
On Self-healing Key Distribution Schemes∗

Carlo Blundo, Paolo D’Arco, and Alfredo De Santis

Dipartimento di Informatica ed Applicazioni
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Abstract

Self-healing key distribution schemes allow group managers to broadcast session keys to large
and dynamic groups of users over unreliable channels. Roughly speaking, even if during a certain
session some broadcast messages are lost due to network faults, the self-healing property of the
scheme enables each group member to recover the key from the broadcast messages he/she has
received before and after that session. Such schemes are quite suitable in supporting secure
communication in wireless networks and mobile wireless ad-hoc networks. Recent papers have
focused on self-healing key distribution, and have provided definitions, stated in terms of the
entropy function, and some constructions. The contribution of this paper is the following:

• We analyse current definitions of self-healing key distribution and, for two of them, we show
that no protocol can achieve the definition.

• We show that a lower bound on the size of the broadcast message, previously derived, does
not hold.

• We propose a new definition of self-healing key distribution, and we show that it can be
achieved by concrete schemes.

• We give some lower bounds on the resources required for implementing such schemes i.e.,
user memory storage and communication complexity. We prove that the bounds are tight.

Along the same lines of previous works on the subject, we use concepts and techniques from
Information Theory in our analysis of existing models, in proving/confuting statements, and in
stating our new definition.

Keywords: Self-healing, Key Distribution, Reliability, Group Communication, Information The-
ory.

1 Introduction

Self-healing key distribution. Self-healing key distribution schemes, recently introduced in [39], enable a
dynamic group of users to establish a group key over an unreliable network. In such a scheme, a group
manager, at the beginning of each session, in order to provide a key to each member of the group,
sends packets over a broadcast channel. Every user, belonging to the group, computes the group key
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Programme under Contract IST-2002-507932 ECRYPT. The information in this document reflects only the author’s
views, is provided as is and no guarantee or warranty is given that the information is fit for any particular purpose. The
user thereof uses the information at its sole risk and liability. An abstract of this paper appeared in the Proceedings of
the 31-st International Colloquium on Automata, Languages, and Programming (ICALP 2004).
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by using the packets and some private information. The group manager can start multiple sessions
during a certain time-interval, by adding/removing users to/from the initial group. The main property
of the scheme is that, if at the beginning of a certain session some broadcasted packet gets lost, then
users are still capable of recovering the group key for that session simply by using the packets they
have received at the beginning of a previous session and the packets they will receive at the beginning
of a subsequent one, without requesting additional transmission from the group manager. Indeed, the
only requirement that must be satisfied, in order for the user to recover the lost keys, is membership
in the group both before and after the sessions in which the broadcast messages containing the keys
are sent and lost. Self-healing key distribution schemes are stateless and non-interactive, i.e., users
do not need to update the secret information they receive in the setup phase, and they do not need
to send any key-request message to the group manager. Some benefits of such an approach basically
are: reduction of network traffic, reduction of the work load on the group manager, and a lower risk
of user exposure through traffic analysis.

Applications. The relevance of self-healing key distribution has been well motivated in [39] and, later
on, in [32]. Self-healing key distribution schemes can be used to achieve efficiently secure communi-
cation in wireless networks and mobile wireless ad-hoc networks. International peace operations and
rescue missions, where there is no network infrastructure support and the adversary may intercept,
modify, and/or partially interrupt the communication, are important applicative examples of cases
in which reliability, confidentiality and authenticity of the communication is a major concern. In
the above settings, all techniques developed for secure group communication in traditional networks
might be used. However, some unique features of mobile and ad-hoc networks identify a new scenario:
nodes/devices in mobile networks may move in and out of range frequently. Devices are powered
by batteries. Hence, expensive computations like the ones required by public key cryptography are
not suitable. In a battle field there could be a need for a rapid revocation of devices caught by the
enemy and so on. All these aspects pose new challenges and the idea of self-healing key distribution
can be of great benefit. Applications for self-healing key distribution can be also found in broadcast
communication over low-cost channels: live-event transmissions (e.g., concerts, formal ceremonies,
soccer games, ...) for users who have subscribed to (and paid for) the service. Electronic services
delivering sensitive content/information to authorized recipients can take advantage from self-healing
key distribution schemes as well. Hence, the spectrum of applicability is quite large.

Previous Work. Self-healing key distribution was introduced in [39]. Definitions and lower bounds on
the resources required for implementing such schemes, stated in terms of the entropy function, and
some constructions were provided. Later on, in [32], the definition given in [39], was generalised and
more efficient constructions were presented. Other constructions were given in [29]. Finally, in [5], a
slightly different definition was used, some efficient constructions were presented, and it was pointed
that some of the constructions given in [39] present flaws. The above papers have mainly considered
unconditionally secure schemes.

Related Work. Broadcast Encryption is a closely related research area. Loosely speaking, in broadcast
encryption a broadcaster delivers in a secure way to a privileged subset of recipients of a given universe
a session key. Then, the recipients use this key for decrypting broadcast transmissions. Broadcast
Encryption is static, i.e., the family of possible privileged subsets is specified during the setup phase
of the scheme. Originated in [2], and formally defined in [17], it has been extensively studied (e.g.,
[4, 8, 20, 42, 27, 43]), and it has grown up in different directions: mainly, re-keying schemes for dynamic
subsets of users (e.g., [48, 9, 10, 36, 15, 28]), i.e., schemes where the privileged subset changes, from
session to session, by means of join and remove operations, and broadcast schemes with tracing
capability for dishonest users (e.g., [12, 35, 16, 18, 44, 45, 46, 40, 19, 37, 22, 23]), i.e., users who
illegally give away their private information for computing session keys or collude in order to enable
illegal decryption of transmission to unauthorised users. Moreover, several papers have addressed
the special case of efficient users revocation from the privileged subset (e.g., [24, 1, 31, 30, 21, 25]).
Indeed, in certain applications it could be important to be able to remove users immediately from
the subset. Such an issue has also been referred to as the blacklisting problem. Few years ago, the
authors of [34] and [49] have considered a setting in which packets can get lost during transmission.
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In the first case, error correction techniques have been employed. In the second, short hint messages
have been appended to the packets. The schemes given in [24], by accurately choosing the values of
the parameters, can provide resistance to packet loss as well. In [14] several known constructions for
broadcast encryption have been generalised in order to gain resistance to packet loss. In [26] the issue
of packet loss due to the presence of an unreliable network has been addressed, and a key recovery
mechanism, quite similar to the one employed in the schemes provided in [39], was given. Recently,
in [47], some existing constructions have been easily extended in order to provide the self-healing
property [39]. Both unconditionally secure and computationally secure schemes have been provided
in the above cited papers.

Our Contribution: In this paper we deal firstly with the definitional task of self-healing key distribution.
We give some attention to the constructive task as well. We start by analysing the definition proposed
in [39] and subsequently generalized in [32]. We discuss some issues related to such a formalization,
and we show that no protocol can achieve some of the security requirements stated in [39, 32]. Then,
we show that a lower bound on the size of the broadcast messages the group manager has to sent in
order to establish session keys, proved in [39] and also used in [32], does not hold. After the analysis,
we propose a new definition for self-healing key distribution, by extending and opportunely modifying
the definition given in [39]. Subsequently, we give some lower bounds on the resources required for
implementing such schemes, i.e., user memory storage and communication complexity, and we show
that the bounds are tight. Along the same lines of previous works on the subject, we use concepts
and techniques from Information Theory in our analysis of existing models, in proving/confuting
statements, and in stating our new definition.

2 Background

In this section we briefly provide some basic elements of Information Theory, and some technical
lemmas we use in proving our results. For a good introduction to Information Theory, the interested
reader is referred to [13].

2.1 Information Theory Measures

A discrete random experiment is defined by a finite set, called sample space, consisting of all elementary
events, and a probability measure assigning a non-negative real number to every elementary event, such
that the sum of all these probabilities is equal to 1. An event of a discrete random experiment is a
subset of the sample space, and the probability assigned to it is the sum of the probabilities of its
elementary events.

A discrete random variable X is a mapping from a sample space to a certain range X , and is
characterized by its probability distribution {PX(x)}x∈X that assigns to every x ∈ X the probability
PX(x) of the event that X takes on the value x.

The entropy of X, denoted by H(X), is a real number that measures the uncertainty about the
value of X when the underlying random experiment is carried out. It is defined by

H(X) = −
∑

xεX

PX(x) log PX(x),

assuming that the terms of the form 0 log 0 are excluded from the summation, and where the logarithm
is relative to the base 2. The entropy satisfies 0 ≤ H(X) ≤ log |X |, where H(X) = 0 if and only if there
exists x0 ∈ X such that Pr(X = x0) = 1; whereas, H(X) = log |X | if and only if Pr(X = x) = 1/|X |,
for all x ∈ X . The deviation of the entropy H(X) from its maximal value can be used as a measure
of non-uniformity of the distribution {PX(x)}x∈X .

Given two random variables X and Y, taking values on sets X and Y , respectively, according to a
probability distribution {PXY(x, y)}x∈X,y∈Y on their Cartesian product, the conditional uncertainty
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of X, given the random variable Y, called conditional entropy and denoted by H(X|Y), is defined as

H(X|Y) = −
∑

y∈Y

∑

x∈X

PY(y)PX|Y(x|y) log PX|Y(x|y).

Notice that the conditional entropy is not the entropy of a probability distribution but the average
over all entropy H(X|Y = y). Simple algebra shows that

H(X|Y) ≥ 0 (1)

with equality if and only if X is a function of Y .
The mutual information between X and Y is a measure of the amount of information by which

the uncertainty about X is reduced by learning Y, and vice versa. It is given by

I(X;Y) = H(X) − H(X|Y) = H(Y) − H(Y|X).

Since,
I(X;Y) = I(Y;X) and I(X;Y) ≥ 0, (2)

it is easy to see that
H(X) ≥ H(X|Y), (3)

with equality if and only if X and Y are independent. Along the same lines, given three random
variables, X, Y, and Z, the conditional mutual information between X and Y given Z can be written
as

I(X;Y|Z) = H(X|Z) − H(X|Z,Y) (4)

= H(Y|Z) − H(Y|Z,X)

= I(Y;X|Z).

Since the conditional mutual information I(X;Y|Z) is always non-negative, it holds that

H(X|Z) ≥ H(X|Z,Y). (5)

A useful equality, widely applied in information-theoretic proofs, is given by the so-called chain rule.
It is stated as follows: given n + 1 random variables, X1, . . . ,Xn and Z, the entropy of X1 . . .Xn,
given Z, can be written as

H(X1, . . . ,Xn|Z) = H(X1|Z) + H(X2|X1,Z) + · · · + H(Xn|X1, . . . ,Xn−1,Z). (6)

2.2 Technical Lemmas

The following simple lemmas are used in the proofs of our results. The first one plays a key-role in
proving all our impossibility results. Indeed, we will use the following relations to show that, if a set
of assumptions hold, then we get a contradiction.

Lemma 2.1 Let X,Y, and Z be three random variables such that H(Z|X,Y) = 0 and H(Z|Y) =
H(Z). Then,

1. H(X|Y,Z) = H(X|Y) − H(Z).

2. H(X|Y,Z) = H(X) if and only if H(Z) = 0 and H(X|Y) = H(X).

Proof. Notice that I(X;Z|Y), according to (2), can be written as

H(X|Y) − H(X|Y,Z) = H(Z|Y) − H(Z|X,Y).
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It follows that,

H(X|Y,Z) = H(X|Y) − H(Z|Y) + H(Z|X,Y)

= H(X|Y) − H(Z|Y) (since H(Z|X,Y) = 0)

= H(X|Y) − H(Z) (since H(Z|Y) = H(Z)).

Hence, statement 1 . is proved. In order to prove statement 2 . notice that, if H(Z) = 0 and H(X|Y) =
H(X), then, from 1 . we have that H(X|Y,Z) = H(X). On the other hand, if H(X|Y,Z) = H(X),
then, from 1 ., it must be H(X|Y) − H(Z) = H(X). Since the entropy of a random variable is
non-negative, such an equality is satisfied only if H(Z) = 0 and H(X|Y) = H(X).

Notice that point 2 . of Lemma 2.1 means that H(X|Y,Z) = H(X) if and only if the value of Z
is univocally determined (i.e., H(Z) = 0) and the random variables X and Y are independent (i.e.,
H(X|Y) = H(X).)

Lemma 2.1 has an interesting interpretation in the theory of secret sharing schemes [3, 38]. Loosely
speaking, a secret sharing scheme is a protocol divided in two phases, called Share and Reconstruct, by
means of which a dealer shares a secret among a set of participants, in such a way that any qualified
subset can reconstruct the secret while any forbidden subset does not get any information about it.
The simplest secret sharing scheme consists of two participants. It works as follows: during Share,
each of them receives a piece of information, called share. Let us assume that Z denotes the secret
shared by the dealer among the two participants, and X and Y represent the shares received by the
two participants. Later on, during Reconstruct, by pooling together their shares, the two participants
recover the secret (i.e., H(Z|X,Y) = 0), while none of them alone has any information about it (i.e.,
H(Z|Y) = H(Z) and H(Z|X) = H(Z)). Lemma 2.1 says that, unless there is no uncertainty on
the secret, i.e., H(Z) = 0, there exists no secret sharing scheme for two participants satisfying the
following condition: the secret Z and one of the shares, say Y , do not give any information about the
other share X , i.e., H(X|Y,Z) = H(X).

Assume that we have access to the outcomes of some related random variables X,Y, and W.
The following simple lemma establishes that the amount of information we get on a certain random
variable X from another one W, does not grow if we consider also another random variable Y, which
is function of W. In other words, any computation based on the value of W does not improve our
knowledge on X.

Lemma 2.2 Let X, Y, and W be three random variables. If H(Y|W) = 0 then

H(X|Y,W) = H(X|W).

Proof. Notice that H(Y|W) = 0 implies H(Y|X,W) = 0. Indeed, (1) and (5) yield

0 ≤ H(Y|X,W) ≤ H(Y|W) = 0.

The mutual information I(X;Y|W), according to (2), can be written either as

H(X|W) − H(X|W,Y) = H(Y|W) − H(Y|X,W).

Since H(Y|W) − H(Y|X,W) = 0, it holds that H(X|W) = H(X|Y,W).

In our proofs we will consider also a slightly different variant of the above lemma, which can be
stated as follows:

Lemma 2.3 Let X,Y,Z and W be four random variables. If H(Y|Z,W) = 0 then

H(X|Z,W) ≤ H(X|Y,W).
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Proof. Denote by T the joint random variable ZW. The random variables X,Y and T satisfy the
hypothesis of Lemma 2.2, i.e., H(Y|T) = 0. Therefore, it holds that

H(X|Y,Z,W) = H(X|Z,W).

Then, from (5), it follows that
H(X|Z,W) ≤ H(X|Y,W).

The following lemma, proved in [39], considers four random variables X, Y, Z, and W. Assuming
that a certain relation, stated by means of two conditions, holds among them, it yields a lower bound
on the amount of information that Y still has, once given Z.

Lemma 2.4 [39] Let X, Y, Z, and W be four random variables. If H(X|Y,W) = 0 and
H(X|Z,W) = H(X), then

H(Y|Z) ≥ H(X).

3 Self-healing Key Distribution: Previous Definitions

Self-healing key distribution was introduced by Staddon et al. in [39]. We start by describing the
network setting we will consider hereafter and the definition therein given.

3.1 Network Setting

Let U = {U1, . . . , Un} be the finite universe of users of a network. A broadcast unreliable channel
is available, and time is defined by a global clock. Let GM be a group manager who sets up and
manages, by means of join and revoke operations, a communication group, which is a dynamic subset
of users of U . Let Gj ⊆ U be the communication group established by GM in session j. Each user
Ui ∈ Gj holds a secret key Si, received from GM when he/she joins, at time j, the communication
group Gj . A secret key Si can be seen as a sequence of elements from a finite set, and is valid until the
user Ui is not removed by GM from the communication group. Individual secret keys can be related.

We denote the number of sessions, supported by the scheme, by m, the set of users revoked by
GM in session j by Revj , and the set of users who join the group in session j by Joinj . Hence,
Gj = (Gj−1 ∪Joinj)\Revj . We assume that GM can revoke at most t users during the lifetime of the
scheme, and that once a user is revoked he/she is kept revoked. However, notice that a revoked user
that needs to re-join the group can always be treated as a new one: he/she receives a new identity
and a new secret key, and joins the communication group. Therefore, the model we consider does not
yield loss of generality, as long as the number of re-joins of a certain user and the number of other
revoked users does not exceeds t.

Moreover, for j = 1, . . . , m, let Kj be the session key chosen by GM and communicated to the
group members through a broadcast message, Bj . For each Ui ∈ Gj , the key Kj is determined by Bj

and the secret key Si.
Let Si,Bj ,Kj be the random variables representing the secret key of user Ui, the broadcast message

Bj and the session key Kj for session j, respectively. Moreover, let Zi,j be a random variable which
represents the amount of information Zi,j that user Ui gets from the broadcast Bj and Si.

The probability distributions according to whom the above random variables take values are de-
termined by the key distribution scheme and the random bits used by GM. In particular, we assume
that session keys Kj are chosen independently.

3.2 Analysis of the Definition given in [39]

Using the entropy function, the following definition was stated:
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Definition 3.1 [Self-Healing Key Distribution Scheme with Revocation][39]
Let t, i ∈ {1, . . . , n} be indices denoting, respectively, the maximum number of users that can be
revoked by GM during the lifetime of the scheme and a generic user, and let j ∈ {1, . . . , m} be an
index representing a session.

1. D is a session key distribution scheme if the following are true:

1.a) For any member Ui, the key Kj is determined by Zi,j . Formally, it holds that:

H(Zi,j |Bj ,Si) = 0 and H(Kj |Zi,j) = 0.

1.b) For any subset F ⊆ {U1, . . . Un}, such that |F | ≤ t and Ui /∈ F , the users in F cannot
determine anything about Si. Formally, it holds that:

H(Si|{Si′}Ui′∈F ,B1, . . . ,Bm) = H(Si).

1.c) What members U1, . . . , Un learn from the broadcast Bj and the secret keys cannot be deter-
mined from the broadcast or secret keys alone. Formally, it holds that:

H(Zi,j |B1, . . . ,Bm) = H(Zi,j |S1, . . . ,Sn) = H(Zi,j).

2. D has t-revocation capability if, given any set R ⊆ {U1, . . . , Un}, where |R| ≤ t, the group
manager can generate a broadcast Bj such that, for all Ui /∈ R, the user Ui can recover Kj but
the revoked users cannot. Formally, it holds that:

H(Kj |Bj ,Si) = 0, while H(Kj |Bj , {Si′}Ui′∈R) = H(Kj).

3. D is self-healing if, for any 1 ≤ j1 < j < j2 ≤ m, the following properties are satisfied:

3.a) For any Ui who is member in session j1 and j2, the key Kj is determined by {Zi,j1 , Zi,j2}.
Formally, it holds that:

H(Kj |Zi,j1 ,Zi,j2 ) = 0.

3.b) For any two disjoint subsets F, G ⊂ {U1, . . . , Un}, where |F ∪ G| ≤ t, the set
{Zi′,r}{Ui′∈F,1≤r≤j1} ∪ {Zi′,r}{Ui′∈G,j2≤r≤m}, contains no information on Kj . Formally,
it holds that:

H(Kj |{Zi′,r}{Ui′∈F,1≤r≤j1}, {Zi′,r}{Ui′∈G,j2≤r≤m}) = H(Kj).

The definition is divided in three parts: the first one states that each non revoked user computes
the session key; moreover, it states that secret keys held by honest users are secure w.r.t. coalitions
of at most t malicious users who put together their secret keys and possess the whole sequence of
broadcast messages, and that both secret keys and broadcast messages are needed to compute session
keys. The second part states that revoked users do not get any information about session keys. The
third one states the self-healing property and a security requirement that must hold against collusion
attacks performed by coalitions of revoked and new users, who join the system in a certain session
j > 1. More precisely, item 3.a) establishes that a user recovers, from two broadcast messages Bj1

and Bj2 , all session keys Kj , for j1 ≤ j ≤ j2. Item 3.b) essentially requires that a group F of users,
revoked in session j1, and a group G of new users, who join the system in session j2, by pooling
together their secret keys and all broadcast messages, do not get any information about each key they
are not entitled to receive.

The above definition presents some problems: namely, there is no protocol that can achieve all
conditions unless there is no uncertainty about the session keys, i.e., for j = 1, . . . , m, H(Kj) = 0.

We start by showing that conditions 1 .a), 1 .b), and 2 cannot be satisfied simultaneously. It turns
out that the problem lies in condition 1 .b). Indeed, condition 1 .a) and 2 are required in order to
define a basic scheme where users of the group can compute the session key and revoked users cannot.
We will show that:
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• condition 1 .a) and 2 imply the relation established by point 1 . of Lemma 2.1 for the random
variables Si, Br, and Kr, i.e., H(Si|Br,Kr) = H(Si|Br) − H(Kr);

• on the other hand, condition 1.b) implies a sort of a-posteriori security for the secret key, once
given the broadcast message and the session key for a certain session i.e., H(Si|Br,Kr) = H(Si);

• it follows that H(Si|Br) − H(Kr) = H(Si), which holds if and only if H(Si|Br) = H(Si) and
H(Kr) = 0.

Hence, condition 1 .b) has to be removed. More precisely, we show the following result:

Theorem 3.2 If conditions 1 .a), 1 .b) and 2 of Definition 3.1 are satisfied then, for any 1 ≤ r ≤ m,

H(Kr) = 0.

Proof. Let Gr be the communication group established in session r, for some r ∈ {1, . . . , m}. Let F
be any subset of U such that |F | ≤ t, F ∩ Gr 6= ∅, and F 6= Gr. Finally, let Ui ∈ Gr \ F . By using
conditions 1 .a) and 2 ., and Lemmas 2.1 and 2.3, we show that

H(Kr|Si,Br) = 0, and H(Kr|Br) = H(Kr).

Setting X = Si, Y = Br, and Z = Kr, and applying point 1 . of Lemma 2.1, it follows that
H(Si|Br,Kr) = H(Si|Br) − H(Kr). Then, if condition 1 .b) holds, we show that H(Si|Br,Kr) =
H(Si). Therefore, it must be H(Si|Br)−H(Kr) = H(Si) which holds if and only if H(Si|Br) = H(Si)
and H(Kr) = 0.

Let us show the above statements. We start by proving that

H(Kr|Si,Br) = 0, for any Ui ∈ Gr. (7)

From condition 1.a) of Definition 3.1, we have that H(Zi,j |Br,Si) = 0; hence, from Lemma 2.3,
setting X = Kr, Y = Zi,j , Z = Br,Si, and W equals to the ”empty” random variable, we get
that H(Kr|Br,Si) ≤ H(Kr|Zi,j). Since from condition 1.a) of Definition 3.1 it also holds that
H(Kr|Zi,j) = 0, applying (1), we have that

0 ≤ H(Kr|Br,Si) ≤ H(Kr|Zi,j) = 0.

Therefore, equality (7) is satisfied. To prove that H(Kr|Br) = H(Kr), consider the following chain
of equalities/inequalities.

H(Kr) = H(Kr|{Si′}Ui′∈F ,Br) (from condition 2) of Definition 3.1)

≤ H(Kr|Br) (applying property (5))

≤ H(Kr) (applying property (3)).

Hence, H(Kr|Br) = H(Kr). Finally, if condition 1.b) holds, then for Uj ∈ F ∩ Gr and Ui ∈ Gr \ F ,
it follows that that H(Si|Sj ,Br) = H(Si). Indeed:

H(Si) = H(Si|{Si′}Ui′∈F ,B1, . . . ,Bm) (from condition 1.b))

≤ H(Si|Sj ,Br) (applying property (5))

≤ H(Si) (applying property (3)).

At this point notice that, since (7) establishes that H(Kr|Sj ,Br) = 0, from Lemma 2.3, setting
X = Si, Y = Kr, Z = Sj , and W = Br, we get that H(Si|Sj ,Br) ≤ H(Si|Kr,Br). Hence, applying
(3), it holds that

H(Si) = H(Si|Sj ,Br) ≤ H(Si|Kr,Br) ≤ H(Si),

i.e., H(Si|Kr,Br) = H(Si), and the theorem is proved.
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Notice that the authors of [32] changed condition 1 .b) of Definition 3.1. Indeed, as a side note,
they pointed out that the schemes given in [39] do not meet such a condition, and a sketch of the
reason was briefly provided. With Theorem 3.2 we have shown that it is not due to a design problem
of those schemes. They relaxed condition 1 .b) and required:

For any subset F ⊆ U , such that |F | ≤ t, and for each Ui /∈ F , the users in F have at least b
bits of uncertainty about Si. Formally, it holds that:

H(Si|{Si′}Ui′∈F ,B1, . . . ,Bm) ≥ b. (8)

In [32] a scheme satisfying condition (8) was presented. We notice that, given a scheme where
the above condition is not satisfied, it is possible to construct a new scheme which does meet the
condition still preserving all other conditions. Basically, for any b, the design strategy is that in the
new scheme, to every Si must be added b random bits chosen, for each Si, independently of all other
variables. In such a case, it is easy to check that also condition (8) holds.

Definition 3.1 presents another problem: conditions 3 .a) and 3 .b) cannot be satisfied simultane-
ously. Consider the following situation. Let F = {Us} and G = {U1, . . . , Us−1} be two subsets of
users, where s ≤ t, and let 1 = j1 < j < j2 = m. Condition 3 .b) of Definition 3.1 implies that:

H(Kj |Z1,m, . . . ,Zs−1,m,Zs,1) = H(Kj), (9)

while, if Us belongs to G1 and is not revoked in session m, condition 3 .a) implies that

H(Kj |Zs,m,Zs,1) = 0. (10)

Since the random variable Zi,j is defined as the information user Ui gets from Si and Bj , we
suppose the users do not perform any computation, i.e., they just look at the broadcast Bj and at Si.
Hence, the first members of equalities (9) and (10) can be rewritten as

H(Kj |S1, . . . ,Ss−1,Ss,Bm,B1) and H(Kj |Ss,B1,Bm).

Equation (10), property (5), and Lemma 2.2 imply that H(Kj |Ss,B1,Bm) = 0. Indeed,

0 = H(Kj |Zi,1,Zi,m) ≥ H(Kj |Zi,1,Zi,m,Ss,B1,Bm) = H(Kj |Ss,B1,Bm) ≥ 0.

Then, from (1) and (5), we get that

0 ≤ H(Kj |S1, . . . ,Ss−1,Ss,Bm,B1) ≤ H(Kj |SsB1,Bm) = 0.

Hence, conditions 3 .a) and 3 .b) hold simultaneously only if H(Kj) = 0, for any 1 < j < m.

To make conditions 3 .a) and 3 .b) working, Definition 3.1 should specify that F and G correspond
to subsets of revoked and joining users. Notice that the authors of [39] informally gave such a meaning
to F and G in motivating the definition, but the requirement was not formally stated (and not used).

By using conditions 3 .a) and 3 .b) with no constraint on F and G, a lower bound on the size of
the broadcast message the group manager sends at the beginning of each session, was therein derived.
Such a bound holds only if H(K2) = . . . = H(Km−1) = 0. For completeness we report and discuss it
below. Assuming the ”corrected” version of conditions 3 .a) and 3 .b), i.e., where F and G correspond
to subsets of revoked and joining users, the proof of the bound does not work, and the bound does
not hold. Indeed, in the following sections we will give another bound and a protocol meeting it.

Theorem 3.3 [39] In any self-healing key distribution scheme H(Bj) is Ω(mtH(K)).

Proof [39]. Notice that conditions 1 .a) and 1 .c) of Definition 3.1 imply that

H(Z1,j , . . . ,Zn,j |Bj ,S1, . . . ,Sn) = 0
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and
H(Z1,j , . . . ,Zn,j |S1, . . . ,Sn) = H(Z1,j , . . . ,Zn,j).

Applying Lemma 2.4, it follows that H(Bj) ≥ H(Z1,j , . . . ,Zn,j). Hence, a lower bound on
H(Z1,j , . . . ,Zn,j) yields a lower bound on H(Bj). From (5) and the chain rule, we get that:

H(Z1,j , . . . ,Zn,j) ≥ H(Z1,j , . . . ,Zt,j) =

t∑

s=1

H(Zs,j |Z1,j , . . . ,Zs−1,j).

Using property 3.a) and 3.b) of Definition 3.1, for 1 ≤ s ≤ t, it holds that

H(K2, . . . ,Kj−1|Zs,j ,Zs,1) = 0 (11)

and
H(K2, . . . ,Kj−1|Z1,j , . . . ,Zs−1,j ,Zs,1) = H(K2, . . . ,Kj−1). (12)

Applying Lemma 2.4 it holds that H(Zs,j |Z1,j , . . . ,Zs−1,j) ≥ (j − 2)H(K). Similarly, from

H(Kj+1, . . . ,Km|Zs,j ,Zs,m) = 0

and
H(Kj+1, . . . ,Km|Z1,j , . . . ,Zs−1,j ,Zs,m) = H(Kj+1, . . . ,Km),

and applying Lemma 2.4, it follows that H(Zs,j |Z1,j , . . . ,Zs−1,j) ≥ (m− j − 1)H(K). Combining the
two lower bounds, for any 1 ≤ s ≤ t, it holds that

H(Zs,j |Z1,j , . . . ,Zs−1,j) ≥ (m/2 − 2)H(K).

Hence, H(Bj) ≥ t(m/2− 2)H(K).

First of all, notice that there is a minor problem in the above proof. It is not clear how to derive
(12) from Definition 3.1. Moreover, by looking at equalities (11) and (12) it is easy to see that they
represent exactly the case we have discussed before, i.e., equations (10) and (9). Indeed, if Us is
member of the group in all sessions from 1 to j, equality (11) holds due to self-healing, but, equality
(12) does not since, given B1, Bj and Ss, all keys K2, . . . , Kj−1 are uniquely determined i.e.,

H(K2, . . . ,Kj−1|Z1,j , . . . ,Zs−1,j ,Zs,1) = 0.

On the other hand, if Us is revoked in session j, equality (12) holds but equality (11) does not, since
the self-healing condition cannot be applied.

In conclusion, conditions 3 .a) and 3 .b) of Definition 3.1 should specify that F and G correspond
to subsets of revoked and joining users. Indeed, if such a specification is not stated, the above lower
bound on the size of the broadcast message holds but it can be achieved only by schemes where there
is no uncertainty on the session keys. On the other hand, if the specification is given, the bound does
not hold.

Notice that, in [29], a simplified version of the definition of self-healing key distribution given in
[39, 32] was used. We do not go through details but the reader can easily check that condition 3.(b)
of this simplified version of the definition corresponds to condition 1 .b) of Definition 3.1. Therefore,
such a condition, along with conditions 1.(a) and 3.(c) of that definition, is impossible to achieve. It
follows that the proof of security concerning with collusion resistance therein given in Subsection 5.1
for the construction the authors had presented before in Section 4, does not work.
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4 Personal Key Distribution Schemes

In this section we analyse the definition of personal key distribution scheme. In all proposed self-
healing key distribution schemes, every user has a secret key Si, which stays the same for all the
lifetime of the scheme. At the beginning of the j-th session, every user who has not been revoked,
computes his/her own new key Pki, by using Si and the first part of the broadcast message Bj . Then,
by means of Pki and the second part of the broadcast message Bj , he/she computes the group session
key Kj .

In Appendix C of [39] and in [32], this behaviour was formalised as an intermediate step towards
the definition of a self-healing key distribution scheme, and it was simply referred to as key distribution
in [39] (no specific term was used to designate such a sort of one-time keys used to compute the group
session key), and as Personal Key Distribution in [32]. The definitions are equivalent. In the next
subsection we will refer to Si as to the secret (long-term) key, and to Pki as to the personal (one-time)
key.

4.1 Formal Definition

Let us consider a generic session, and let Si,Pki, and B represent the secret key (which can be used
by user Ui as long as he/she is not revoked), the personal key computed by user Ui in the session,
and the broadcast message sent by GM at the beginning of the session, respectively. The definition
of personal key distribution can be stated as follows:

Definition 4.1 [39, 32] Let t, i ∈ {1, . . . , n}. In a personal key distribution scheme D, the group
manager seeks to establish a new key Pki with each group member Ui through a broadcast message B.
D is a personal key distribution scheme if

a) For any group member Ui, the key Pki is determined by Si and B, i.e.,

H(Pki|B,Si) = 0.

b) For any set F ⊆ {U1, . . . , Un} such that |F | ≤ t, and any Ui /∈ F, the members in F are not able
to learn anything about Si, i.e.,

H(Pki,Si|{Si′}Ui′∈F ,B) = H(Pki,Si).

c) No information on Pk1, . . . , Pkn is learned from either the broadcast or the secret keys alone,
i.e.,

H(Pk1, . . . ,Pkn|B) = H(Pk1, . . . ,Pkn|S1, . . . ,Sn) = H(Pk1, . . . ,Pkn).

The concept of the distribution of a (different) personal key to every user could be of independent
interest. But we show that there is no protocol achieving Definition 4.1 unless there is no uncertainty
on the personal keys, i.e., for any i ∈ {1, . . . , n}, H(Pki) = 0.

Along the same lines of the proof of Theorem 3.2, we show that the problem lies in condition b).
Indeed:

• conditions a) and c imply the relation established by point 1 . of Lemma 2.1 for the random
variables Sj ,Si, B, and Pki, i.e., H(Sj ,B|Pki,Si) = H(Sj ,B|Si) − H(Pki);

• on the other hand, condition b) implies H(Sj ,B|Pki,Si) = H(Sj ,B);

• it follows that H(Sj ,B|Si) − H(Pki) = H(Sj ,B), which holds if and only if H(Sj ,B|Si) =
H(Sj ,B) and H(PKi) = 0.

More precisely, we show the following result:
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Theorem 4.2 If conditions a), b) and c) of Definition 4.1 are satisfied then, for any i ∈ {1, . . . , n},

H(Pki) = 0.

Proof. Let G ⊂ U be the communication group, and let F ⊂ U be such that |F | ≤ t and F ∩ G 6= ∅.
Choose Ui ∈ G \ F and Uj ∈ G ∩ F. By using conditions a) and c) and some of the technical lemmas,
we show that

H(Pki|Sj ,B,Si) = 0 and H(Pki|Si) = H(Pki). (13)

Setting Z = Pki,X = (Sj ,B), and Y = Si, and applying point 1 . of Lemma 2.1, it holds that

H(Sj ,B|Pki,Si) = H(Sj ,B|Si) − H(Pki). (14)

We also show that, if condition b) holds, then

H(Sj ,B|Pki,Si) = H(Sj ,B). (15)

Therefore, it must be H(Sj ,B|Si) − H(Pki) = H(Sj ,B), which holds if and only if H(Sj ,B|Si) =
H(Sj ,B) and H(Pki) = 0.

Let us prove our statements. It is easy to see that (1), (5), and condition a) imply that

0 ≤ H(Pki|Sj ,B,Si) ≤ H(Pki|B,Si) = 0.

On the other hand, from condition c) of Definition 4.1, it follows that H(Pki|Si) = H(Pki).
Indeed, from (3) we get that H(Pki|Si) ≤ H(Pki); while, setting X1 = Pki, X2 =
Pk1, . . . ,Pki−1,Pki+1, . . . ,Pkn, and Z = S1, . . . ,Sn, a simple chain of equalities/inequalities shows
that:

H(Pki|Si) ≥ H(Pki|S1, . . . ,Sn) (due to (5))

= H(Pk1, . . . ,Pkn|S1, . . . ,Sn) − H(Pk1, . . . ,Pki−1,Pki+1, . . . ,Pkn|S1, . . . ,Sn,Pki)

(applying (6))

= H(Pk1, . . . ,Pkn) − H(Pk1, . . . ,Pki−1,Pki+1, . . . ,Pkn|S1, . . . ,Sn,Pki)

(due to condition c) of Definition 4.1)

≥ H(Pk1, . . . ,Pkn) − H(Pk1, . . . ,Pki−1,Pki+1, . . . ,Pkn|Pki) (due to (5))

= H(Pki) (applying (6)).

Hence, the equalities assumed in (13) hold, and we are left with proving (14). To this aim, notice that
H(Pki,Si|Sj ,B) = H(Pki,Si). Indeed,

H(Pki,Si) = H(Pki,Si|{Si′}Ui′∈F ,B) (from condition b))

≤ H(Pki,Si|Sj ,B) (applying (5))

≤ H(Pki,Si) (applying (3)).

However, the above equality, due to (2), is equivalent to say that

H(Sj ,B|Pki,Si) = H(Sj ,B),

which proves our claim. Hence, the theorem holds.

Notice that in both [39, 32] constructions for personal key distribution schemes were provided. We
identify in the following subsection where the proofs for such constructions fail.
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4.2 Personal Key Distribution Protocols

We show that the protocols for personal key distribution given in [39, 32] do not meet condition b)
of Definition 4.1. Let us start by considering the scheme given in [39]. Let q be a prime number,
and let Fq be the corresponding finite field. Moreover, let Fq [x] (Fq [x, y]) be the set of all univariate
(bivariate) polynomials with coefficients and values in Fq .

Personal Key Distribution Scheme [39].

• Setup. Let G = {U1, . . . , Un} be the group of users. Let t be a positive integer, and let
N ∈ Fq be an element different from any user’s index. The group manager chooses at
random from Fq [x, y] a polynomial s(x, y) = a0,0 + a1,0x + a0,1y + . . . + at,tx

tyt. For
i = 1, . . . , n, user Ui receives and stores the secret key s(i, i).

• Broadcast. The group manager chooses at random a polynomial f(x) of degree t in
Fq [x]. Let W1 ⊆ {1, . . . , n}, such that |W1| = r < t, consist of the indices of the
users that should not be allowed to recover a new key from the broadcast, and let
W2 ⊂ Fq \ {1, . . . , n} such that |W2| = t − r. The broadcast consists of the following
polynomials

{f(x) + s(N, x)} ∪ {(ω, s(ω, x)) : ω ∈ W1 ∪ W2}.

• Personal Key Recovery. A user Ui such that i /∈ W1, can evaluate each polynomial
s(ω, x) at x = i to get the t points on the polynomial s(x, i). Coupling these with
his/her secret key s(i, i), user Ui has t+1 points on s(x, i) and so is able to recover that
polynomial and evaluate it at x = N to recover s(N, i). Then, he/she may evaluate
f(x) + s(N, x) at x = i, subtract off s(N, i), and recover the personal key f(i).

The security of the above construction is claimed by means of Lemma 4 of [39], whose proof is
given in Appendix C of [39]. However, the proof does not show that condition b) of Definition 4.1 is
satisfied. Indeed, it is easy to see that such a condition does not hold since, given f(i), the value of
s(i, i) is uniquely determined by {(ω, s(ω, i)) : ω ∈ W1 ∪ W2} ∪ {(N, s(N, i))}, where s(N, i) can be
computed by evaluating f(x) + s(N, x) at x = i, and by subtracting f(i). Once obtained the t + 1
pairs {(ω, s(ω, i)) : ω ∈ W1 ∪W2}∪{(N, s(N, i))}, it is possible to interpolate s(x, i) and compute the
secret key s(i, i). For example, assume that s(x, y) and f(x) are chosen uniformly at random in setup
phase. By construction f(x) and s(x, y) are each other independent. Therefore, the pair (f(i), s(i, i))
can be a-priori any pair of values in F 2

q . However, in the protocol the two values are related via the
broadcast message f(x) + s(N, x). Hence, log q = H(Pki,Si|B) = H(Pki) < H(Pki,Si) = 2 · log q.

Similarly, a construction for a personal key distribution scheme was given in Section 3.1 of [32].
The scheme distributes distinct shares of a target t-degree polynomial f(x) to non-revoked group
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members. It works as follows:

Personal Key Distribution Scheme [32].

• Setup. The group manager randomly picks a 2t-degree masking polynomial, h(x) =
h0+h1x+. . .+h2tx

2t, from Fq [x]. Each group member Ui gets the secret key Si = h(i),
from the group manager via a secure communication channel between them.

• Broadcast. Given a set of revoked group members, R = {r1, . . . , rω}, where |R| ≤ t,
the group manager distributes the shares of a t-degree polynomial f(x) to non-revoked
group members via the following broadcast message:

B = {R} ∪ {ω(x) = g(x)f(x) + h(x)}

where the polynomial g(x) is constructed as g(x) = (x − r1)(x − r2) . . . (x − rω).

• Personal Key Recovery. If any non-revoked group member Ui receives such a broadcast
message, it evaluates the polynomial ω(x) at point i and gets ω(i) = g(i)f(i) + h(i).
Because Ui knows h(i) and g(i) 6= 0, it can compute the personal key f(i) = (ω(i) −
h(i))/g(i).

The above construction was claimed to satisfy Definition 4.1 by means of Theorem 1 in [32] without
proof. A proof of Theorem 1 was provided in [33]. However, the proof fails in proving condition b)
of Definition 4.1 since the value of f(i) and the broadcast message ω(i) = g(i)f(i) + h(i), uniquely
determine the value of h(i). Indeed, g(i) can be easily computed by using the identities of the revoked
users, which are part of the broadcast, and knowing that g(x) = (x−r1)(x−r2) . . . (x−rω). Therefore,
given ω(i), g(i) and f(i), it is easy to compute also h(i) = ω(i) − g(i)f(i). Hence, h(i) and f(i), if
considered alone, are independent by construction and, if h(x) and f(x) are chosen uniformly at
random, the pair (h(i), f(i)) can be a-priori any pair of values in F 2

q . However, they are related via
the broadcast message ω(i) = g(i)f(i)+h(i). For any given value of f(i), the value of h(i) is uniquely
determined from the broadcast message. Therefore, log q = H(Pki,Si|B) = H(Pki) < H(Pki,Si) =
2 · log q.

5 A new Definition of Self-healing Key Distribution

In this section we propose a new definition of self-healing key distribution. It is compact and it extends
and opportunely modifies the definition given in [39].

The setting we consider is the same given at the beginning of Section 2, but we slightly change some
notation. We do not use, in our formalization, the intermediate random variable Zi,j , used in Definition
3.1. Then, in order to simplify the presentation, for any subset of users Y = {Ui1 , . . . , Uig

} ⊆ U , where
i1 < i2 < . . . < ig, we will denote the random variables Xi1 . . .Xig

by means of XY . Finally, we denote
with G0 the initial subset of users Ui ∈ U who receive, during the set-up phase, secret keys Si.

We start by formally stating the properties that the possible strategies, for revoking and adding
users from/to the communication group, have to satisfy.

Definition 5.1 Let U be the universe of users of the network and, for i = 0, . . . , m, let Gi ⊆ U .
The triple H = (R,J , G0), where R=(Rev1, . . . , Revm) and J=(Join1, . . . , Joinm), is an m-long
t-revocation-joining strategy if:

• Revi ∩ Joinj = ∅, for 1 ≤ i ≤ j ≤ m.

• For i = 1, . . . , m, Revi ⊆ Gi−1 ∪ . . . ∪ G0 and Revi−1 ⊆ Revi.
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• |Revm| ≤ t.

The above definition states that the subsets of revoked users and of joining ones must be disjoint,
and that revoked users in session i have been active users before. Moreover, the definition specifies
that, once a user is revoked from the group, he/she is kept revoked in the subsequent sessions, and
that the group manager can revoke up to t users.

In the following we assume that the m-long t-revocation-joining strategy, defined by the join/revoke
operations performed at the beginning of each session by the group manager, belong to a family F .
Such a family might be the set of all possible strategies, as well as a smaller subset of it. Indeed, if
the group manager already knows that some strategies will never occur, due to the properties of the
application for which the scheme is designed, these strategies do not need to be considered. However,
we stress that the group manager does not know a-priori which strategy in F will be realized: joining
and revoking operations are event-driven. The group manager might only know that some events do
not happen and, hence, that some strategies might be excluded from F .

We denote by Hs the triple (Rs, Js, G0), where Rs=(Rev1, . . . , Revs) and Js=(Join1, . . . , Joins),
for any 0 ≤ s ≤ m. It represents the truncation of the revocation-joining strategy H to session s. Notice

that H0 is an empty strategy, while Hm = H. Moreover, we denote by B
Hj

j the broadcast message

sent by GM in session j according to Hj , and by B
Hj

j the corresponding random variable.

Definition 5.2 Let U be the universe of users of a network, let m and t be two integers, and let
F be a family of m-long t-revocation-joining strategy. D(m, t,U ,F) is a self-healing m-session key
distribution scheme for U with t-revocation capability for the family F if, for any H in F , the following
conditions are satisfied:

1. Key Computation. Every Ui ∈ Gj computes Kj from B
Hj

j and Si. Formally, it holds that:

H(Kj |Si,B
Hj

j ) = 0.

2. Self-Healing. Let r and s be integers such that 1 ≤ r < s ≤ m. Each Ui ∈ Gr ∩ Gs, from the
broadcast messages BHr

r and BHs
s recovers all keys Ks, . . . , Kr. Formally, it holds that:

H(Kr, . . . ,Ks|Si,B
Hr
r ,BHs

s ) = 0.

3. Security of future keys. Let s be an integer such that 1 ≤ s ≤ m. Users in Gs, by pooling together

their own personal keys and broadcast messages BH1

1 , . . . , B
Hs−1

s−1 , do not get any information
about keys Ks, . . . , Km. Formally, it holds that:

H(Ks, . . . ,Km|SGs
BH1

1 , . . . ,B
Hs−1

s−1 ) = H(Ks, . . . ,Km).

4. Security w.r.t. collusion attacks. Let r and s be integers such that 1 ≤ r ≤ s ≤ m, and let1

Js = ∪m
`=s+1

Join`. Any subset of users Adv ⊆ Revr∪Js, such that |Adv| ≤ t, given the sequence
of broadcast messages, does not get any information about keys Kr, . . . , Ks. Formally, it holds
that:

H(Kr, . . . ,Ks|SAdv,B
H1

1 , . . . ,BHm
m ) = H(Kr, . . . ,Ks).

The definition is divided in four parts: the first states that users in the group can compute the
session key and the second one states the self-healing property. The third and fourth parts state the
security requirements. Roughly speaking, point 3. means that future keys are secure: even if a group
of users tries to get information about new session keys by using only their own personal keys and the
transcript of previous communication, they do not get anything. On the other hand, point 4. means

1We define Jm = ∅.
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that a coalition of revoked and new users of size at most t does not get any information about keys
such users are not entitled to compute.

Notice that, setting s = 1 and assuming G1 = {U1, . . . , Un}, a particular case of point 3 ., implies that

H(K1, . . . ,Km|S1, . . . ,Sn) = H(K1, . . . ,Km). (16)

On the other hand, point 4 ., has several implications. Briefly:

• revoked users at session j, for j = 1, . . . , m, have no information on Kj : if r = s = j and
Adv = Revj , then

H(Kj |SRevj
,BH1

1 , . . . ,BHm
m ) = H(Kj); (17)

• revoked users at session j, for j = 1, . . . , m, have no information on future keys: if r = j, s = m,
and Adv = Revj , then

H(Kj , . . . ,Km|SRevj
,BH1

1 , . . . ,BHm
m ) = H(Kj , . . . ,Km); (18)

• joining users in session s, for s = 1, . . . , m, have no information on previous keys: if r = 1 and
Adv ⊆ Js, then

H(K1, . . . ,Ks−1|SAdv,B
H1

1 , . . . ,BHm
m ) = H(K1, . . . ,Ks−1); (19)

• keys are independent from the broadcast messages: if r = 1, s = m, and Adv = ∅, then

H(K1, . . . ,Km|BH1

1 , . . . ,BHm
m ) = H(K1, . . . ,Km). (20)

The above equalities can be easily shown by applying some of the properties of the entropy function
stated in Section 2.

Definition 3.1 and ours cannot be immediately compared. Indeed, in Definition 3.1, a random
variable Zi,j is used for representing the total amount of information that user Ui ∈ Gj gets from
a broadcast message Bj and his own personal key Si. By using such a variable, point 1.a) of our
definition, for example, is therein stated by saying that H(Zi,j |Bj ,Si) = 0, and H(Kj |Zi,j) = 0. We
have preferred to give a simplified formalization of the conditions by focusing directly on the secret
keys. However, in order to compare the two definitions, if Zi,j = f(Si,Bj) = Kj , then

• condition 1 .a) of Definition 3.1 coincides with point 1 . of our definition;

• equations (16) and (20) jointly imply condition 1.c) of Definition 3.1.

On the other hand, if Zi,j = f(Si,Bj) = (Si,Bj), then

• condition 2 . of Definition 3.1 can be derived from conditions 1 . and 4 . of our definition, by
means of equations (18);

• conditions 3 .a) and 3 .b) (if F and G are considered the sets of revoked and joining users) can
be derived from conditions 2 . and 4 . of our definition.

Actually, under such assumptions on the random variable Zi,j , our definition is slightly stronger
than Definition 3.1. Indeed, we have expressed conditions 1 .c), 3 .a) and 3 .b), in terms of the joint
entropy of the keys instead of considering a single key e.g.,

H(K1, . . . ,Km|BH1

1 , . . . ,BHm
m ) = H(K1, . . . ,Km)

instead of H(Ki|B
H1

1
, . . . ,BHm

m ) = H(Ki), for i = 1, . . . , m; while, for condition 2 . of Definition 3.1,
we have required that revoked users do not get any information on a new key even if they pool together
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their secret keys and the broadcast messages. In condition 2 . of Definition 3.1 broadcast messages are
not considered.

Notice that the above assumptions do not get any loss in generality. The assumption Zi,j =
f(Si,Bj) = Kj enables us to consider the security properties Definition 3.1 requires for the session
keys, which can be seen as some of the private information that users belonging to the group should
be able to compute from the broadcast message and their own secret keys. On the other hand, in
considering the self-healing and the collusion resistance properties, the assumption Zi,j = f(Si,Bj) =
(Si,Bj), is the strongest possible: once given the values Si and Bj any related value (i.e., function of
them) can be computed.

In conclusion, Definition 5.2 basically captures all requirements but 1 .b) stated by Definition 3.1
via a different formalisation.

6 Lower Bounds and Constructions

Using Information Theory tools we prove lower bounds on the size of the secret key, each user has to
store, and on the size of the broadcast messages the group manager has to send at the beginning of
every session, in order to establish a new group key.

6.1 Lower Bounds

The two bounds reported in [5] can also be derived from Definition 5.2. Moreover, using similar
techniques, we get lower bounds also on the joint entropies of the secret keys and the broadcast
messages.

Let us start by setting up our notation. Our goal is to lower bound the size of the secret key
each user receives when he/she joins the communication group. We need to know how long the user
stays in the group. Therefore, for any family of strategies F , let us define Fj to be the family of
truncations Hj of the strategies H in F to session j. Moreover, for any truncation Hj , let FHj ⊆ F
be the subset of strategies of F such that, the truncation of each of them to session j is Hj . In
other words, FHj represents the possible completions, with respect to family F , of the truncated

strategy Hj . Then, for any 0 ≤ j ≤ m, for any Hj , and for any Ui ∈ Gj , we will denote by q
Hj

j,i =
maxFHj {q | j ≤ q ≤ m and Ui ∈ Gj ∩ Gq}, i.e., the maximum value of q such that Ui ∈ Gj ∩ Gq .
Such a maximum value will be used to quantify the largest interval of sessions Ui might belong to the
communication group, according to one of the strategies in FHj . When the meaning is clear from the

context, we will simply denote q
Hj

j,i by qj . We show the following result:

Theorem 6.1 In any D(m, t,U ,F), for any j = 1, . . . , m, for any Hj ∈ Fj, and for any Ui ∈ Joinj ,
it holds that

H(Si) ≥ H(Kj) + . . . + H(Kqj
);

moreover, for any Ui ∈ G0, if q0 6= 0, then H(Si) ≥ H(K1) + . . . + H(Kq0
).

Proof. Let j ∈ {1, . . . , m}, and let Ui ∈ Gj ∩ Gqj
. Condition 2 . of Definition 5.2 implies

that H(Kj , . . . ,Kqj
|Si,B

Hj

j ,B
Hqj
qj ) = 0; while, from condition 4 . of Definition 5.2, we get that

H(Kj , . . . ,Kqj
|B

Hj

j ,B
Hqj
qj ) = H(Kj , . . . ,Kqj

). Then, setting X = (Kj , . . . ,Kqj
), Y = Si, W =

(B
Hj

j ,B
Hqj
qj ), and Z = ∅, and applying Lemma 2.4, it holds that H(Si) ≥ H(Kj , . . . ,Kqj

). From the
independence of Kj , . . . ,Kqj

, it results

H(Kj , . . . ,Kqj
) = H(Kj) + . . . + H(Kqj

).

If Ui ∈ G0 and q0 6= 0, then Ui ∈ G1 as well. Therefore, we apply the above proof.
The above result basically says that a user has to store a secret key which is, in terms of bits,

greater than or equal to the sum of the bits of the maximum number of session keys he/she might
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compute as member of the communication group. Moreover, notice that it implies that, for any
` = j, . . . , qj , if Ui ∈ G`, then H(Si) ≥ H(K`) + . . . + H(Kqj

).

Now, we show a lower bound on the size of the broadcast message. In order to enable all entitled
users to recover through self-healing lost session keys, we need to know the largest interval of sessions in
which a user has been member of the communication group. Therefore, for any family of strategies F ,

for any 2 ≤ j ≤ m, and for any Hj ∈ Fj , we will denote by r
Hj

j = min {r |1 ≤ r ≤ j and Gr ∩ Gj 6= ∅},
i.e., the minimum value of r such that Gr ∩ Gj 6= ∅. The following result holds:

Theorem 6.2 In any D(m, t,U ,F), for any j = 2, . . . , m, and for any Hj in Fj , if Gj 6= ∅,

1. if rj < j, then H(B
Hj

j ) ≥ H(Krj+1) + . . . + H(Kj);

2. if rj = j, then H(B
Hj

j ) ≥ H(Kj);

moreover, if G1 6= ∅, then H(BH1

1 ) ≥ H(K1).

Proof. Let rj < j, and let Ui be one of the users in Grj
∩Gj . Notice that I(B

Hj

j ;Krj
, . . . ,Kj |Si,B

Hrj
rj ),

according to (2), can be written either as

H(B
Hj

j |Si,B
Hrj
rj ) − H(B

Hj

j |Si,B
Hrj
rj ,Krj

, . . . ,Kj)

or
H(Krj

, . . . ,Kj |Si,B
Hrj
rj ) − H(Krj

, . . . ,Kj |Si,B
Hrj
rj ,B

Hj

j ).

Applying the chain rule (6), we have that

H(Krj
, . . . ,Kj |Si,B

Hrj
rj

) = H(Krj
|Si,B

Hrj
rj

) + H(Krj+1, . . . , Kj |Si,B
Hrj
rj

,Krj
).

Then, condition 1 . of Definition 5.2 implies that H(Krj
|Si,B

Hrj
rj ) = 0; while, Lemma 2.2 and

condition 3 . of Definition 5.2 yield

H(Krj+1, . . . ,Kj |Si,B
Hrj
rj ,Krj

) = H(Krj+1, . . . ,Kj |Si,B
Hrj
rj ) = H(Krj+1, . . . ,Kj).

Moreover, due to condition 2 . of Definition 5.2, it holds that

H(Krj
, . . . ,Kj |Si,B

Hrj
rj ,B

Hj

j ) = 0.

Hence,

H(B
Hj

j ) ≥ H(B
Hj

j |Si,B
Hrj
rj ) − H(B

Hj

j |Si,B
Hrj
rj ,Krj

, . . . ,Kj)

≥ H(Krj+1, . . . ,Kj)

= H(Krj+1) + . . . + H(Kj).

Now, let rj = j, and let Ui ∈ Gj . We show that H(B
Hj

j ) ≥ H(Kj). Indeed, I(B
Hj

j ;Kj |Si) can be
written either as

H(B
Hj

j |Si) − H(B
Hj

j |Si,Kj) or as H(Kj |Si) − H(Kj |Si,B
Hj

j ).

Condition 1 . of Definition 5.2 implies that H(Kj |Si,B
Hj

j ) = 0, while condition 3 . implies that

H(Kj |Si) = H(Kj). Moreover, due to property (1), H(B
Hj

j |Si,Kj) ≥ 0. Therefore, it holds that

H(B
Hj

j ) ≥ H(B
Hj

j |Si) = H(Kj) + H(B
Hj

j |Si,Kj) ≥ H(Kj).
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By applying the same argument, we show that, if G1 6= ∅, then H(BH1

1 ) ≥ H(K1).

The above result basically says that broadcast message Bj must be, in terms of bits, greater than
or equal to the sum of the bits of the maximum number of session keys a user in Gj might recover
through self-healing as member of the communication group.

In order to prove a lower bound on the joint entropy of the secret keys of a subset of users, we
need to characterize the structure of the family of strategies F . Let j and s be two integers such
that 1 ≤ j ≤ s ≤ m, and let {Ui1 , . . . , Uit+1

} ⊆ U be a subset of users. Moreover, let F contain at
least t + 1 m-long t-revocation-joining strategies for which one of the users in {Ui1 , . . . , Uit+1

} keeps
his/her membership until session s, while the others are revoked in session j, i.e., F contains t + 1
strategies H, such that {Ui1 , . . . , Uit+1

} ⊆ Gj−1 and, for any ` = 1, . . . , t+1, user Ui`
∈ Gj ∩Gs while

{Ui1 , . . . , Uit+1
} \ {Ui`

} = Revj . We will say that the family F has the one-shoot t-revocation property
with respect to sessions j and s for {Ui1 , . . . , Uit+1

}.

The following theorem states a lower bound on the joint entropy of the secret keys of
{Ui1 , . . . , Uit+1

}, when the family F has such a property.

Theorem 6.3 Let j and s be two integers such that 1 ≤ j ≤ s ≤ m, and let {Ui1 , . . . , Uit+1
} ⊆ U . In

any D(m, t,U ,F) in which F has the one-shoot t-revocation property with respect to sessions j and
s for {Ui1 , . . . , Uit+1

}, it holds that

H(Si1 , . . . ,Sit+1
) ≥ (t + 1) · (H(Kj) + . . . + H(Ks)).

Proof. For ` = 1, . . . , t + 1, let T` = {Ui1 , . . . , Ui`−1
}. By using the chain rule, it holds that

H(Si1 , . . . ,Sit+1) =

t+1∑

`=1

H(Si`
|ST`

).

Since we show that, for any ` = 1, . . . , t + 1,

H(Si`
|ST`

) = H(Kj) + . . . + H(Ks), (21)

we have that
t+1∑

j=1

H(Si`
|ST`

) ≥ (t + 1) · (H(Kj) + . . . + H(Ks)).

Thus, the theorem holds. In order to prove equality (21) we proceed as follows: by hypothesis F has
the one-shoot t-revocation property with respect to sessions j and s for {Ui1 , . . . , Uit+1

}. Hence, for
any ` = 1, . . . , t + 1, there exists an Hs ∈ Fs such that Ui`

belongs to Gj ∩Gs, while T` is a subset of
Revj . Then, properties (1) and (5), and condition 2 . of Definition 5.2, imply that

H(Kj , . . . ,Ks|B
Hj

j ,BHs
s ,Si`

,ST`
) = H(Kj , . . . ,Ks|B

Hj

j ,BHs
s ,Si`

) = 0,

and condition 4 . of Definition 5.2 that

H(Kj , . . . ,Ks|B
Hj

j ,BHs
s ,ST`

) = H(Kj , . . . ,Ks).

Therefore, from Lemma 2.4, setting X = (Kj , . . . ,Ks), W = (B
Hj

j ,BHs
s ,ST`

), Y = Si`
, and Z = ∅, we

get that H(Si`
|B

Hj

j ,BHs
s ,ST`

) ≥ H(Kj , . . . ,Ks). Hence, applying property (5) and the independence
of the keys, it holds that

H(Si`
|ST`

) ≥ H(Si`
|B

Hj

j ,BHs
s ,ST`

) ≥ H(Kj , . . . ,Ks) = H(Kj) + . . . + H(Ks).

The next theorem shows a lower bound on the size of the first and last broadcast messages. It
basically states that, in terms of bits, these two messages must be at least as long as the sum of the
lengths in bits of the m session keys.
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Theorem 6.4 Let F contain at least a strategy (R, J , G0) for which G1 ∩ Gm 6= ∅. Then, in any
D(m, t,U ,F), it holds that

H(BH1

1 ,BHm
m ) ≥ H(K1) + . . . + H(Km).

Proof. Let Ui ∈ G1∩Gm. Notice that I(BHm
m ;K1, . . . ,Km|Si,B

H1

1 ), according to (2), can be written
either as

H(BHm
m |Si,B

H1

1 ) − H(BHm
m |Si,B

H1

1 ,K1, . . . ,Km)

or as
H(K1, . . . ,Km|Si,B

H1

1 ) − H(K1, . . . ,Km|Si,B
H1

1 ,BHm
m ).

Condition 3 . of Definition 3.1 implies that H(K1, . . . ,Km|Si,B
H1

1 ,BHm
m ) = 0. Moreover, applying

the chain rule (6), we have that

H(K1, . . . ,Km|Si,B
H1

1
) = H(K1|Si,B

H1

1
) + H(K2, . . . ,Km|Si,B

H1

1
,K1).

Notice that condition 1 . of Definition 5.2 implies that,

H(K1|Si,B
H1

1
) = 0;

while, Lemma 2.2 and condition 3 . of Definition 5.2 yield

H(K2, . . . ,Km|Si,B
H1

1 ,K1) = H(K2, . . . ,Km).

Moreover, due to property (1), we have that H(BHm
m |Si,B

H1

1 ,K1, . . . ,Km) ≥ 0. Therefore,

H(BHm
m |Si,B

H1

1 ) = H(K2, . . . ,Km) + H(BHm
m |Si,B

H1

1 ,K1, . . . ,Km)

≥ H(K2, . . . ,Km).

Applying property (5), it follows that

H(BHm
m |BH1

1 ) ≥ H(B
Hj

j |Si,B
H1

1 ) ≥ H(K2, . . . ,Km).

Hence, applying the chain rule (3), Theorem 6.2 and the above inequality, it holds that

H(BH1

1 ,BHm
m ) = H(BH1

1 ) + H(BHm
m |BH1

1 )

≥ H(K1) + H(K2, . . . ,Km).

Since the m session keys are independent each other, we get that

H(K1) + H(K2, . . . ,Km) = H(K1) + . . . + H(Km).

Thus, the theorem holds.

Theorem 6.1 establishes a lower bound on the size of the secret information each user has to store,
while Theorem 6.2 states a lower bound on the size of the broadcast message. In the following section
we will show that these lower bounds are tight. However, they cannot be attained simultaneously.
More precisely, we show a trade-off between user memory storage Si and the size of the broadcast
message Bj . In our proof we use the following theorem, proved in the context of secret sharing schemes
[11].

Theorem 6.5 [11] Let K, X, Y, W, and Z be five random variables such that

H(K|X) = H(K|Y) = H(K|W) = H(K|Z) = H(K|X,W) = H(K|X,Z) = H(K|Y,Z) = H(K)

and
H(K|X,Y) = H(K|Y,W) = H(K|W,Z) = 0.

Then, it follows that H(X,Y) ≥ 3H(K).
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Using the above result, we show the following:

Theorem 6.6 Let F contain two strategies, H and H∗, and let Hj and H∗
j be the corresponding

truncations to session j. If Hj enables users Ui and U` to recover the session key, i.e., {Ui, U`} ⊆ Gj ,
while H∗

j enables only U` to recover the session key i.e., {Ui} ⊆ Rev∗
j and {U`} ⊆ Gj then, it holds

that
H(Si,B

Hj

j ) ≥ 3H(Kj). (22)

Proof. We prove the result by applying Theorem 6.5. Assume that K = Kj represents the key the
group manager chooses for session j. Let X = Si and W = S` represent the secret keys of users

Ui, U`. Denote by Y = B
Hj

j and Z = B
H∗

j

j the two random variables associated to the broadcast
messages defined by Hj and H∗

j , respectively. Applying Definition 5.2, the assumptions of Theorem
6.5 are satisfied. More precisely:

• H(Kj |Si) = H(Kj |S`) = H(Kj |Si,S`) = H(Kj), due to point 3 . of Definition 5.2.

• H(Kj |B
Hj

j ) = H(Kj |B
H∗

j

j ) = H(Kj |B
Hj

j ,B
H∗

j

j ) = H(Kj |Si,B
H∗

j

j ) = H(Kj |S`,B
H∗

j

j ) = H(Kj),
due to point 4 . of Definition 5.2.

• H(Kj |Si,B
Hj

j ) = H(Kj |S`,B
Hj

j ) = H(Kj |S`,B
H∗

j

j ) = 0, due to point 1 . of Definition 5.2.

Therefore,

H(Si,B
Hj

j ) ≥ 3H(Kj).

Hence, in any self-healing key distribution scheme for a non-trivial family of strategies F , the
lower bounds stated by Theorems 6.1 and 6.2 on user memory storage and communication complexity
cannot be achieved simultaneously.

Strengthening the lower bounds. Notice that Theorems 6.1, 6.2, 6.3, 6.4, and Theorem 6.6 can be
strengthened by using previous results obtained in the analysis of secret sharing schemes. First of all,
notice that, given a random variable W, there could be some value ω ∈ W such that Pr(W = ω) = 0.
Therefore, let

Support(W) = {ω ∈ W |Pr(W = ω) > 0}

be the set of values assumed by W with positive probability. To simplify the discussion, assume that
all session keys are chosen from the same fixed set K. Since Theorems 6.1, 6.2, 6.3, and 6.4 should
intuitively hold for any probability distribution on the set of keys K, then they should hold also for the
special case of the uniform one. In such a case H(K) = log (|Support(K)|). The above intuition can
be formalized applying the same techniques employed in [7], and we can prove the following results:

Theorem 6.7 In any D(m, t,U ,F), for any j = 1, . . . , m, for any Hj ∈ Fj, and for any Ui ∈ Joinj ,
it holds that

H(Si) ≥ (qj − j + 1) · log (|Support(K)|);

moreover, for any Ui ∈ G0, if q0 6= 0, then

H(Si) ≥ q1 · log (|Support(K)|).

Theorem 6.8 In any D(m, t,U ,F), for any j = 2, . . . , m, and for any Hj in Fj , if Gj 6= ∅,

1. if rj < j, then H(B
Hj

j ) ≥ (j − rj) · log (|Support(K)|);

2. if rj = j, then H(B
Hj

j ) ≥ log (|Support(K)|);

moreover, if G1 6= ∅, then H(BH1

1 ) ≥ log (|Support(K)|).

21



Theorem 6.9 Let j and s be two integers such that 1 ≤ j ≤ s ≤ m, and let {Ui1 , . . . , Uit+1
} ⊆ U . In

any D(m, t,U ,F) in which F has the one-shoot t-revocation property with respect to sessions j and
s for {Ui1 , . . . , Uit+1

}, it holds that

H(Si1 , . . . ,Sit+1
) ≥ (t + 1) · (s − j + 1) · log (|Support(K)|).

Theorem 6.10 Let F contain at least a strategy (R, J , G0) for which G1 ∩ Gm 6= ∅. Then, in any
D(m, t,U ,F), it holds that

H(BH1

1 ,BHm
m ) ≥ m · log (|Support(K)|).

Theorem 6.11 Let F contain two strategies, H and H∗, and let Hj and H∗
j be the corresponding

truncations to session j. If Hj enables users Ui and U` to recover the session key, i.e., {Ui, U`} ⊆ Gj ,
while H∗

j enables only U` to recover the session key i.e., {Ui} ⊆ Rev∗
j and {U`} ⊆ Gj then, it holds

that
H(Si,B

Hj

j ) ≥ 3 · log (|Support(K)|).

6.2 Constructions

We show that Theorems 6.7, 6.8, 6.9 and 6.10 are tight and, hence, also Theorems 6.1, 6.2, 6.3 and
6.4, by describing a meta-construction for D(m, t,U ,F) self-healing key distribution schemes. Such a
meta-construction uses, as a building block, two D(1, t,U ,F) constructions, which resemble the basic
schemes given in [17]. The first D(1, t,U ,F) construction, referred to as Optimal User Memory
Storage D(1, t,U ,F), minimizes the size of the secret key each user has to store. The second one,
referred to as Protocol D(1, t,U ,F) with Optimal Broadcast for Rev∗, requires a broadcast
message Bj of short size. We start by describing such one-time constructions. Later on, we will show
how they can be composed in order to set up a D(m, t,U ,F).

Let U = {U1, . . . , Un} be the universe of users, let t be an integer, and let Fq , where q > n, be a finite
prime field. Moreover, let G0 ⊂ U be an initial set of users.

The following D(1, t,U ,F) scheme shows that Theorem 6.7 is tight in the special case of 1-session
schemes.

Optimal User Memory Storage D(1, t,U ,F).

• Setup. The group manager chooses uniformly at random t + 1 values, say a0, . . . , at ∈
Fq , and computes the polynomial P (x) =

∑t
i=0

aix
i of degree t. Then, for each user

Ui ∈ G0, he computes the value yi = P (i) mod q. Finally, he gives in a secure way to
Ui ∈ G0 as secret key the value Si = yi.

• Join. The group manager, for each user Ui ∈ Join1, computes the value yi = P (i) mod
q. Then, he gives to Ui as secret key the value Si = yi.

• Broadcast. Let Rev1 be the subset of revoked users. The group manager chooses
uniformly at random a key K in Fq , computes the sequence of pairs of values BH1

1 =<

(K − yi, i) >Ui∈G1
, and broadcasts BH1

1 .

• Session Key Computation. Every non-revoked user Ui computes K = BH1

1 + yi.

It is easy to check that, in the above construction, H(Si) = log (|Support(K)|). On the other hand,
the following D(1, t,U ,F) shows that Theorem 6.8 is tight in the special case of 1-session schemes.
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Protocol D(1, t,U ,F) with Optimal Broadcast for Rev∗

• Setup. The group manager, for each possible subset Rev ⊂ U of size at most t, chooses,
uniformly at random, a value xRev ∈ Fq . We assume that the subsets Rev are listed
according to a lexicographic order. Then, the group manager gives to every user
Ui ∈ G0 as secret key the sequence of pairs Si =< (xRev , Rev) >Ui /∈Rev,Rev⊂U .

• Join. The group manager gives to every user Ui ∈ Join1 as secret key the sequence of
pairs Si =< (xRev , Rev) >Ui /∈Rev,Rev⊂U .

• Broadcast. Let Rev1 be the subset of revoked users in the unique session. The group
manager, at the beginning of the session, chooses uniformly at random a key K in Fq .

Then, if Rev1 is different from the subset Rev∗, it computes BH1

1 = (K−xRev1 , Rev1),
and broadcasts BH1

1 . Otherwise, it simply computes and broadcasts BH1

1 = K−xRev∗

.

• Session Key Computation. Every non-revoked user Ui computes K = BH1

1 + xRev1 .

When the set of revoked users is the set Rev∗, then H(BH1

1 ) = log (|Support(K)|). Therefore,
Theorem 6.8 is tight in the special case of 1-session schemes.

In order to set up a D(m, t,U ,F) scheme, the group manager operates as follows:

Meta-Construction for D(m, t,U ,F) schemes.

• Setup. The group manager chooses one of the two D(1, t,U ,F) schemes described
before, and generates m independent copies Σ1, . . . , Σm of it. Then, he gives to user
Ui ∈ G0 a secret key Si comprising the sequence of secret keys he/she would receive
from Σ1, . . . , Σqj

.

• Join. The group manager gives to user Ui ∈ Joinj a secret key Si comprising the
sequence of j secret keys he/she would receive from Σj , . . . , Σqj

.

• Broadcast. Let Gj 6= ∅. In session j = 1, 2, it broadcasts B
Hj

j , according to scheme Σj .

In session j ≥ 3, it broadcasts the sequence of messages < B
Hj

j , B
Hj−1

j−1
, . . . , B

Hrj
rj >,

i.e., the broadcast messages associated to schemes Σj , . . . , Σrj
, respectively. If Gj = ∅,

then no broadcast is needed.

• Session Key Computation. Every non-revoked user computes the session keys he/she is
entitled to by using the session key computation rules associated to scheme Σj .

Notice that, we are taking into account with every broadcast message B
Hj

j , the largest possible
self-healing interval at that time.

Conditions 1 ., 2 ., 3 ., and 4 . of Definition 5.2 are satisfied. Indeed, it is straightforward to check
that:

• condition 1 . holds because every user Ui ∈ Gj computes the session key Kj from B
Hj

j and Si;

• condition 2 . holds because, if Ui ∈ Gr ∩ Gs, from BHr
r , BHs

s , and his secret key Si, he/she
recovers all session keys Kr, . . . , Ks.
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• condition 3 . holds because the session key Kj is “contained” in B
Hj

j . Hence, previous broadcast
messages and users’ secret keys do not give any information about the new key.

• condition 4 . is satisfied because, users revoked in session r and users joining the group after
session s, do not possess the values necessary for recovering from BHr

r , . . . , BHs
s the session keys.

Indeed, revoked users do not possess the values xRevr , . . . , xRevs (if the first D(1, t,U) scheme
is used in the meta-construction) or the sequence of values < yi >Ui∈Gp

, for p = r, . . . , s (if the
second D(1, t,U) is used). While, users who join the group after session s get only values useful
in the current and in future sessions.

The above meta-construction, instantiated with the Optimal User Memory Storage
D(1, t,U ,F) scheme, shows that the bounds given by Theorems 6.7 and 6.9 are tight. Indeed, for
any Ui ∈ Joinj , it holds that H(Si) = (qj −j +1) · log q. Similarly, for any Ui ∈ G0 such that q0 6= 0, it
holds that H(Si) = q0 · log q. Moreover, if the family F has the one-shoot t-revocation property with re-
spect to sessions j and s for {Ui1 , . . . , Uit+1

}, then H(Si1 , . . . ,Sit+1
) = (t+1) · (s− j +1) · log q. Then,

let H = (R,J , G0) ∈ F , where R=(Rev1, . . . , Revm), be an m-long t-revocation joining strategy.
The meta-construction, instantiated with m copies of the Protocol D(1, t,U ,F) with Optimal
Broadcast for Strategy Rev∗, where, for j = 1, . . . , m, Rev∗ = Revj , shows that Theorems 6.8

and 6.10 are tight as well, i.e., H(B
Hj

j ) = (j − rj) · log q and H(BH1

1 ,BHm
m ) = m · log q.

7 Some Notes

Secret Sharing Schemes. Self-healing key distribution schemes and secret sharing schemes are strongly
related. Indeed, from a formal point of view, notice that condition 1 . of Definition 5.2 is exactly the
reconstruction property of a secret sharing scheme, i.e.,

H(Kj |B
Hj

j ,Si) = 0,

which means that the secret Kj is reconstructed once given the shares B
Hj

j and Si, for each non-
revoked user Ui. On the other hand, from (17) and (5) it follows that

H(Kj |B
Hj

j ,SRevj
) = H(Kj),

which is the security property of a secret sharing scheme, i.e., the set of shares composed of the secret
keys of revoked users and the broadcast message does not give any information about the secret Kj .
However, compared to secret sharing schemes, we have also some set of shares for which nothing is
stated/required. Actually, by using conditions 2 . and 4 . of Definition 5.2 we can also point out that
self-healing key distribution schemes are related to multi-secret sharing schemes. Such connections
might be further investigated.

Impossibility Results: Practical Implications. The impossibility of achieving conditions 1.b) of Definition
3.1 and b) of Definition 5.2 has some important consequences. Applying the same techniques developed
in [16], the authors of [29] suggested, in designing self-healing key distribution schemes, to introduce
some valuable information, like the social security number of the user or any other information the
member would want to keep secret, inside the secret key. The link between private keys and personal
information is intended to serve as a deterrent to key sharing: many users will take extra care to
keep their secret keys secret so that their personal information remains secret as well. On the other
hand, dishonest users should be discouraged to disclose their own secret keys, in order to enable
other users to illegally decrypt broadcast messages. The analysis we have done implies that it is
impossible to unconditionally protect such a valuable information inside the secret key of a self-healing
key distribution scheme. Information leakage is unavoidable.
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8 Conclusions

We have considered mainly the definitional task of self-healing key distribution. We have discussed
some issues related to the formalization of such a concept given in [39, 32], and we have shown that
no protocol can achieve some of the security requirements therein stated. We have also analysed
the notion of personal key distribution scheme [39, 32], showing that no protocol can achieve the
security requirements and identifying where the proposed schemes fail. Then, we have shown that a
lower bound on the size of the broadcast messages the group manager has to sent in order to establish
session keys, proved in [39] and also used in [32], does not hold. After the analysis, we have proposed a
new definition for self-healing key distribution, by extending and opportunely modifying the definition
given in [39], and we have given some lower bounds on the resources required for implementing such
schemes, i.e., user memory storage and communication complexity, and we have shown that they are
tight. Moreover, we have shown that some of them cannot be attained at the same time.

An interesting open problem is to find constructions which exhibit a good trade-off between user
memory storage and broadcast size.
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