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Abstract

A Key Distribution Center of a network is a server who generates and distributes
secret keys to groups of users for secure communication. A Distributed Key Distribution
Center is a set of servers that jointly realizes a Key Distribution Center. In this paper we
describe in terms of information theory a model for distributed key distribution centers,
and we present lower bounds holding in the model for the main resources needed to set
up and manage a distributed center, i.e., memory storage, randomness, and bandwidth.
Then, we show that a previously proposed protocol which uses a bidimensional extension
of Shamir’s secret sharing scheme meets the bounds and it is, hence, optimal.
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1 Introduction

Key Establishment. Key Establishment is an intriguing, deeply studied and, partially, still
open problem in Cryptography. Loosely speaking, it can be described as follows: a group
of users of a public network would like to use encryption and authentication algorithms to
securely communicate. In terms of computation symmetric algorithms are more efficient
than asymmetric ones. Moreover, if a broadcast channel is available, a user has to encrypt,
authenticate, and send a message just once in order to reach all members of the group.
Unfortunately, the group needs common keys to encrypt, decrypt, and authenticate the
messages the users wish to send to each other before starting the communication. Hence,
the problem is how to design an efficient protocol by means of which the members of the
group can establish a common key.

A basic solution to this problem, provided by public key algorithms, consists of the so
called hybrid approach. This approach assumes that users’ public keys are contained in a
public available and authenticated bulletin board. Before starting a secure communication,
one of the users of the group chooses at random a common key. Then, for each other user

∗An extended abstract of this paper appeared at the 7-th Italian Conference on Theoretical Computer
Science (ICTCS 2001), Lecture Notes in Computer Science, vol. 2202, pp. 357-369, Springer-Verlag , 2001.
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belonging to the group, he encrypts a message containing the chosen key with the user’s
public key, and sends this encrypted message to the user. The user, by using his private
key, recovers the common key from the encrypted message. Later on, the users of the group
can encrypt, decrypt and authenticate the messages they wish to send to each other with
symmetric algorithms.

Nevertheless, this solution is not efficient, expecially in presence of a large group, and it
has some drawbacks: public key encryptions and decryptions are slow operations, and the
user who chooses the key must be trusted, i.e., the other users have to believe that he is
choosing a good key.

The large amount of literature on the Key Establishment problem1 can be roughly
divided into two classes: the class of key agreement schemes and the class of key distribution
schemes. In the former, users interact in order to agree on a common key. Schemes in the
latter are based on a third party who helps in computing a common key by distributing
information.

Moreover, schemes are classified according to the assumptions made on the power of
the adversary: computationally secure schemes are based on the existence of (presumed
to be) hard problems; while, unconditionally secure schemes consider a computationally
unbounded adversary.

Research efforts of the last years have given rise to computationally secure schemes
based on extensions of the Diffie-Hellman key agreement scheme [25], unconditionally se-
cure schemes based on some a-priori common knowledge among the parties, and to un-
conditionally or computationally secure schemes based on the use of a trusted third party.
In the following, we give a quick look at these approaches. We refer the reader to [37]
(chapters 12 and 13) for a general overview of both computationally and unconditionally
secure schemes as well as for a detailed discussion of the practical issues associated with
real implementations of several schemes.

Extensions of the Diffie-Hellman Scheme. The Diffie-Hellman scheme [25] (DH scheme, for
short) enables two parties, who have never met before, to agree on a common key by ex-
changing messages over a public channel. The original proposal assumes a passive adversary,
who just taps the channel. It is based on the difficulty of computing discrete logarithms in
finite cyclic groups. In order to deal with active adversaries and to exhibit formal proofs
of security, several variants of the basic scheme (e.g., [26, 3, 30, 4, 18, 19, 20]) have been
proposed; nowadays, it is almost general opinion that the two-party case is well understood.

The first attempt to extend the DH scheme to groups was given by Ingemarson [28],
where the members of the group are arranged in a logical ring.

Another extension was proposed by Steer et al. in [47], while Becker and Wille [2] found
lower bounds on the communication complexity of protocols for group key agreement.

The so-called natural extensions of the DH scheme were studied by Steiner et al. in
[45, 46], and Ateniese et al. in [1], while Bresson et al. in [13, 14, 15], have defined a formal
adversarial model and have proved secure slight variants of the protocols given in [45, 46, 1].

Another interesting scheme was introduced by Bermester and Desmedt [17], further
studied and generalized by Just and Vaudenay in [30]; recently Katz and Yung [31] have
shown that Bermester and Desmedt’s scheme is provable secure against a passive adversary

1Several surveys (e.g., [42, 21]) and books (e.g., [12]) have been written along the years on this subject.
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when implemented over a cyclic group of prime order which satisfies the decisional Diffie-
Hellman assumption [11].

However, at the state of current knowledge, an efficient and provable secure protocol
for managing dynamic group (i.e., from time to time, users can join and leave the group) is
not available. The natural extensions of the DH scheme are not efficient in terms of round-
complexity, while Burmester and Desmedt’s scheme, need to be started from scratch when
the group structure changes. For the three-party case there is a round-complexity efficient
scheme due to Joux [29] but no general extension is available, yet. Finding an efficient and
provable secure (under standard assumptions) key agreement scheme for dynamic group is
an open challenge.

Unconditionally secure schemes based on a-priori common knowledge. Maurer’s research group
[27] has studied under which conditions (and how) two entities can agree on a common
key when no computational assumptions on the power of the adversary are made. It has
been shown that if the two parties do not have any common knowledge, key agreement
is impossible against active or passive adversaries if the communication channel they have
access to is completely insecure. On the other hand, if some common knowledge is available,
a common key can be established.

In a recent three-part paper [34, 35, 36], which summarises part of this foundational
work, a clear presentation of the setting and of some of the results obtained along the
years is given. The paper considers the case of a completely insecure communication chan-
nel. A general model where the common knowledge is represented by a joint probability
distribution of three random variables associated with the two parties and the adversary,
respectively, is given. Furthermore, two special cases are analysed: in the first one, the
parties have access to the outcome of n independent realizations of a random experiment.
In the second, a common partially secret string is available to the parties and, by means of
a process called privacy amplification, the same parties are able to extract a totally secret
(shorter) key.

Several problems are still open, as well as the multi-party case has not been considered,
yet. We refer the interested reader to [34, 35, 36] for details and references to other works
on this interesting approach.

Schemes based on a trusted third party. An approach exploited by several papers assumes
the presence of a trusted third party, who plays a certain role in order to enable a group
of users to establish a common key. The trusted third party sends, during a set-up phase,
some information to the users. By using this information, the users can compute the group
keys they need to securely communicate. Depending on the scheme, the trusted third party
might be or not be active during the computation of a common key by a group of users,
as well as there might be or not be interaction among the users of the group, in order
to compute the common key. Such schemes are generally referred to as key distribution
schemes. We refer to Stinson’s survey [48] and to [9] for an overview of some interesting
(mainly unconditionally secure) schemes following the above approach.

A frequently used strategy applied in traditional models of a network to solve the Key
Establishment Problem consists of using a Key Distribution Center (for short, KDC), a
server of the network who generates and distributes on-demand the group keys. The idea
is the following: each user shares a secure point-to-point channel with the center. When
the user wants to securely communicate with other users, he sends a request message for
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a session key. The center checks for membership of the user in the group, and distributes
in encrypted form the common key to each member of the group. Needham and Schroeder
[39] began this approach for the two-party case, implemented most notably in the Kerberos
System [40] (see again [37] for more references).

With this approach the KDC is a bottleneck, since all users have to communicate with it
every time they wish to obtain a key. A crash of the KDC stalls the entire system. Besides,
the KDC is a valuable target to an adversary.

Well-known and applied solutions to the availability and reliability issues are replication
of the KDC in several points of the network and partition of the network in several domains
with dedicated KDCs, responsible for key management in only a fixed local area. However,
these solutions are partial and expensive solutions [38].

Distributed Key Distribution Center. A distributed key distribution center (DKDC, for short)
is a set of n servers of a network that jointly realizes the same function of a KDC. In
this setting, users have secure point-to-point channels with all servers. A user who needs
to securely communicate with other users, sends a key-request message to a subset at his
choice of at least k out of the n servers. The contacted servers answer with some information
enabling him to compute the group key (see Figure 1).

Figure 1: Example of a Distributed Key Distribution Center

With this approach, the concentration of secrets and the slow down factor which arise
in a network with a single KDC are removed. A single server by itself does not know the
secret keys, since they are shared between the n servers. Moreover, each user can send a
key-request in parallel to different servers. Hence, there is no loss of time to compute a key,
compared to a centralised setting. Finally, the users can obtain the keys they need even if
they are unable to contact some of the servers.

Related Researches. Kurosawa et al. [33] studied the security of the trusted center in a
b-secure t-group key distribution scheme. In this scheme the center issues, in a set-up
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phase, a private information vi to each user Ui. Later on, user Ui computes from vi the
common key with other t − 1 users in such a way that any dishonest b users cannot learn
anything about keys they should not know. The schemes considered in [33] are usually
referred to as key pre-distribution schemes since, after the set-up phase, users compute by
themselves the keys associated to the groups they belong to. Kurosawa et al. showed how
to distribute some key pre-distribution schemes among m servers, so that even if ` < m
servers and b users collaborate, they learn nothing about keys the b users are not entitled
to compute. However, the model introduced in [38], which is analysed in this paper from
an information theoretic point of view, is pretty much different from the one considered in
[33]. The model proposed in [38] requires interaction among users and servers when the
users need to compute a common key; while, the schemes considered in [33] do not.

During the last two years some other papers dealing with distributed key distribution
centers have been published. Given the resource complexity of the distribution mechanism
described in this paper, in [7] the ramp approach, introduced in [5] in the context of secret
sharing schemes, has been investigated. Basically, it allows to reduce the required resources
(randomness, information storage, messages to be exchanged, ...) at the cost of a security
degradation which depends on the size of the coalition of users who tries to break the scheme.
More precisely, it has been considered a ramp structure for the DKDC, characterized by two
thresholds t1 and t2, where coalitions of malicious users of size t, with t < t1, or t1 ≤ t < t2,
or t ≥ t2, are able, colluding with at most k−1 servers, respectively, to gain no information
on a new conference key, some information, or the whole key. Basically, the ramp approach
enables to gain a factor 1

t2−t1
in terms of memory storage, communication complexity and

randomness, compared to the one-threshold case, by “splitting” the whole key in smaller
pieces that can be recovered separately. The drawback of this approach is that coalitions of
users, whose size is in between the two thresholds, from the values they have received from
some servers in order to compute some keys, can gain partial information about new ones.
In some situations this trade-off resources vs security can be suitable.

In [8] the model here studied has been extended by considering a general family of subsets
of servers, referred to as the access structure, authorized to help the users in recovering the
conference keys. Therein, lower bounds holding on the model have been shown in an easy
and elegant way by using a reduction technique which relates DKDSs (schemes realizing
DKDCs, defined later on) to Secret Sharing Schemes. Moreover, a linear algebraic approach
to designing DKDSs has been proposed. Namely, a method for constructing a DKDS from
a linear secret sharing scheme and a family of linear `-wise independent functions has been
described. This approach has allowed a unified description of seemingly different schemes.

Finally, in [23, 41] robust DKDCs have been proposed: each server can verify that the
information it stores and uses to answer the users’ key-request messages is consistent with
the information stored by the other servers; at the same time, the users are guaranteed that
they can compute the same key for a given conference in which they belong to. Moreover,
time is divided in periods, and at the beginning of each period the servers are involved in an
update procedure that “refreshes” the private information they store while the conference
keys they provide stay the same. This property is referred to as proactive security. The
design of the DKDC is based on unconditionally secure proactive verifiable secret sharing
scheme.

A new computationally secure DKDC has been instead proposed in [24]. The model the
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authors consider is slightly different from the one introduced in [38], and it seems to be in
a certain sense more realistic in terms of assumptions.

Our Contribution. In this paper we study unconditionally secure DKDCs. We propose an
information theoretic model for a Distributed Key Distribution Scheme (DKDS, for short), a
scheme realizing a DKDC. Then, we analyze the relations between the sizes of the different
pieces of information needed to setup and maintain a DKDC. We show lower bounds on
the amount of information that each server has to store, on the amount of information that
each server has to send to answer a key-request message, and on the size of the messages
that have to be generated and sent in the setup phase to initialize the DKDC. Moreover,
we quantify the randomness needed to setup a DKDC. Finally, we show that the bounds
are tight, since they are met by a protocol [38] which uses a bidimensional extension of
Shamir’s secret sharing scheme, based on polynomial interpolation.

Motivation. Why an information theoretic analysis of DKDCs? There are several reasons:
the entropy function enables us to describe in a general, elegant and compact form the
properties that a Distributed Key Distribution Center has to satisfy. Then, it simplifies the
task of analysing the resources needed to set-up such a distributed center. Moreover, recent
trends in Cryptography, related to the investigation of new computational models (e.g,
bounded storage model, models with noise channels, ...) as well as the progress obtained
by researchers in quantum computing, have promoted a renaissance of interest in designing
unconditionally secure schemes, which do not rely on any computational assumption on the
power of the adversary.

Often unconditionally secure schemes, which can be used for a finite number of times, can
be easily turned into computationally secure schemes by standard cryptographic techniques
(e.g., by moving the computation to the exponent, given a finite cyclic group and a generator
of the group) or they can be used as intermediate modules in more complex constructions.

In our case, an unconditionally secure distributed key distribution center might be used
to give a long-term key to each group of users from which the group can derive several
session keys for short-term uses. Last but not least, the analysis of unconditionally secure
schemes provides a term of comparison to designers of computationally secure schemes: it
is always helpful to know how many resources are needed in order to get perfect security.

2 Information Theory

In this section we briefly recall some basic notions of Information Theory [22].

A discrete random experiment is defined by a finite set, called sample space, consisting
of all elementary events, and a probability measure assigning a non-negative real number
to every elementary event, such that the sum of all these probabilities is equal to 1. An
event of a discrete random experiment is a subset of the sample space, and the probability
assigned to it is the sum of the probabilities of its elementary events.

A discrete random variable X is a mapping from a sample space to a certain range X,
and is characterized by its probability distribution {PX(x)}x∈X that assigns to every x ∈ X
the probability PX(x) of the event that X takes on the value x.

The entropy of X, denoted by H(X), is a real number that measures the uncertainty
about the value of X when the underlying random experiment is carried out. It is defined
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by
H(X) = −

∑

xεX

PX(x) log PX(x),

assuming that the terms of the form 0 log 0 are excluded from the summation, and where the
logarithm is relative to the base 2. The entropy of a random variable satisfies 0 ≤ H(X) ≤
log |X|, where H(X) = 0 if and only if there exists x0 ∈ X such that Pr(X = x0) = 1;
whereas, H(X) = log |X| if and only if Pr(X = x) = 1/|X|, for all x ∈ X. The deviation
of the entropy H(X) from its maximal value can be used as a measure of non-uniformity of
the distribution {PX(x)}x∈X .

Given two random variables X and Y, taking values on sets X and Y , respectively,
according to a probability distribution {PXY(x, y)}x∈X,y∈Y on their Cartesian product, the
conditional uncertainty of X, given the random variable Y, called conditional entropy and
denoted by H(X|Y), is defined as

H(X|Y) = −
∑

y∈Y

∑

x∈X

PY(y)PX|Y(x|y) log PX|Y(x|y).

Notice that the conditional entropy is not the entropy of a probability distribution but the
average over all entropies H(X|Y = y). Simple algebra shows that

H(X|Y) ≥ 0 (1)

with equality if and only if X is a function of Y .
The mutual information I(X;Y) between X and Y is a measure of the amount of

information by which the uncertainty about X is reduced by learning Y, and vice versa. It
is defined by

I(X;Y) = H(X) − H(X|Y) = H(Y) − H(Y|X).

Since
I(X;Y) = I(Y;X) and I(X;Y) ≥ 0, (2)

it is easy to see that
H(X) ≥ H(X|Y), (3)

with equality if and only if X and Y are independent. Along the same lines, given three
random variables, X, Y, and Z, the conditional mutual information between X and Y given
Z can be written as

I(X;Y|Z) = H(X|Z) − H(X|Z Y) (4)

= H(Y|Z) − H(Y|Z X) = I(Y;X|Z).

Since the conditional mutual information I(X;Y|Z) is always non-negative, it holds that

H(X|Z) ≥ H(X|Z Y). (5)

Given n+1 random variables, X1 . . . XnY, the entropy of X1 . . . Xn given Y can be written
as

H(X1 . . .Xn|Y) = H(X1|Y) + H(X2|X1Y) + · · · + H(Xn|X1 . . .Xn−1Y). (6)
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Therefore, given n random variables, X1 . . .Xn, it holds that

H(X1 . . .Xn) =
n

∑

i=1

H(Xi|X1 . . . Xi−1) ≤
n

∑

i=1

H(Xi). (7)

Moreover, the above relations imply that, for any k ≤ n,

H(X1 . . . Xn) ≥ H(X1 . . .Xk). (8)

3 The Model

In this section we formally describe the model hereafter we will deal with.
Let U = {U1, . . . , Um} be a set of m users, and let S = {S1, . . . , Sn} be a set of n servers.

Each user has secure connections with all the servers. We assume that users and servers
are honest-but-curious: they follow the protocol but, by pooling together the available
information (secret keys, transcript of the communication, et cetera ...) they might try to
gain some “extra” knowledge.

A distributed key distribution scheme is a protocol divided in three phases: a set up
phase, which involves only the servers; a key-request phase, in which users ask for keys
to servers; and a key-computation phase, in which users retrieve keys from the messages
received from the servers contacted during the key-request phase.

Set up Phase. We assume that the set-up phase is started by k servers say, without loss
of generality, S1, . . . , Sk. Each of these servers, using a private source of random bits ri,
generates some information which is securely distributed to the others. More precisely, for
i = 1, . . . , k, server Si generates/sends to Sj, the value γi,j , for all j = 1, . . . , n.

At the end of the set-up phase server Si, for i = 1, . . . , n, stores some secret information
ai = f(γ1,i, . . . , γk,i), where f is a publicly known k-argument function, which can be
computed from the values he has received from S1, . . . , Sk.

Key-request Phase. Let C be the set of all possible groups of users, referred to as a
conferences, who want to securely communicate, and let Ch ∈ C. Each user Uj in Ch,
to compute a key for conference Ch (we denote such a key with κh), contacts at least k
servers. Then, server Si, contacted by user Uj , checks2 for membership of Uj in Ch; if the
check is successful, then Si computes a value yh

i,j = F (ai, j, h), which is a function of the
private information ai, the index j indicating user Uj, and the index h of the requested key.
Otherwise, Si sets yh

i,j =⊥, a special value which gives no information on the conference

key. Finally, Si sends the value yh
i,j to Uj .

Key-computation Phase. The users in Ch compute the conference key as a function of k
values received from any k servers, i.e., each user Uj in Ch computes κh = G(yh

i1,j , . . . , y
h
ik,j),

where yh
i1,j, . . . , y

h
ik ,j are k values received from servers Si1 , . . . , Sik , and G is a publicly known

k-argument function.

Informally, a Distributed Key Distribution Center must satisfy the following properties:

- Complete Setup. When the set up phase correctly terminates, every server Si must
be able to compute his private information ai.

2We do not consider the underlying authentication mechanism involved in a key-request phase.
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- Consistence. Each user in a conference Ch ⊆ U must be able to uniquely compute
the same conference key, after interacting with at least k servers of his own choosing.

- Security. A conference key must be secure against attacks performed by coalitions
of servers, coalitions of users, and hybrid coalitions (servers and users).

We are interested in formalizing, within an information theoretic framework, the notion of
a Distributed Key Distribution Scheme. We use the entropy function mainly because this
leads to a compact and simple description of the scheme, and because the entropy approach
takes into account all probability distributions on the keys. To this aim, we need to setup
our notation.

- Let C ⊂ 2U be the set of conferences on U who need to securely communicate, and
assume they are indexed by elements of H = {1, 2, . . .}.

- Let G ⊂ 2U be the set of tolerated coalitions, i.e., the coalitions of malicious users who
try to break the scheme. For any coalition G ∈ G, denote by CG the set of conferences
containing some user in G, and with HG the set of corresponding indices. In other
words, CG = {Ch ∈ C : Ch ∩ G 6= ∅}, and HG = {h ∈ H : Ch ∈ CG}.

- For i = 1, . . . , k and for j = 1, . . . , n, let Γi,j be the set of values γi,j that can be sent
by server Si to server Sj.

- For j = 1, . . . , n, let Γj = Γ1,j × · · · × Γk,j be the set of values that Sj , can receive
during the set up phase.

- For i = 1, . . . , n, let Ai be the set of values ai the server Si can compute during the
set up phase from the values received from S1, . . . , Sk.

- For i = 1, . . . ,m, for j = 1, . . . , n, and for each h ∈ H, let Y h
i,j be the set of values yh

i,j

that can be sent by Si when it receives a key-request message from Uj for conference
Ch.

- Finally, for each h ∈ H, let Kh be the set of possible values for the conference key κh.

Given three sets of indices X = {i1, . . . , ir}, where i1 < i2 . . . < ir, Y = {j1, . . . , js}, where
j1 < j2 . . . < js, and H = {h1, . . . , ht}, where h1 < h2 . . . < ht, and three sets Ti, Ti,j and
T h

i,j, where i ∈ X, j ∈ Y, and h ∈ H, we denote by TX =
∏

i∈X Ti, by TX,Y =
∏

i∈X,j∈Y Ti,j ,

and by T H
X,Y =

∏

i∈X,j∈Y,h∈H T h
i,j , the corresponding Cartesian products. According to

this notation, we will consider the following Cartesian products, defined on the sets of our
interest:

ΓY Set of values that can be received by server Sj, for all j ∈ Y

ΓX,j Set of values that can be sent by server Si to Sj, for all i ∈ X

ΓX,Y Set of values that can be sent by server Si to Sj, for all i ∈ X and all j ∈ Y

KX Set of |X|-tuple of conference keys

AX Set of |X|-tuple of servers’ private information ai

Y h
X,j Set of values that can be sent by Si, for all i ∈ X, to Uj for the conference Ch

Y h
G Set of values that can be sent by S1, . . . , Sn to Uj, for all Uj ∈ G, for Ch

Y H
G Set of values that can be sent by S1, . . . , Sn to Uj, for all Uj ∈ G, for Ch ∀h ∈ H

Table 1: Cartesian Products

As done in Section 2, given a set W, we will denote in bold the random variable W assuming
values on W according to the probability distribution PW.
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A Distributed Key Distribution Scheme can be defined as follows:

Definition 3.1 A (k, n, C,G)-Distributed Key Distribution Scheme (for short, (k, n, C,G)-
DKDS) is a protocol which enables each user of Ch ∈ C to compute securely w.r.t. G a
common key κh by interacting with at least k out of the n servers of the network. More
precisely, the following properties are satisfied:

1 Each server computes his private information at the end of the set up phase.
Formally, for each i = 1, . . . , n, and for each X ⊂ {1, . . . , k} it holds that

H(Ai|ΓX,i) = H(Ai), while H(Ai|Γi) = 0.

2 Each server can answer the key-request messages.
Formally, for each conference Ch ∈ C, for each Uj ∈ Ch, and for each i = 1, . . . , n, it

holds that
H(Yh

i,j |Ai) = 0.

3 Each user in Ch ∈ C can compute a common key κh after contacting at least k
servers.
Formally, for each conference Ch ∈ C, for each subset of t ≥ k indices X =
{i1, . . . , it} ⊆ {1, . . . , n}, and for each user Uj ∈ Ch, it holds that

H(Kh|Y
h
X,j) = 0.

4 Any coalition G ∈ G of users and at most k − 1 servers, by putting together their
private information and the values sent by the n servers to users in G during some
previous key-request phases, does not gain any information on any new key.
Formally, for each conference Ch ∈ C, for any coalition of users G ∈ G, and for any

(k − 1)-subset X =⊂ {1, . . . , n}, it holds that

H(Kh|Y
HG\{h}
G ΓXΓZ,N ) = H(Kh)

where Z = X ∩ {1, . . . , k} and N = {1, . . . , n}.

The adversary neither obstaculates the computation of some key nor substitutes the
inputs to any party. In other words, the model we consider is a semi-honest model. Notice
that, property 4 formalizes the security requirements we are looking for. Indeed, the worst
case scenario consists of coalitions of users in G (the information they can acquire during

the run of the protocol is represented by Y
HG\{h}
G ) and k − 1 corrupted servers knowing

ΓX and ΓZ,N (the random variable ΓZ,N takes into account the possibility that among the
corrupted servers there are some which send out information in the set up phase to other
servers). The property guarantees that such coalitions of users and servers, do not gain any
information on a new key.

Remark. Notice that a DKDC implemented by a DKDS is a deterministic system at all.
Random bits are only needed at the beginning (i.e., initialization of the system), when each
server who sends out information during the set up phase uses his own random source to
generate the messages to be delivered to the other servers of the network.

In the following, to simplify the analysis but without loss of generality, we assume that
for different h, h′ ∈ H, the entropies of the keys are equal, i.e., H(Kh) = H(Kh′).
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4 Some Technical Lemmas

To show the main properties of our model, we need some technical lemmas. These lemmas
are the content of this section.

The following simple lemma shows that, given three random variables A, B, and C, if
B is a function of C, then B gives less information on A than C.

Lemma 4.1 Let A, B, and C be three random variables such that H(B|C) = 0. Then,
H(A|B) ≥ H(A|C).

Proof. Notice that, (1) and (5) imply that

0 ≤ H(B|AC) ≤ H(B|C) = 0.

On the other hand, from (2), we have that

I(A,B|C) = H(A|C) − H(A|BC)

= H(B|C) − H(B|AC) = 0.

Hence, H(A|C) = H(A|BC). Since (5) implies that H(A|B) ≥ H(A|BC) then, we have
that H(A|B) ≥ H(A|C), which proves the lemma.

Given any four random variables A, B, C, and D, if H(B|C) = 0, then along the lines of
the above proof, we can show that

H(A|BD) ≥ H(A|CD). (9)

It is not difficult to see that, for any group G of users, the set of conference keys
{Kh : Ch ∈ CG} is univocally determined by the values that at least k out of the n servers
send to the users in G when invoked for those conference keys. This is formally stated by
the next lemma.

Lemma 4.2 Let G = {Uj1 , . . . , Ujg} be a group of users and, for each r = 1, . . . , `, let

Sr = {s1 . . . , sr} ⊆ HG. Then, it holds that H(KSr |Y
Sr

G ) = 0.

Proof. For r = 1, . . . , `, we get:

0 ≤ H(KSr |Y
Sr

G ) (from (1))

≤
r

∑

j=1

H(Ksj
|Y

sj

G ) (from (6) and (5))

≤
r

∑

j=1

H(Ksj
|Y

sj

X,t) (from (5) where t ∈ Csj
∩ G and X = {i1, . . . , ik})

= 0 (from Property 3 of Definition 3.1).

Hence, the lemma holds.

For any group G ∈ G of malicious users, we have denoted by CG the family of confer-
ences of C in which belong at least one user in G, i.e., CG = {Ch ∈ C and Ch ∩ G 6= ∅}.
Hereafter, we set `G = |CG|, i.e., `G denotes the number of conference keys that G can
retrieve interacting with the servers. Moreover, we indicate with ` the maximum number
of conference keys that any coalition G ∈ G can retrieve interacting with the servers, i.e.,
` = maxG∈G `G.
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5 Properties and Bounds

In this section we show some properties of our model. We prove lower bounds on the
amount of information that each server has to send once a key-request message from a user
has been received, and on the amount of information that each server has to store to answer
the key-request messages. Finally, we prove a lower bound on the randomness needed to
setup a Distributed Key Distribution Center.

Conference Keys Independence. We start by showing that, in any distributed key distribution
scheme, conference keys are `-wise independent.

Lemma 5.1 Let G ∈ G be a coalition of malicious users and let HG = {s1, . . . , s`}. Then,
for each r = 1, . . . , `, it holds that H(Ksr |KHG\{sr}) = H(Ksr).

Proof. For each r = 1, . . . , `, from (3), we get that, H(Ksr |KHG\{sr}) ≤ H(Ksr). Since,
from Lemma 4.2 it results

H(KHG\{sr}|Y
HG\{sr}
G ) = 0,

then, setting A = Ksr , B = KHG\{sr}, and C = Y
HG\{sr}
G , we have that

H(Ksr |KHG\{sr}) ≥ H(Ksr |Y
HG\{sr}
G ) (from Lemma 4.1)

≥ H(Ksr |Y
HG\{sr}
G ΓXΓZ,N) (from (5))

= H(Ksr) (from Property 4 of Definition 3.1),

where N = {1, . . . , n}, X = {i1, . . . , ik−1} ⊂ N , and Z = X ∩ {1, . . . , k}. Hence, the
conference keys the users in G can retrieve are `-wise independent.

Size of Servers’ Answers. Using some basic properties of the entropy function, it is possible
to obtain a lower bound on the amount of information that each server, contacted by a user,
has to send once a key-request message has been received.

Theorem 5.2 In any (k, n, C,G)-DKDS, for any Ch ∈ C, for any i = 1, . . . , n, and for any
Uj ∈ Ch, it holds that

H(Yh
i,j) ≥ H(K).

Proof. Let X = {i1, . . . , ik−1} ⊂ {1, . . . , n}. For i /∈ X, relation (3) implies that H(Yh
i,j) ≥

H(Yh
i,j|Y

h
X,j). Applying (5), we have that

H(Yh
i,j |Y

h
X,j) = H(Kh|Y

h
X,j) − H(Kh|Y

h
X,jY

h
i,j) + H(Yh

i,j |Y
h
X,jKh).

According to Property 3 of Definition 3.1, we get that H(Kh|Y
h
X,jY

h
i,j) = 0. Moreover, we

can prove that H(Kh|Y
h
X,j) = H(Kh) and since (1) implies that H(Yh

i,j|Y
h
X,jKh) ≥ 0, we

conclude that

H(Yh
i,j) ≥ H(Yh

i,j|Y
h
X,j) ≥ H(Kh) + H(Yh

i,j |Y
h
X,jKh) ≥ H(Kh) = H(K),

12



which proves the theorem. To prove the equality H(Kh|Y
h
X,j) = H(Kh), notice that, from

Property 2 of Definition 3.1, we get that H(Yh
X,j|AX) = 0. Setting A = Kh, B = Yh

X,j ,
and C = AX and applying Lemma 4.1, it results that

H(Kh|Y
h
X,j) ≥ H(Kh|AX). (10)

Moreover, applying Property 1 of Definition 3.1 we get that H(AX |ΓX) = 0; setting A =
Kh, B = AX , and C = ΓX and applying Lemma 4.1, it results that

H(Kh|AX) ≥ H(Kh|ΓX). (11)

But, from (11) and (3), and from Property 4 of Definition 3.1 we get

H(Kh|ΓX) ≥ H(Kh|Y
HG\{s}ΓXΓZ,N) ≥ H(Kh), (12)

where Z = X∩{1, . . . , k}, and N = {1, . . . , n}. Since (3) implies that H(Kh|Y
h
X,j) ≤ H(Kh)

then, from (10), (11), and (12), we conclude that H(Kh|Y
h
X,j) = H(Kh).

Server Memory Storage. We also show that each server, to answer key-request messages from
users, has to store some information whose size is lower bounded by ` · H(K).

Theorem 5.3 In any (k, n, C,G)-DKDS, for each i = 1, . . . , n, the private information ai,
stored by server Si, satisfies

H(Ai) ≥ ` · H(K).

Proof. Fix any G ∈ G such that `G = `. Let HG = {s1, . . . , s`}, and let X = {i1, . . . , ik} ⊂
{1, . . . , n}. For each r = 1, . . . , k, consider the mutual information between Air and KHG

given AX\{ir}. Applying (5), we have that

H(Air |AX\{ir}) = H(KHG
|AX\{ir}) − H(KHG

|AX) + H(Air |AX\{ir}KHG
).

It is possible to prove that

H(KHG
|AX\{ir}) = ` · H(K) and H(KHG

|AX) = 0.

Therefore, since (3) implies that H(Air ) ≥ H(Air |AX\{ir}), and (1) implies
H(Air |AX\{ir}KHG

) ≥ 0, then we have that

H(Ai) ≥ ` · H(K),

which proves the theorem. To prove the equality H(KHG
|AX\{ir}) = ` ·H(K), notice that,

from (3) and (7), it follows that

H(KHG
|AX\{ir}) ≤ H(KHG

) ≤
∑̀

r=1

H(Ksr) = ` · H(K).

13



From Property 1 of Definition 3.1 and Lemma 4.1 it holds that

H(KHG
|AX\{ir}) ≥ H(KHG

|ΓX\{ir})

≥
∑̀

r=1

H(Ksr |ΓX\{ir}KHG\{sr}) (applying (6))

≥
∑̀

r=1

H(Ksr |ΓX\{ir}Y
HG\{sr}
G ) (from (5))

≥ ` · H(K) (from Property 4 of Definition 3.1).

Moreover, from (1), we have H(KHG
|AX) ≥ 0; while, applying (6) and (5), we have that

H(KHG
|AX) ≤

∑̀

r=1

H(Ksr |AX ,Ksr−1
, . . . ,Ks1

)

≤
∑̀

r=1

H(Ksr |AX) (from property (5))

≤
∑̀

r=1

H(Ksr |Y
sr

X,j) (from Property 3 of Definition 3.1 and Lemma 4.1)

≤ 0 (where Uj ∈ G, and applying Property 4 of Definition 3.1)

Therefore, the theorem holds.

Randomness of a DKDS. Randomness (i.e., truly random bits) is a useful resource due to its
ability to enhance the capabilities of other resources, such as time and space. Therefore, the
amount of randomness used in a computation is an important issue in many applications.
Considerable effort has been devoted both to reduce the number of random bits used by
probabilistic algorithms, and to analyze the amount of randomness required in order to
achieve a given performance. Moreover, since truly random bits are hard to obtain, it has
also been investigated the possibility of using imperfect sources of randomness in randomized
algorithms.

The randomness of a scheme can be measured in different way. Knuth and Yao [32]
proposed the following approach: Let Alg be an algorithm that generates the probability
distribution P = {p1, . . . , pn}, using only independent and unbiased random bits. Denote
by T (Alg) the average number of random bits used by Alg and let T (P ) = minAlgT (Alg).
The value T (P ) is a measure of the average number of random bits needed to simulate the
source described by the probability distribution P . In [32] it has been shown the following
result:

Theorem 5.4 H(P) ≤ T (P) < H(P) + 2.

Thus, the entropy of a random source is very close to the average number of unbi-
ased random bits necessary to simulate the source. Hence, it is a natural measure of the
randomness3.

3For this and other interesting relations of the Shannon entropy with other measures of complexity, like
Kolmogorov complexity, we advice the reader to consult the very readable account given in [22]. Moreover,
we refer the reader to [10] for a detailed analysis of randomness in distribution protocols.

14



In order to prove a lower bound on the randomness needed to realize a DKDC, let us
start by showing two lemmas useful to prove a lower bound on the amount of information
each of the servers S1, . . . , Sk has to send to the other servers during the set up phase.

Lemma 5.5 In any (k, n, C,G)-DKDS, for each i = 1, . . . , k, for each j = 1, . . . , n, and for
each Y ⊂ {1, . . . , n} \ {j} of size at most k − 1, it holds that

H(Γi,j |ΓY ΓX,j) ≥ ` · H(K),

where X = {1, . . . , k} \ {i}.

Proof. Let B ⊂ U \ (Y ∪ {j}) be a set of size k − 1 − |Y | and let G ∈ G such that `G = `.
Setting Γ(1) = ΓY ΓX,jΓB and Γ(2) = Γ(1)Γi,j, we can prove that

H(KHG
|Γ(1)) = ` · H(K) and H(KHG

|Γ(2)) = 0. (13)

Assuming true the above equalities, from (5), it holds that,

H(Γi,j |ΓY ΓX,j) ≥ H(Γi,j |Γ
(1)).

Moreover, (2) implies that

H(Γi,j|Γ
(1)) = H(KHG

|Γ(1)) − H(KHG
|Γ(2)) + H(Γi,j |KHG

Γ(1))

= ` · H(K) + H(Γi,j|KHG
Γ(1)) (from (13))

≥ ` · H(K) (from (1)).

Hence, the lemma holds. We are left with proving that equalities (13) hold. The first one
can be shown as follows: from (3) and (7) we get

H(KHG
|Γ(1)) ≤ H(KHG

) ≤
∑̀

r=1

H(Kr) = ` · H(K).

On the other hand, for each r = 1, . . . , `, from (5), and from Lemma 4.2, we have that

H(Kr|Y
HG

G ) = 0. Then, setting A = Kr, B = KHG\{r}, C = Y
HG\r
G , and D = Γ(1) and

applying inequality (9), we get

H(Kr|KHG\{r}Γ
(1)) ≥ H(Kr|Y

HG\{r}
G Γ(1)). (14)

Therefore, we have that

H(KHG
|Γ(1)) ≥

∑̀

r=1

H(Kr|KHG\{r}Γ
(1)) (from (5) and (6))

≥
∑̀

r=1

H(Kr|Y
HG\{r}Γ(1)) (from (14))

≥ ` · H(K) (from Property 4 of Definition 3.1).
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Now, we have to prove that H(KHG
|Γ(2)) = 0. As a preliminary step notice that, from

Property 1 of Definition 3.1 we get that H(AX |Γ(2)) = 0, where X = Y ∪ B ∪ {j}. Hence,
for each r = 1, . . . , `, applying Lemma 4.1, it results that

H(Kr|Γ
(2)) ≥ H(Kr|AX). (15)

Moreover, for each r = 1, . . . , `, choosing Uj ∈ G ∩ Cr and applying Property 3 of Defi-
nition 3.1 we get that H(Yr

X,j |AX) = 0. Hence, for each r = 1, . . . , `, setting A = Kr,
B = Yr

X,j, and C = AX , and applying Lemma 4.1, it results that

H(Kr|Y
r
Y,j) ≥ H(Kr|AX). (16)

Then, from (1) we get H(KHG
|Γ(2)) ≥ 0. On the other hand, it results that

H(KHG
|Γ(2)) =

∑̀

r=1

H(Kr|Kr−1, . . . ,K1,Γ
(2)) (from (6))

≤
∑̀

r=1

H(Kr|Γ
(2)) (from (5))

≤
∑̀

r=1

H(Kr|AX) (from (15))

≤
∑̀

r=1

H(Kr|Y
r
X,j) (from (16))

≤ 0 (from Property 3 of Definition 3.1).

Thus, equalities (13) are satisfied and the lemma holds.

The following result is a consequence of the above lemma.

Lemma 5.6 In any (k, n, C,G)-DKDS, for each j = 1, . . . , n, and for any set Y ⊂
{1, . . . , n} \ {j} of size at most k − 1, it holds that

H(Γj |ΓY ) ≥ k · ` · H(K).

Proof. We have that,

H(Γj |ΓY ) =
k

∑

i=1

H(Γi,j|ΓY Γ1,j . . . Γi−1,j) (from (6))

≥
k

∑

i=1

H(Γi,j|ΓY ΓX,j) (from (5), setting X = {1, . . . , k} \ {i})

≥
k

∑

i=1

` · H(K) (from Lemma 5.5)

= k · ` · H(K).
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Thus, the lemma holds.

The following theorem establishes a lower bound both on the amount of information
γi,j that each of the servers S1, . . . , Sk, has to send during the setup phase to S1, . . . , Sn,
and on the amount of information γi that each server must receive in order to be able to
compute his private information ai.

Theorem 5.7 In any (k, n, C,G)-DKDS, for each i = 1, . . . , k, and for each j = 1, . . . , n,
the following inequalities are satisfied:

H(Γi,j) ≥ ` · H(K) and H(Γj) ≥ k · ` · H(K).

Proof. Notice that, for any set Y ⊂ {1, . . . , n} \ {j} of size less than or equal to k − 1 and
X = {1, . . . , k} \ {i}, from (3) and from Lemma 5.5, we have that

H(Γi,j) ≥ H(Γi,j |ΓY ΓX,j) ≥ ` · H(K).

Moreover, since each of the k servers independently chooses the values γi,j, then from the
above inequality and from (3) and (7), it results that

H(Γj) = H(Γ1,j . . .Γk,j) =
k

∑

i=1

H(Γi,j) ≥ k · ` · H(K).

Thus, the theorem holds.

It is easy to see that the randomness R of a Distributed Key Distribution Scheme can
be lower bounded by H(Γ1 . . .Γn). The following theorem shows a lower bound on R.

Theorem 5.8 In any (k, n, C,G)-DKDS the randomness R satisfies

R ≥ k2 · ` · H(K).

Proof. Notice that, for each {j1, . . . , jk} ⊂ {1, . . . , n}, from Theorem 5.4, and (8), we get
that

R ≥ H(Γ1 . . . Γn) ≥ H(Γj1 . . .Γjk
)

=
k

∑

r=1

H(Γjr |Γj1 . . .Γjr−1) (applying (6))

≥
k

∑

r=1

H(Γjr |ΓY )(from (5), setting Y = {j1, . . . , jk} \ {jr})

≥
k

∑

r=1

k · ` · H(K)(from Lemma 5.6)

= k2 · ` · H(K).

Hence, the theorem holds.
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Communication Complexity in a DKDC The Communication Complexity (CC, for short) of a
DKDS is measured by the amount of information sent by the servers S1, . . . , Sk during the
set up phase. It is not difficult to see, by using Theorem 5.7, that

CC =
k

∑

i=1

n
∑

j=1

H(Γi,j) ≥ k · ` · n · H(K).

Table 2 summarizes the main bounds obtained by the above analysis, assuming the keys
are chosen uniformly at random in a set K, (i.e., H(K) = log |K|). In filling up the table
we use property (1) which states that, for any random variable X, log |X| ≥ H(X).

Parameters Information needed (in bits)

Server Answer log |K|
Server Memory Storage ` · log |K|

Randomness k2 · ` · log |K|
Communication Complexity k · n · ` · log |K|

Table 2: Bounds on DKDSs for keys chosen uniformly at random.

6 On the Size of the Coalition of Curious Users

In this section we point out that the model we have studied takes also care of some settings
usually considered in designing key distribution schemes.

The model described in Section 3 is a generalization of the model proposed in [6]. In that
paper we considered a network with m users, represented by the set U = {U1, . . . , Um}, a
set S = {S1, . . . , Sn} of n servers, and a set of possible conferences C. Moreover, we required
the scheme to be secure against coalitions of up to k−1 servers, coalition of users of any size,
and hybrid coalitions. In that simplified scenario a trusted authority, the dealer, realizes the
set up phase, distributing the private information ai to each of the n servers of the network.
Then, the dealer disappears. It is not difficult to see that such a model is described by
relations 3 and 4 of the current model, assuming that in relation 4 the set G is equal to U
and substituting ΓXΓZ,N with AX .

In the previous sections, the analysis has been done making no assumptions on the
structure of the coalitions of adversaries that will try to break the scheme. Such an approach
enable us to model multiple scenarios, usually considered in the analysis of unconditionally
secure key distribution schemes [48]. For example, it is too much to assume that all users
of a wide area network can collude to break a scheme. It is more realistic to consider an
upper bound g on the size of a coalition of curious users. Such schemes are often referred
to as g-resilient scheme. Moreover, to further reduce resource requirements of a (k, n, C,G)-
DKDC, we can consider an environment in which the set of conferences C is composed only
by the subsets of users of size up to t. Such schemes are characterized by two parameters,
t and g, and are referred to as g-resilient t-conference schemes.

g-resilient schemes In such a scenario we fix the size of the possible coalitions of adver-
saries G to be at most equal to g, i.e., G = {G ⊂ U||G| ≤ g}. Assuming that C contains
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all the possible conferences of U , and, hence, |C| = 2m − m − 1, it is not difficult to see, by
applying a counting argument, that the maximum number of conference keys that can be
recovered by any coalition G ∈ G is

` =

g
∑

j=2

(

g

j

)

+

g
∑

j=1

(

g

j

)

· (2m−g − 1) =

g
∑

j=1

(

g

j

)

− g +

g
∑

j=1

(

g

j

)

· 2m−g −

g
∑

j=1

(

g

j

)

=

g
∑

j=1

(

g

j

)

· 2m−g − g.

Hence, the bounds of Theorems 5.2, 5.3, and 5.8, change according to this value.

g-resilient t-conference schemes Suppose that it is known an upper bound t on the
maximum size of the conferences in C, and an upper bound g on the maximum size of the
coalitions of malicious users in G, i.e., C = {C ⊂ U||C| ≤ t} and G = {G ⊂ U||G| ≤ g}.
Then, |C| =

∑t
j=2

(m
j

)

, and

` =

t
∑

j=2

(

g

j

)

+

t
∑

s=2

s−1
∑

j=1

(

g

j

)

·

(

m − g

s − j

)

.

It is easy to see that the bounds of Theorems 5.2, 5.3, and 5.8 are determined by the above
value of `.

7 An Optimal Protocol

A construction of a (k, n, C,G)-DKDS has been proposed in [38]. In this section we describe
such a protocol and we argue that it satisfies Definition 3.1 and meets the lower bounds we
have derived.

The scheme given in [38] is based on a family of `-wise independent functions. A function
is `-wise independent if the knowledge of the value of the function in `−1 different points of
the domain does not convey any information on the value of the function in another point.
It enables ` conferences in C ⊆ 2U , not known a priori, to securely compute a conference key.
The family of `-wise independent functions chosen in [38] to construct the (k, n, C,G)-DKDS
is the family of all bivariate polynomials P (x, y) over a given finite field Fq, in which the
degree of x is k − 1 and the degree of y is ` − 1. The protocol can be described as follows
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Set Up Phase

- Let ` = maxG∈G `G be the maximum number of conference keys that a
coalition G of malicious users can compute.

- Each of the servers S1, . . . , Sk constructs a random bivariate polynomial
P i(x, y) of degree k − 1 in x and ` − 1 in y, by choosing uniformly at
random k · ` elements in Fq .

- Then, for i = 1, . . . , k, server Si evaluates, for j = 1, . . . , n, the bivariate
polynomial P i(x, y) in the identity j of server Sj , and sends the univariate
polynomial Qi

j(y) = P i(j, y) to Sj .
- For j = 1, . . . , n, each server Sj computes his private information aj ,

summing up the k polynomials of degree ` − 1, obtained from the k
servers S1, . . . , Sk. More precisely,

aj = Qj(y) =

k
∑

i=1

Qi
j(y).

A user who needs a conference key, sends a key-request message to the servers as follows

Key Request Phase

- A user in conference Ch, who wants to compute the conference key, sends
to at least k servers, say Si1 , . . . , Sik

, a request for the conference key.
- Each server Sij

, invoked by the user, checks that the user belongs to Ch,
and sends to the user the value Qij

(h), i.e., the value of the polynomial
Qij

(y) evaluated in y = h.

Finally, using the k values received from Si1 , . . . , Sik , and applying the Lagrange formula,
each user in Ch recovers the secret key P (0, h) =

∑k
i=1 P i(0, h). More precisely,

Key Computation Phase

• Each user computes, for j = 1, . . . , k, the coefficients

bj =
∏

1≤s≤k,s6=j

is
is − ij

.

Then, he recovers P (0, h) computing the
∑k

j=1
bjyij

where yij
, for j =

1, . . . , k, is the value received from server Sij
, i.e., yi,j = Qij

(h).

It is not difficult to see that the protocol satisfies Definition 3.1 and meets the bounds
established by Theorems 5.7, 5.2, 5.3, and 5.8.
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8 Conclusions and Open Problems

Since this paper was written and submitted in February 2000, further researches on this
topic have been done, and some related papers have been published. In [7] the ramp
approach has been investigated. It allows to reduce the resources (randomness, information
storage, messages to be exchanged, ...) at the cost of a security degradation which depends
on the size of the coalition of users who tries to break the scheme. The model analysed in
this paper has been extended in [8], by considering a general family of subsets of servers,
referred to as the access structure, authorized to help the users in recovering the conference
keys. Therein, lower bounds on the resources have been shown in an easy and elegant way,
by using a reduction technique which relates DKDSs to Secret Sharing Schemes. Moreover,
a linear algebraic approach to designing DKDSs has been proposed. In [23, 41] robust
DKDCs have been proposed: each server can verify that the information it stores and uses
to answer the users’ key-request messages is consistent with the information stored by the
other servers; at the same time, the users are guaranteed that they can compute the same
key for a given conference in which they belong to. Moreover, time is divided in periods,
and at the beginning of each period the servers are involved in an update procedure that
“refreshes” the private information they store while the conference keys they provide stay
the same.

Some questions still arise from the analysis we have presented. We have assumed that
each user has private connections with all the n servers of the network. It can be interesting
to study the same problem assuming that, for each user, there are d possible different
secure connections with the servers, where k ≤ d ≤ n, or assuming more general network
topologies. As well as, it would be of interest to investigate different models for a distributed
key distribution center, and to design schemes, expecially in the computationally secure
setting, provable secure under standard cryptographic assumptions. In [24] a step towards
this direction has been done.
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