo di operazioni al secondo, per input di dimensione $10^3, 10^4, 10^5, 10^6, 10^8$.

	n	$n \log n$	n^2	n^3
		0.00000996578s		1s
10^{4}	0.00001s	0.00013287712s	0.1s	pprox16.6m

A mò di esempio numerico, supponiamo di eseguire i quattro algoritmo sopra elencati su di un calcolatore che esegue un miliardo di operazioni al secondo, per input di dimensione $10^3, 10^4, 10^5, 10^6, 10^8$.

	n	$n \log n$	n^2	n^3
10 ³	0.000001s	0.00000996578s	0.001s	1s
10^{4}	0.00001s	0.00013287712s	0.1s	$pprox\!16.6 m$
10^{5}	0.0001s	0.00166096404s	10s	11.5giorni

A mò di esempio numerico, supponiamo di eseguire i quattro algoritmo sopra elencati su di un calcolatore che esegue un miliardo di operazioni al secondo, per input di dimensione $10^3, 10^4, 10^5, 10^6, 10^8$.

	n	$n \log n$	n^2	n^3
		0.00000996578s	0.001s	1s
	0.00001s	0.00013287712s	0.1s	pprox16.6m
	0.0001s	0.00166096404s	10s	11.5giorni
10^{6}	0.001s	0.01993156856s	pprox17m	$pprox\!31$ anni

A mò di esempio numerico, supponiamo di eseguire i quattro algoritmo sopra elencati su di un calcolatore che esegue un miliardo di operazioni al secondo, per input di dimensione $10^3, 10^4, 10^5, 10^6, 10^8$.

	n	$n \log n$	n^2	n^3
10^{3}	0.00001s	0.00000996578s	0.001s	1s
10^{4}	0.00001s	0.00013287712s	0.1s	$pprox\!16.6 m$
10^{5}	0.0001s	0.00166096404s	10s	11.5giorni
10^{6}	0.001s	0.01993156856s	pprox17m	$pprox\!31$ anni
10 ⁸	0.1s	2.65754247591s	$pprox\!6$ mesi	troppo

► Ne è valsa la pena!

- ► Ne è valsa la pena!
- Uno stesso problema algoritmico può essere risolto attraverso varie e differenti tecniche, le quali produrranno vari e differenti algoritmi per la risoluzione dello stesso problema;

- ► Ne è valsa la pena!
- Uno stesso problema algoritmico può essere risolto attraverso varie e differenti tecniche, le quali produrranno vari e differenti algoritmi per la risoluzione dello stesso problema;
- ▶ É importante avere algoritmi efficienti.

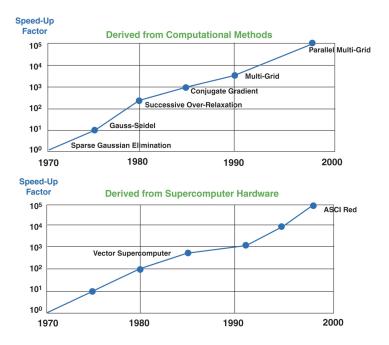


Fig. 2 Comparison of the contributions of mathematical algorithms and computer hardware.

In generale, si è visto che algoritmi **moderni**, eseguiti su hardware di 15 anni fà sono **più veloci** di algoritmi di 15 anni fà eseguiti su hardware **moderni**.

In generale, si è visto che algoritmi **moderni**, eseguiti su hardware di 15 anni fà sono **più veloci** di algoritmi di 15 anni fà eseguiti su hardware **moderni**.

A Giovedì...