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Abstract

This paper is about the Oblivious Transfer in the distributed model proposed by M.
Naor and B. Pinkas. In this setting a Sender has n secrets and a Receiver is interested
in one of them. During a set up phase, the Sender gives information about the secrets to
m Servers. Afterwards, in a recovering phase, the Receiver can compute the secret she
wishes by interacting with any k of them. More precisely, from the answers received she
computes the secret in which she is interested but she gets no information on the others
and, at the same time, any coalition of k − 1 Servers can neither compute any secret nor
figure out which one the Receiver has recovered.

We present an analysis and new results holding for this model: lower bounds on
the resources required to implement such a scheme (i.e., randomness, memory storage,
communication complexity); some impossibility results for one-round distributed oblivi-
ous transfer protocols; two polynomial-based constructions implementing 1-out-of-n dis-
tributed oblivious transfer, which generalize and strengthen the two constructions for
1-out-of-2 given by Naor and Pinkas; as well as new one-round and two-round distributed
oblivious transfer protocols, both for threshold and general access structures on the set
of Servers, which are optimal with respect to some of the given bounds. Most of these
constructions are basically combinatorial in nature.

1 Introduction

Introduced by Rabin in [41], and subsequently defined in different forms [24, 9], the oblivious
transfer (OT, for short) has found many applications in cryptographic studies and protocol

∗A preliminary version of this paper appeared in the Proceedings of SAC 2002, Lecture Notes in Computer
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design. Basically, such a protocol enables one party to transfer knowledge to another in an
“oblivious” way. Rabin’s definition, for example, enables a Sender to transmit a message to
a Receiver in such a way that the Receiver with probability 1

2 gets the message while, with
the same probability, she does not, and the Sender does not know which event has occurred.
Rabin showed how this transfer can be used in order to exchange secrets, and subsequently
several other researchers have shown some useful applications of this concept. The protocol
proposed by Rabin was later strengthened in [25].

The second OT definition was given in [24]. In this form, the Sender has two secrets and
the Receiver is interested in one of them. After the execution of the protocol, the Receiver
gets the secret she wishes to recover, obtaining at the same time no information on the other,
while the Sender does not know which secret the Receiver has recovered. The author of [24]
showed a first application to signing contracts.

The last and more general form of OT was introduced in [9], under the name of all-or-
nothing Disclosure of Secrets, even if the same concept was born in an artificial intelligence
context [47], under the name of multiplexing. Here the Sender has n secrets and the Receiver
is interested in one of them. After the execution of the protocol, the Receiver gets the secret
she wishes to recover, obtaining at the same time no information on the others, while the
Sender does not know which secret the Receiver has recovered.

All these forms were shown to be equivalent [10, 8, 15], and Kilian in [32] showed that
the OT is a complete primitive, in the sense that it can be used as a building block for any
secure function evaluation (multi-party computation).

A variety of slightly different definitions and implementations can be found in the liter-
ature as well as papers addressing issues such as the relation of the OT with other cryp-
tographic primitives, the assumptions required to implement such a concept, reductions
among “more complex” forms of OT to “simpler ones” and applicative environments (e.g.,
[15, 10, 23, 19, 3, 21, 22, 16, 30, 39, 28], just to name few examples).
Our Contribution. In this paper we study unconditionally secure distributed oblivious
transfer protocols, introduced in [37] in order to strengthen the security of protocols de-
signed for electronic auctions [39]. We present an analysis and some new results: lower
bounds on the resources required by an implementation such as randomness, memory stor-
age, and communication complexity; some impossibility results for one-round protocols; two
polynomial-based constructions implementing 1-out-of-n distributed oblivious transfer which
generalize and strengthen the two constructions for 1-out-of-2 schemes given by M. Naor and
B. Pinkas; as well as new one-round and two-round distributed oblivious transfer protocols,
both for threshold and general access structures on the set of Servers, which are optimal with
respect to some of the given bounds. Most of these constructions are basically combinatorial
in nature.
Related Work. In the literature there are many papers that address problems related to 1-
out-of-n distributed oblivious transfer. In [1], for example, the authors show how to distribute
a function between several Servers, in such a way that a user can compute the function by
interacting with the Servers; the Servers cannot find out which value of the function the user
computes, but the user can compute the function in more than one point. Another very close
area is represented by PIR (Private Information Retrieval) schemes, introduced in [12]. A
PIR scheme enables a user to retrieve an item of information from a public accessible database
in such a way that the database manager cannot figure out from the query which item the
user is interested in. However, the user can get information about more than one item. On
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the other hand, in SPIR (Symmetric Private Information Retrieval) schemes [26], the user
can get information about one and only one item, i.e. even the privacy of the database
is considered. In PIR and SPIR schemes, the emphasis is placed on the communication
complexity of the interaction of user and Servers. Notice that a SPIR Scheme can be seen
as a communication-efficient 1-out-of-n oblivious transfer scheme and the protocols given in
[26] represent the first 1-round distributed implementation of 1-out-of-n oblivious transfer.
However, the main differences between the model we are going to consider and (information
theoretic) SPIR schemes are that in SPIR schemes the Receiver communicates with k out
of k Servers in order to retrieve an item while in our setting the Receiver can choose k out
of m Servers, where k ≤ m. Moreover, in SPIR schemes, the security of the Sender against
coalitions of Receiver and Servers is not of concern. Other PIR papers of interest, for the
distributed OT scenario we consider, are [2, 27, 18].

Rivest’s model in [42], where a trusted initializer participates only during the set up
phase of the system (see also [7]), provides a very close setting to the one described in
[37] and considered in this paper. A paper which deals with distributed oblivious transfer
implementations, close to the setting introduced in [37] (but not unconditionally secure) is
[46]. Finally, unconditionally secure distributed oblivious transfer schemes for general access
structures have also been studied in [40].

In our constructions we use secret sharing schemes. Secret sharing schemes were intro-
duced in 1979 by Blakley [4] and Shamir [43], and have been extensively studied during the
last years. The reader can find an introduction in [45] and references to the literature in [44].

2 The Distributed Model

Let us define the model we are going to consider. We assume that the Sender holds n secrets
and the Receiver is interested in one of them. Hence, we are concerned with a 1-out-of-n
distributed oblivious transfer.

2.1 An Informal Description

In the distributed setting, the Sender S does not directly interact with the Receiver R in
order to carry out the oblivious transfer. Rather, he delegates m Servers to accomplish this
task for him. More precisely, we consider the following scenario (see Figure 1):
Set-up Phase. Let m and k be two integers such that 1 < k ≤ m. Let S1, . . . , Sm

be m Servers holding programs P1, . . . , Pm, respectively. The Sender S generates m data
D1, . . . ,Dm, and, for i = 1, . . . ,m sends, in a secure way, the data Di to Server Si.
Oblivious Transfer Phase. The Receiver R holds a program R which enables her to in-
teract with a subset {Si1 , . . . , Sik} of the Servers at her choice. Using the knowledge acquired
by exchanging messages with the Servers, R recovers the secret in which she is interested, but
receives no information on the other secrets. At the same time, no subset of k − 1 Servers,
gains any information about the secret she has recovered1. More precisely, a distributed
(k,m)-DOT-

(n
1

)
must guarantee:

1Along the same line of [37], we assume the existence of an external mechanism which guarantees that the
Receiver can contact no more than k Servers. This issue is independent of the distributed oblivious transfer
scheme and, hence, it is not considered in this paper. The reader is referred to [37] for some techniques to
solve the problem.
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Figure 1: Distributed Oblivious Transfer

1. Correctness. If the Receiver gets information from k out of the m Servers, she can
compute the secret.

2. Receiver’s Privacy. No coalition of less than k Servers gains information about which
secret the Receiver has recovered.

3. Sender’s Privacy w.r.t. k − 1 Servers and the Receiver. A coalition of the Receiver with
k − 1 dishonest Servers does not get any information about the n secrets.

4. Sender’s Privacy w.r.t. a “Greedy” Receiver. Given the transcript of the interaction with
k Servers, the Receiver should gain information about at most a single secret, and no
information about the others. This property should be satisfied even if the Receiver,
once has computed a secret, colludes with k − 1 dishonest Servers.

Notice that, in [37], properties 3. and 4. are only guaranteed with respect to a threshold
t and a threshold �, respectively, which should be as close to k as possible.

2.2 A Formal Model

Notation. Let W = W1 × · · · × Wn be the set of all possible sequences of n secrets, and let
T = {1, . . . , n} be a set of n indices.

The Sender S holds a program S(w, r), which takes in input a sequence w ∈ W and a
random string r, and outputs m data, D1, . . . ,Dm. These data will be sent by S securely to
the Servers S1, . . . , Sm, respectively.

The Servers S1, . . . , Sm hold programs P1, . . . , Pm, for interacting with the Receiver, which
are run on D1, . . . ,Dm and possibly random strings r1, . . . , rm. However, to simplify the
description, we assume that, for any i = 1, . . . ,m, the data Di comprises also the random
bits used by Si in an execution of the program Pi.
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The Receiver R holds also a program, R(i,DR), for interacting with the Servers, which
receives in input an index of a secret i ∈ T and a sequence DR of random bits.

The m+1 programs P1, . . . , Pm and R, with the associated input data D1, . . . ,Dm, i,DR,
specify the computations to be performed to achieve (k,m)-DOT-

(n
1

)
.

In order to represent dishonest behaviors, where a coalition of at most k − 1 Servers
tries to figure out which secret R has recovered from the transfer, we assume that dishonest
Servers Sj1, . . . , Sjk−1

execute modified versions of the programs Pj1 , . . . , Pjk−1
, denoted by

P j1, . . . , P jk−1
. Similarly, a dishonest R, who tries to gain some information about more than

one secret, executes a modified version of the program R, denoted by R.
We require our schemes to be secure against all possible probabilistic and deterministic ad-

versarial programs. However, since we are analysing unconditionally secure schemes, without
loss of generality, we can assume that the modified programs P 1, . . . , P m and R are deter-
ministic. Indeed, let P j be a probabilistic program which uses � random bits. If a scheme is

secure against 2� deterministic programs P
1
j , . . . , P

2�

j , where each of them is equal to P j, run
by using one of the 2� possible random strings of � bits, then it is clearly secure against P j .

Any execution of P j corresponds to an execution of one of the programs P
1
j , . . . , P

2�

j .
The programs held by the parties are publicly known. The data w, i,D1, . . . ,Dm, and

DR, used by the programs, are private to the parties. They will be described by means of
random variables, represented in bold face type, i.e., W,T,D1, . . . ,Dm, and DR. Moreover,
for j = 1, . . . ,m, we will use random variables Cj to denote the transcript of the communi-
cation between R and Server Sj , where both are honest, Cj to denote the transcript of the
communication between R and Server Sj where one of them is running a modified program
(but over the same data Dj, DR and i), and Wi for the i-th secret of the sequence held by
the Sender. Finally, to simplify the discussion, if, for i = 1, . . . , n, Ai is a random variable,
and X = {j1, . . . , jm} ⊆ {1, . . . , n} is a subset of indices such that j1 < . . . < jm, then AX

will denote the sequence of random variables Aj1, . . . ,Ajm .
Receiver’s Data. In our model the Receiver holds a program R(i,DR) where i represents the
index of the secret she chooses, and DR are truly random bits. No interaction is allowed
between the Sender and the Receiver. However, we might generalise the model and assume
that, during the set-up phase, the Sender sends also data to the Receiver. Hence DR might
represent data received by the Sender and truly random bits. The formal definitions we give
in the following model this more general setting, and all properties and bounds we prove in
Section 3 hold for this setting. On the other hand, the results we present in Section 4, by
analysing one-round schemes, do assume that DR are truly random bits.
Independence of the Receiver’s choice and Communication in the Model. Notice that the choice
of the Receiver is independent of the sequence of secrets w, the data D1, . . . ,Dm and DR.
Moreover, we assume that, for i = 1, . . . , n, Pr(T = i) > 0, i.e., any choice in {1, . . . , n} is
possible. Since we focus our attention on unconditionally secure DOT protocols, we use the
entropy function, which leads to a compact and concise description. The reader is referred
to the Appendix for a short introduction to the entropy function and information theory. In
terms of information theory the above assumption means that, for X = {1, . . . ,m}, it holds
that:

H(T|W,DX ,DR) = H(T). (1)

Then, once the Receiver has chosen an index of a secret, the program of the Receiver and the
programs of the Servers, the private data and the random bits they use during the current
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execution of the programs, completely determine the transcript of the interaction Receiver-
Servers. In other words, for any subset of indices X ⊆ {1, . . . ,m}, and for any i ∈ {1, . . . , n},
it holds that:

H(CX |DX ,DR, T = i) = 0. (2)

Notice that the above condition is equivalent to

H(CX |DX ,DR,T) = 0 (3)

since H(CX |DX ,DR,T) =
∑n

i=1 H(CX |DX ,DR,T = i) · Pr(T = i), and Pr(T = i) > 0 for
any i = 1, . . . , n.

Definitions: Correctness and Privacy. By using the above notation, we define the conditions
that a (k,m)-DOT-

(n
1

)
oblivious transfer protocol must satisfy.

Definition 2.1 The sequence of programs [S,P1, . . . Pm, R] is correct for (k,m)-DOT-
(n
1

)
if,

for any subset of k indices X ⊆ {1, . . . ,m}, and for any i ∈ {1, . . . , n}, it holds that

H(Wi|CX ,DR,T = i) = 0. (4)

�

Notice that the above definition means that, after interacting with any k Servers, an
honest Receiver always recovers the secret in which she is interested.

Definition 2.2 The sequence of programs [S,P1, . . . Pm, R] is private for (k,m)-DOT-
(n
1

)
if,

- Receiver’s Privacy: for any subset of k−1 indices X ⊂ {1, . . . ,m}, and for any sequence
PX , it holds that

H(T|DX ,CX) = H(T). (5)

- Sender’s Privacy w.r.t. k − 1 Servers and the Receiver: for any subset of k − 1 indices
X ⊂ {1, . . . ,m}, it holds that

H(W|DX ,DR) = H(W). (6)

- Sender’s Privacy w.r.t. a “Greedy” Receiver: for any subset of k indices X ⊆ {1, . . . ,m},
for any i = 1, . . . , n, for any possible DR, and for any R, there exists an index

∼
i =

f(i,DR, R) such that

i) H(W|T = i,DR = DR,CX ,W∼
i
) = H(W|W∼

i
), if

∼
i ∈ {1, . . . , n}

ii) H(W|T = i,DR = DR,CX) = H(W), otherwise.
(7)

�

Let us briefly describe the ideas the above definition captures.
Receiver’s Privacy: Condition (5) of Definition 2.2 states that the index of the secret R chooses
is independent of DX and CX , for any subset X of size k − 1. Therefore, it ensures that a
coalition of k − 1 dishonest Servers, by using their own private data DX , and the transcript
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CX of the communication with the Receiver, obtained by running a sequence of malicious
programs PX , does not gain any information about R’s choice.
Sender’s Privacy w.r.t. k − 1 Servers and the Receiver: Condition (6) of Definition 2.2 states
that the sequence of secrets held by S is independent of DX , for any subset X of size k − 1
and DR. Hence, it guarantees that a coalition of k−1 dishonest Servers, with the cooperation
of a dishonest Receiver R, by using their own private data DX and DR, does not get any
information about the sequence of secrets held by S. Notice that, in stating our property,
we could have also considered the transcript CX and the index i of an interaction between
SX and R. Indeed, they are parts of the “view” held by the coalition. Hence we could have
required that

H(W|DX ,CX ,DR,T) = H(W). (8)

However, the above one is equivalent to condition (6). Indeed, due to the independence of T
from W,DX , and DR, stated by (1), it follows that

H(W|DX ,DR) = H(W|DX ,DR,T). (9)

The above equality holds because condition (1) and property (39) of Appendix A, imply

H(T) = H(T|DX ,DR,W) ≤ H(T|DX ,DR) ≤ H(T).

Therefore, from (38) of Appendix A, the mutual information I(W,T|DX ,DR) is equal to

H(W|DX ,DR) − H(W|DX ,DR,T) = H(T|DX ,DR) − H(T|DX ,DR,W) = 0.

Hence, H(W|DX ,DR) = H(W|DX ,DR,T). Moreover, as stated by condition (3), the
transcript CX is function of DX , DR and T. Due to property (40), it holds that

H(W|DX ,DR,T) = H(W|CX ,DX ,DR,T). (10)

Therefore, we have preferred condition (6) to condition (8), since they are equivalent, and
condition (6) is simpler than the latter.
Sender’s Privacy w.r.t. a “Greedy” Receiver: Condition (7) of Definition 2.2 states that the
amount of information about the sequence of secrets w, given the choice of the Receiver, her
data set DR, the transcript CX of the communication with a subset X of k Servers, and
possibly one of the secrets W∼

i
, is exactly H(W|W∼

i
), i.e., the amount of information on W,

once the Receiver has obtained W∼
i
. Such a condition guarantees that a dishonest R, by

interacting with a subset X of k Servers, infers at most one secret among the ones held by
the Sender S. From a technical point of view, we have used an index

∼
i = f(i,DR, R) to

represent the possibility that R gets a different secret from the one she should get through a
correct use of her program R. Indeed, any program R, attempting to get information about
more than one secret, might get a certain secret W∼

i
, different from Wi, the one she should

get once i is fixed and R is executed. Notice that condition (7) is stated in two parts because
it might also happens that the Receiver’s program R does not try to get a whole secret by
interacting with Servers SX , but just partial information she might use in order to get partial
knowledge about more secrets. We model this attack by an index

∼
i which does not belong

to {1, . . . , n}.
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Condition (7) of Definition 2.2 can be strengthened by considering an attack performed
by the Receiver, once she has already recovered a secret, with the cooperation of other k − 1
Servers. In other words, she might try to get more information about the secrets, helped by
k − 1 dishonest Servers.

We will say that the sequence of programs [S,P1, . . . Pm, R] defines a strong (k,m)-DOT-(n
1

)
if a further security condition is satisfied. More precisely,

Definition 2.3 The sequence of programs [S,P1, . . . Pm, R] defines a strong (k,m)-DOT-
(n
1

)
if it is correct and private and it holds that:

- Sender’s Privacy w.r.t. a “Greedy” Receiver and k − 1 Servers: for any subset of k − 1
indices X ⊂ {1, . . . ,m}, for any subset of k indices Y ⊆ {1, . . . ,m}, for any i =
1, . . . , n, for any possible DR, and for any R, there exists an index

∼
i = f(i,DR, R) such

that

i) H(W|T = i,DR = DR,DX ,CY ,W∼
i
) = H(W|W∼

i
), if

∼
i ∈ {1, . . . , n}

ii) H(W|T = i,DR = DR,DX ,CY ) = H(W), otherwise.
(11)

Condition (11) of Definition 2.3 states that the amount of information about the sequence
of secrets w, given the choice of the Receiver, her data set DR, the data DX of k−1 dishonest
Servers, the transcript CY of the communication with a subset Y of k Servers, and possibly
one of the secrets W∼

i
, is exactly H(W|W∼

i
), i.e., the amount of information on W, once the

Receiver has obtained W∼
i
. Hence, a dishonest R, interacting with a subset Y of k Servers,

can recover a secret. Then, even if she colludes with a subset X of k−1 dishonest Servers, by
putting together the information they possess and the transcript of the previous interaction,
the coalition does not get any information about other secrets.

Notice that, in our model condition (11) implies condition (7). Later on we will show
that condition (11) cannot be achieved with only one round of interaction. In other words,
a strong (k,m)-DOT-

(n
1

)
cannot be realized by means of a one-round protocol. On the other

hand, with two rounds of interaction, this level of privacy can be obtained.
Remark. It is straightforward to see that conditions (5), (6), (7), and (11) hold even if
the coalition of dishonest Servers has size less than k − 1. Formally, such a property can be
derived by applying conditions (5), (6), (7), (11) and property (39) of Appendix A.

3 Lower Bounds

Using some information theory tools, we prove bounds on the memory storage, on the com-
munication complexity, and on the randomness needed by a correct and private DOT scheme.

The following simple lemma shows that, given four random variables A, B, C and D, if
B is a function of C and D, then B and D give less information on A than C and D.

Lemma 3.1 Let A, B, C and D be four random variables such that H(B|C,D) = 0. Then,
H(A|B,D) ≥ H(A|C,D).

Proof. We prove the lemma showing that

H(A|B,D) ≥ H(A|B,C,D) = H(A|C,D).
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Indeed, the left inequality follows from (39) of Appendix A. The equality on the right holds
because, from (32) and (39) of Appendix A and the hypothesis,

0 ≤ H(B|A,C,D) ≤ H(B|C,D) = 0.

Therefore, the mutual information I(A;B|C,D), from (38) of Appendix A, is equal to

H(A|C,D) − H(A|B,C,D) = H(B|C,D) − H(B|A,C,D) = 0.

Hence, H(A|B,C,D) = H(A|C,D).
Notice that condition (6) of Definition 2.2 implies that a coalition of k − 1 Servers and

the Receiver get no information about any single secret. We state the following:

Lemma 3.2 In any correct and private (k,m)-DOT-
(n
1

)
scheme, for any set of k− 1 indices

X ⊂ {1, . . . ,m}, for any j ∈ {1, . . . , n}, it holds that

H(Wj |DX ,DR) = H(Wj). (12)

Proof. Indeed, denoting by W \ Wj a random variable representing the sequence of all
secrets in w but wj , using condition (6), and properties (35) and (34) of Appendix A, it
results

H(W) = H(Wj ,W \ Wj |DX ,DR)
= H(Wj |DX ,DR) + H(W \ Wj |DX ,DR,Wj)
≤ H(Wj) + H(W \ Wj |Wi) = H(W).

Hence, it must be H(Wj |DX ,DR) = H(Wj).
Due to the equivalence of condition (6) with condition (8), for any j = 1, . . . , n, it also

holds that,
H(Wj |DX ,CX ,DR,T) = H(Wj). (13)

The following lemma states that any secret of the sequence held by the Sender is in-
dependent from the index i. More precisely, we prove that, for any j = 1, . . . , n, the
Pr(wj|DX ,DR) = Pr(wj |DX ,DR, i), for any i = 1, . . . , n.

Lemma 3.3 In any correct and private (k,m)-DOT-
(n
1

)
scheme, for any subset X ⊆

{1, . . . ,m}, and for any j = 1, . . . , n, it holds that

H(Wj |DX ,DR) = H(Wj |DX ,DR,T). (14)

Proof. Since W = (W1, . . . ,Wn), property (1) and properties (39) and (32) of Appendix
A, imply that, for any j = 1, . . . , n,

H(T) = H(T|DX ,DR,W) ≤ H(T|DX ,DR,Wj) ≤ H(T|DX ,DR) ≤ H(T).

Therefore, from (38) of Appendix A, the mutual information I(Wj ,T|DX ,DR) is equal to

H(Wj |DX ,DR) − H(Wj |DX ,DR,T) = H(T|DX ,DR) − H(T|DX ,DR,Wj) = 0.

Hence, H(Wj |DX ,DR) = H(Wj |DX ,DR,T).

Using the above lemma we prove that the data held by any subset of k Servers and the
information held by the Receiver are enough to recover all the secrets.
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Lemma 3.4 In any correct and private (k,m)-DOT-
(n
1

)
scheme, for any subset of k indices

X ⊆ {1, . . . ,m}, it holds that
H(W|DX ,DR) = 0.

Proof. From (35) and (39) of Appendix A, it holds that

H(W|DX ,DR) ≤
n∑

j=1

H(Wj |DX ,DR)

Due to Lemma 3.3, for any j = 1, . . . , n, it holds that

H(Wj |DX ,DR) = H(Wj |DX ,DR,T) = H(Wj |DX ,DR,T = j).

It follows that
n∑

j=1

H(Wj |DX ,DR) =
n∑

j=1

H(Wj |DX ,DR,T = j).

Since condition (2) states that H(CX |DX ,DR,T = j) = 0, setting A = Wj ,B = CX ,C =
DX , and D = (DR,T = j), and applying Lemma 3.1, it holds that

H(Wj |DX ,DR,T = j) ≤ H(Wj |CX ,DR,T = j).

The above inequality and Definition 2.1 imply that

n∑
j=1

H(Wj |DX ,DR,T = j) ≤
n∑

j=1

H(Wj |CX ,DR,T = j) = 0.

Hence, H(W|DX ,DR) = 0.

We prove that the amount of information Dj , held by Server Sj, given the information
held by any other k − 1 Servers and the information held by the Receiver, is greater than or
equal to the amount of information contained in the whole sequence of the n secrets. This
property is formally stated by the following:

Lemma 3.5 In any correct and private (k,m)-DOT-
(n
1

)
scheme, for any subset of indices

X ⊂ {1, . . . ,m}, where 1 ≤ |X| ≤ k − 1, and for any index j /∈ X, it holds that

H(Dj |DX ,DR) ≥ H(W).

Proof. Let Y ⊂ {1, . . . ,m}, such that |Y | = k − |X| − 1, j /∈ Y , and X ∩ Y = ∅. According
to Appendix A, the mutual information I(W;Dj |DX∪Y ,DR) can be written as

H(W|DX∪Y ,DR) − H(W|DX∪Y ∪{j},DR) = H(Dj |DX∪Y ,DR) − H(Dj |DX∪Y ,DR,W).

From condition (6) of Definition 2.2, it follows that H(W|DX∪Y ,DR) = H(W). Then,
from (32) of Appendix A, we get H(Dj |DX∪Y ,W,DR) ≥ 0, and, from Lemma 3.4, we get
H(W|DX∪Y ∪{j},DR) = 0. Therefore,

H(Dj |DX∪Y ,DR) ≥ H(W).
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Applying property (39) of Appendix A, it holds that

H(Dj |DX ,DR) ≥ H(Dj |DX∪Y ,DR) ≥ H(W).

Using the above results, we establish a lower bound on the size of the data that each
Server has to store to set up a correct and private (k,m)-DOT-

(n
1

)
scheme. More precisely,

we show the following result:

Theorem 3.6 In any correct and private (k,m)-DOT-
(n
1

)
scheme, for any subset X ⊆

{1, . . . ,m}, where 1 ≤ |X| ≤ k, it holds that

H(DX) ≥ |X| · H(W).

Proof. Applying (35) and (39) of Appendix A, and Lemma 3.5, it holds that

H(DX) ≥
∑
�∈X

H(D�|DX\{�},DR)

≥ |X| · H(W).

The above theorem implies the following result:

• Server Memory Storage. Each Server Sj has to store at least H(W) bits, since
H(Dj) ≥ H(W).

When we want to set up a cryptographic protocol we need random bits. This resource is
usually referred to as the randomness. A detailed analysis of the randomness in distribution
protocols can be found in [6]. The randomness of a scheme can be measured in different
ways. Knuth and Yao [33] proposed the following approach: Let Alg be an algorithm that
generates the probability distribution P = {p1, . . . , pn}, using only independent and unbiased
random bits. Denote by T (Alg) the average number of random bits used by Alg and let
T (P) = minAlg T (Alg). The value T (P) is a measure of the average number of random bits
needed to simulate the random source described by the probability distribution P . In [33]
the following result was shown:

Theorem 3.7 H(P) ≤ T (P) < H(P) + 2.

Thus, the entropy of a random source is very close to the average number of unbiased
random bits necessary to simulate the source. Hence, it is a natural measure of the random-
ness of a scheme. It is easy to see that the randomness needed to set up the m Servers can
be lower bounded by H(D1, . . . ,Dm).

Theorem 3.6 also implies a lower bound on the randomness needed to set-up a (k,m)-
DOT-

(n
1

)
scheme. More precisely:

• Randomness. In order to set up the scheme, the Sender needs at least kH(W) random
bits, since if |X| = k, then H(D1, . . . ,Dm) ≥ H(DX) ≥ kH(W).

11



Notice that Theorem 3.6 holds only for subsets X such that 1 ≤ |X| ≤ k. For any X of
size |X| ≥ k, the bound stays the same (i.e., H(DX) ≥ kH(W) ).

The following lemma enables us to establish a lower bound on the complexity of each
interaction Receiver-Servers.

Lemma 3.8 In any correct and private (k,m)-DOT-
(n
1

)
scheme, for any subset of indices

X ⊂ {1, . . . ,m}, where 1 ≤ |X| ≤ k − 1, for any index j /∈ X, and for any i = 1, . . . , n, it
holds that

H(Cj|CX ,DR,T = i) ≥ H(Wi).

Proof. Let Y ⊂ {1, . . . ,m}, such that |Y | = k−|X|− 1, j /∈ Y , and X ∩Y = ∅. The mutual
information I(Wi;Cj |CX∪Y ,DR,T = i) can be written either as

H(Wi|CX∪Y ,DR,T = i) − H(Wi|CX∪Y ∪{j},DR,T = i)

or as
H(Cj|CX∪Y ,DR,T = i) − H(Cj|CX∪Y ,DR,T = i,Wi).

Since from (32) of Appendix A, we get that H(Cj |CX∪Y ,DR,T = i,Wi) ≥ 0, it holds that

H(Cj|CX∪Y ,DR,T = i) ≥ H(Wi|CX∪Y ,DR,T = i) − H(Wi|CX∪Y ∪{j},DR,T = i). (15)

Setting A = Wi, B = CX∪Y , C = DX∪Y , and D = (DR,T = i), due to condition (2) and
Lemma 3.1, it follows that

H(Wi|CX∪Y ,DR,T = i) ≥ H(Wi|DX∪Y ,DR,T = i).

Moreover, due to Lemma 3.3 and Lemma 3.2,

H(Wi|DX∪Y ,DR,T = i) = H(Wi|DX∪Y ,DR,T) = H(Wi|DX∪Y ,DR) = H(Wi).

Hence, H(Wi|CX∪Y ,DR,T = i) ≥ H(Wi). Then, from Definition 2.1, we get that
H(Wi|CX∪Y ∪{j},DR,T = i) = 0. Therefore, substituting the above inequality and equality
in (15), it holds that

H(Cj|CX∪Y ,DR,T = i) ≥ H(Wi).

The result follows observing that (39) of Appendix A implies

H(Cj |CX ,DR,T = i) ≥ H(Cj|CX∪Y ,DR,T = i).

Notice that, as stated by condition (2), for any index i ∈ {1, . . . , n} and for any
X ⊆ {1, . . . , n}, it holds that H(CX |DX ,DR,T = i) = 0. Hence, the transcript is uniquely
determined, i.e., there exists a function f such that CX = f(DX ,DR, i). We could have
stressed such a dependence by using a notation for the transcript like C(X,DR,i). However,
for any subset X of size at most k − 1, it holds that H(CX |T) = H(CX). Indeed, due to
property (39) of Appendix A and condition (5) of Definition 2.2, used in the special case in
which PX = PX , it holds that H(T) ≥ H(T|CX) ≥ H(T|CX ,DX) = H(T). Hence, from
property (33) of Appendix A, we get that

I(CX ;T) = H(CX) − H(CX |T) = H(T) − H(T|CX) = 0.
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Therefore,
H(CX |T) = H(CX), (16)

which means that any interaction CX of the Receiver with any k− 1 Servers could have been
generated by any choice of a value i ∈ T.

Using the above lemma, we state the following theorem.

Theorem 3.9 In any correct and private (k,m)-DOT-
(n
1

)
scheme, for any X ⊆ {1, . . . ,m},

where 1 ≤ |X| ≤ k, and for any i = 1, . . . , n, it holds that

H(CX |T = i) ≥ |X| · H(Wi).

Proof. From (39) and (35) of Appendix A, and Lemma 3.8, it holds that

H(CX |T = i) ≥ H(CX |DR,T = i)
≥

∑
�∈X

H(C�|CX\{�},DR,T = i)

≥ |X| · H(Wi).

Since condition (16) states that that the transcript CX , as long as 1 ≤ |X| ≤ k − 1,
is independent of i, the above bound, can be strengthened. Indeed, for any X such that
1 ≤ |X| ≤ k − 1, it results H(CX) ≥ |X| · maxi{H(Wi)}.

The above theorem implies the following results:

• Interaction Receiver-Server. The Receiver and a Server need to exchange at least
H(Wi) bits, since H(Cj) ≥ H(Wi).

• Interaction Receiver-Servers. The Receiver and Servers SX , where |X| = k, need
to exchange at least k · H(Wi) bits, since H(CX |T = i) ≥ k · H(Wi).

Tightness of the Bounds. The lower bound on the randomness needed to set up a (k,m)-
DOT-

(n
1

)
, derived from Theorem 3.6, that is H(D1, . . . ,Dm) ≥ kH(W), is tight since the

protocol we give in Table 3 meets the bound by equality.

Distributed Oblivious Transfer (k,m)-DOT-

(n
r

)
. An extended version of (k,m)-DOT-(n

1

)
, which we denote by (k,m)-DOT-

(n
r

)
, enables the Receiver to recover, by interacting

with a subset of k Servers at his own choosing, r secrets instead of a single one. Such a
protocol can be defined by means of Definitions 2.1, 2.2, and 2.3 as well, by introducing a
minor modification: Instead of a single index, the Receiver holds an r-tuple of indices, say
i = (i1, . . . , ir). Therefore, T is a random variable taking values over T r, and Wi is an r-tuple
of random variables, representing an r-tuple of secrets the Receiver can recover. Therefore,
the analysis we have done holds also for such an extension of the model, i.e., Theorems 3.6
and 3.9 apply.
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4 Properties and Bounds for One-Round DOT

As we were claiming before, we show that with a one-round protocol a strong (k,m)-DOT-(n
1

)
cannot be realized. First, notice that if the protocol is one-round, then the interaction

between the Receiver and Server Sj is given by a query Qj , sent by the Receiver, and an
answer Aj , sent by Sj. Hence, for any X ⊆ {1, . . . ,m}, the transcript CX = (QX , AX).
Therefore, condition (3) becomes: for any subset X ⊆ {1, . . . ,m},, and for any i = 1, . . . , n,
it holds that

H(QX |DR, T = i) = 0 and H(AX |QX ,DX) = 0. (17)

Moreover, Definition 2.1 can be re-stated as follows:

Definition 4.1 The sequence of programs [S, P1, . . . Pm, R] is correct for one-round (k, m)-DOT-
(
n
1

)
if, for any subset of k indices X ⊆ {1, . . . , m}, and for any i = 1, . . . , n, it holds that

H(Wi|QX ,AX ,DR,T = i) = 0. (18)

Definition 2.2 can be restated along the same lines. For one-round schemes we prove that
a single Server can help the Receiver to recover all the secrets, once the Receiver has legally
retrieved the secret of her choice. The idea underlying the proof is the following: Because of
condition (13), a set of k − 1 query-answer pairs, and the information held by the Receiver,
do not give any information about the secret the Receiver is trying to recover. This property,
along with Definition 4.1, implies that, given a sequence of k − 1 pairs, the k-th pair query-
answer enables the recovering of any secret (otherwise, the sequence of k−1 query-answer pairs
would leak partial information, i.e., that some secret cannot be reconstructed). Therefore, if
the Receiver, after having legally recovered one secret, colludes with a single Server, using a
subset of k− 1 query-answer pairs from the transcript of the previous interaction, and a k-th
pair, opportunely constructed with the help of the dishonest Server, can recover any other
secret.

We assume that DR, the bits used by the Receiver in an execution of her own program
R, are truly random bits. However, the properties and results we prove hold even if a weaker
assumption is satisfied: it is sufficient that the data DX held by a set of servers SX and DR

are statistically independent.

4.1 Properties of One-round Schemes

We show some properties which will be used in our proofs. We start by proving that the data
DX , held by a set of Servers SX are independent from DR, i, and the corresponding queries
QX generated by the Receiver.

Lemma 4.2 In any one-round (k,m)-DOT-
(n
1

)
, for any X ⊆ {1, . . . ,m}, it holds that

H(DX) = H(DX |QX ,DR,T). (19)

Proof. Due to property (38) of Appendix A, the mutual information I(QX ;DX |DR,T) is
equal to

H(QX |DR,T) − H(QX |DX ,DR,T) = H(DX |DR,T) − H(DX |QX ,DR,T).

14



Condition (17) and property (39) of Appendix A, imply

0 = H(QX |DR,T) ≥ H(QX |DX ,DR,T) ≥ 0.

Hence, it follows that H(DX |DR,T) = H(DX |QX ,DR,T). Moreover, DR are truly random
bits, and the index i, chosen by the Receiver, due to condition (1) is independent of DX and
DR. Therefore, H(DX) = H(DX |DR,T).

Notice that, if DR are not truly random bits, the above lemma may not be true: the data
DX the Sender sends to Servers SX and the data DR, sent to the Receiver, might be related.
Hence, in general H(DX) ≥ H(DX |QX ,DR,T). The protocol presented in Section 7 is an
example of such a case.

Using techniques similar to the ones employed in proving the above lemma, we show
that the answers generated by Servers SX depend only on QX but not on DR and i. More
precisely:

Lemma 4.3 In any one-round (k,m)-DOT-
(n
1

)
, for any X ⊆ {1, . . . ,m}, it holds that

H(AX |QX) = H(AX |QX ,DR,T). (20)

Proof. Due to property (38) of Appendix A, the mutual information I(AXDX |QX) is equal
to

H(AX |QX) − H(AX |QX ,DX) = H(DX |QX) − H(DX |QX ,AX).

Since, from condition (17), it holds that H(AX |QX ,DX) = 0, and Lemma 4.2 implies that
H(DX |QX) = H(DX), it follows that

H(AX |QX) = H(DX) − H(DX |QX ,AX). (21)

On the other hand, due to property (38) of Appendix A, the mutual information
I(AX ;QXDX |DR,T) is equal to

H(AX |DR,T) − H(AX |QX ,DX ,DR,T) = H(QX ,DX |DR,T) − H(QX ,DX |DR,T,AX).

Hence, it follows that H(AX |DR,T) is equal to

H(QX ,DX |DR,T) − H(QX ,DX |DR,T,AX) + H(AX |QX ,DX ,DR,T). (22)

Then, property (35) of Appendix A implies that

H(QX ,DX |DR,T) = H(QX |DR,T) + H(DX |QX ,DR,T),

and
H(QX ,DX |DR,T,AX) = H(QX |DR,T,AX) + H(DX |QX ,DR,T,AX).

Therefore, using condition (17) and Lemma 4.2, from (22), it follows that

H(AX |DR,T) = H(DX) − H(DX |QX ,DR,T,AX).

Moreover, since H(QX |DR,T) = 0, due to property (40) of Appendix A, it follows that
H(AX |DR,T) = H(AX |QX ,DR,T). Hence,

H(AX |QX ,DR,T) = H(DX) − H(DX |QX ,DR,T,AX). (23)
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At this point notice that, property (39) of Appendix A implies H(AX |QX) ≥
H(AX |QX ,DR,T). Hence, from (21) and (23), it must be

H(DX |QX ,AX) ≤ H(DX |QX ,DR,T,AX).

Therefore, from property (39), we get that H(DX |QX ,AX) = H(DX |QX ,DR,T,AX), and
it follows that

H(AX |QX) = H(AX |QX ,DR,T).

Hence, let X ⊂ {1, . . . ,m} be a subset of size k − 1. Lemma 4.3 implies that the answers
AX depend only on QX . Moreover, equality (16) implies that,

H(QX |T) = H(QX). (24)

Therefore, because of Lemma 4.3 and equality (24), any sequence (AX , QX), obtained by
interacting with the Servers in X holding data DX , can be generated for any index i, by
choosing a corresponding appropriate string DR.

Using the above results, we show the following:

Theorem 4.4 In any one-round protocol for (k,m)-DOT-
(n
1

)
, for any subset of k−1 indices

X ⊂ {1, . . . ,m}, for any sequence of possible queries QX and corresponding answers AX ,
and for any j /∈ X, an adversary, given only Dj and (QX , AX), can compute all the secrets.

Proof. For any � = 1, . . . , n, an adversary can retrieve secret w�, in three steps as follows:

• Computation of the queries. He computes a string DR and a query Q′
j such that the k

queries Q′
X∪{j}, which could be generated by the Receiver by using DR and � as inputs

to her program R, satisfy the condition Q′
X = QX . Due to property (24) a string DR

for which the above condition holds can always be found.

• Computation of the answers. Then, he computes the answers A′
X∪{j} to Q′

X∪{j}. He
does not need the data DX , held by Servers SX , to compute the answers to Q′

X = QX

since A′
X = AX . Indeed, due to Lemma 4.3, the answers do not depend directly on

DR and � but only on Q′
X . Moreover, due to condition (17), using Dj , he computes an

answer A′
j to the k-th query Q′

j.

• Computation of the secret w�. Finally, using A′
X∪{j}, Q

′
X∪{j}, DR and �, he computes

the secret w�. Indeed, from Definition 4.1, it follows that

H(W�|AX∪{j} = A′
X∪{j},QX∪{j} = Q′

X∪{j},DR = DR,T = �) = 0.

A consequence of this impossibility result for one-round protocols is that the highest
privacy level sought for in [39] with this approach cannot be achieved.
Remark. It is possible to show that, if conditions (5), (6), and (11) of Definitions 2.2 and
2.3 are weakened and we require that they must hold, in the threshold case, only against a
coalition of Servers SX such that |X| ≤ t, for t < k, then an adversary, for any subset of k− t
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Servers SY such that Y ∩X = ∅, given DY and (QX , AX), can compute all the secrets. This
extension of Theorem 4.4 is quite straightforward.

In our model, we have made no assumption on the probability distribution on the sequence
of secrets w. Usually the secrets held by the Sender are independent. However, the results
we have shown hold even if dependencies are present. With the following lemma, we show
that, as long as for any i, j, where i 
= j, H(Wi|Wj) > 0, a sequence of k queries determines
T uniquely. On the other hand notice that, if H(Wi|Wj) = 0, then wi is a function of wj .
Hence, once wj is known, wi can be computed. In such a case, the value of the index i is
not uniquely determined by k queries. Actually, we can say more. If some secrets imply
other secrets, then the Receiver, in order to retrieve secrets, can consider a smaller subset of
indices, by taking into account all implications. This case has no interest in the traditional
oblivious transfer context, since there is no way to avoid that a Receiver, once recovered wj ,
using the a-priori knowledge about the relations among the secrets, computes also wi. Hence,
we will not go further in our analysis along this line. In what follows we assume that for any
i, j, where i 
= j, the entropy H(Wi|Wj) > 0, i.e., secrets might be related but implications
are not present, and we say that the sequence of secrets is implication-free.

The idea behind the proof that as long as secrets are implication-free then a sequence of
k queries determines T uniquely, is the following: if two indices, along with suitably chosen
random strings, determine the same k-tuple of queries, since the answers depend only on the
queries, the Receiver computes two different secrets. But such a possibility is excluded by
condition (7) of Definition 2.2.

Lemma 4.5 In any correct and private one-round (k,m)-DOT-
(n
1

)
scheme, if the sequence

of secrets is implication-free, then for any subset X ⊆ {1, . . . ,m} of k indices, it holds that

H(T|QX) = 0. (25)

Proof. For any i = 1, . . . , n, condition (17) states that H(QX |DR,T = i) = 0. Hence, the
sequence of queries QX is function only of DR and i. Assume that there exist two possible
pairs (DR1 , i1) and (DR2 , i2), where i1 
= i2, for which the Receiver’s program produces as
output queries QX . Then, Lemma 4.3 and Definition 4.1 imply that

H(Wi1 |AX ,QX = QX ,DR = DR1 ,T = i1) = 0

and
H(Wi2 |AX ,QX = QX ,DR = DR2 ,T = i2) = 0.

Hence, due to Lemma 3.1, setting A = W, B = Wi2 , C = (AX ,QX = QX ,DR = DR2 ,T =
i2), and D = ∅, it holds that

H(W|T = i2,DR = DR2 ,AX ,QX = QX ,Wi1) ≤ H(W|Wi2 ,Wi1). (26)

Due to condition (7) of Definition 2.2, it holds

H(W|T = i2,DR = DR2 ,AX ,QX = QX ,Wi1) = H(W|Wi1). (27)

Indeed, the equality follows by considering an adversary who uses a program R defined as
follows: on input i2 and DR2 , the program R ignores i2 and behaves honestly in order to
retrieve wi1 , using DR2 as random string. Hence,

∼
i= f(i2,DR2 , R) = i1.

17



Therefore, from inequality (26) and equality (27), it follows that

H(W|Wi1) ≤ H(W|Wi1 ,Wi2). (28)

Moreover, property (34) of Appendix A implies that

H(W|Wi1) = H(Wi2 |Wi1) + H(W \ Wi2 |Wi1 ,Wi2)
= H(Wi2 |Wi1) + H(W|Wi1 ,Wi2).

Hence, inequality (28) holds only if H(Wi2 |Wi1) = 0. But since the sequence of secrets is
implication-free, this is clearly a contradiction. Therefore, a sequence of k queries uniquely
determines the index of the secret. Hence, H(T|QX) = 0.

4.2 Bounds for One-round Schemes

We show some bounds on the size of the queries, on the size of the answers, and on the
randomness the Receiver needs to construct the queries for the Servers.

The first lemma shows that a query, given any sequence of at most k − 1 other queries,
can still determine any index.

Lemma 4.6 In any correct and private one-round (k,m)-DOT-
(n
1

)
scheme, if the sequence

of secrets is implication-free, then for any subset of indices X ⊂ {1, . . . ,m}, where 1 ≤ |X| ≤
k − 1, and for any j /∈ X, it holds that

H(Qj|QX) ≥ H(T).

Proof. Let Y ⊂ {1, . . . ,m}, such that |Y | = k− |X| − 1, j /∈ Y, and X ∩Y = ∅. Notice that,
due to property (38) of Appendix A, I(Qj ;T|QX∪Y ) is equal to

H(Qj|QX∪Y ) − H(Qj |QX∪Y ,T) = H(T|QX∪Y ) − H(T|QX∪Y ,Qj).

Hence,
H(Qj|QX∪Y ) = H(T|QX∪Y ) − H(T|QX∪Y ,Qj) + H(Qj |QX∪Y ,T).

Since condition (24) states that H(T|QX∪Y ) = H(T), Lemma 4.5 proves that
H(T|QX∪Y ,Qj) = 0, and property (32) establishes that H(Qj |QX∪Y ,T) ≥ 0, applying
property (39), it follows that

H(Qj |QX) ≥ H(Qj |QX∪Y ) ≥ H(T).

Using the above lemma, we show a lower bound on the size of k queries in terms of the
uncertainty about T.

Theorem 4.7 In any correct and private one-round (k,m)-DOT-
(n
1

)
scheme, if the sequence

of secrets is implication-free, then for any subset X ⊆ {1, . . . ,m}, where 1 ≤ |X| ≤ k, it
results

H(QX) ≥ |X| · H(T).
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Proof. Notice that

H(QX) ≥
∑
j∈X

H(Qj|QX\{j}) (due to properties (35) and (34))

≥ |X| · H(T) (due to Lemma 4.6).

The following lemma shows that the amount of information provided by any answer sent
by a Server, given any other k − 1 answers, queries, random bits used by the Receiver and
the chosen index, is greater than H(Wi).

Lemma 4.8 In any correct and private one-round (k,m)-DOT-
(n
1

)
scheme, if the sequence

of secrets is implication-free, then for any subset X ⊂ {1, . . . ,m}, where 1 ≤ |X| ≤ k− 1, for
any j /∈ X, and for any i = 1, . . . , n, it holds that

H(Aj |AX ,QX ,DR,T = i) ≥ H(Wi).

Proof. Let Y ⊂ {1, . . . ,m}, such that |Y | = k−|X|−1, j /∈ Y, and X∩Y = ∅. Let us denote
by V = (QX∪Y ∪{j},DR,T = i). From property (38) of Appendix A, the mutual information
I(Aj ;Wi|AX∪Y ,V) can be written as

H(Aj |AX∪Y ,V) − H(Aj |AX∪Y ,Wi,V)

or as
H(Wi|AX∪Y ,V) − H(Wi|AX∪Y ,Aj ,V).

Hence, H(Aj |AX∪Y ,V) is equal to

H(Wi|AX∪Y ,V) − H(Wi|AX∪Y ,Aj ,V) + H(Aj|AX∪Y ,Wi,V).

Due to Definition 4.1, H(Wi|AX∪Y ,Aj ,V) = 0 and because of property (32),
H(Aj |AX∪Y ,Wi,V) ≥ 0. Moreover, since H(Qj|DR,T = i) = 0, applying condition (13), it
follows that

H(Wi|AX∪Y ,V) = H(Wi|AX∪Y ,QX∪Y ,DR,T = i) ≥ H(Wi).

Therefore, applying property (39), we get

H(Aj |AX ,QX ,DR,T = i) ≥ H(Aj |AX∪Y ,V) ≥ H(Wi).

Using the above lemma we show a lower bound on the size of the answers sent by a subset
SX of Servers.

Theorem 4.9 In any correct and private one-round (k,m)-DOT-
(n
1

)
scheme, if the sequence

of secrets is implication-free, then for any subset X ⊆ {1, . . . ,m}, where 1 ≤ |X| ≤ k, and
for any i = 1, . . . , n, it holds that

H(AX |QX ,T = i) ≥ |X| · H(Wi).
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Proof. Notice that

H(AX |QX ,T = i) ≥
∑
j∈X

H(Aj |QX ,AX\{j},T = i)

(due to properties (35) and (34))
≥

∑
j∈X

H(Aj |QX ,AX\{j},DR = DR,T = i)

(due to property (34))
=

∑
j∈X

H(Aj |QX\{j},AX\{j},DR = DR,T = i)

(since H(Qj |DR = DR,T = i) = 0)
≥ |X| · H(Wi) (due to Lemma 4.8).

Using the above results, we show a lower bound on the size of both answers and queries.
More precisely, we prove that:

Theorem 4.10 In any correct and private one-round (k,m)-DOT-
(n
1

)
scheme, if the se-

quence of secrets is implication-free, then for any subset X ⊆ {1, . . . ,m}, where 1 ≤ |X| ≤
k − 1, and for any i = 1, . . . , n, it holds that

H(AX ,QX |T = i) ≥ |X| · (H(T) + H(Wi)).

Proof. Notice that,

H(AX ,QX |T = i) = H(QX |T = i) + H(AX |QX ,T = i) (due to property (34))
= H(QX) + H(AX |QX ,T = i) (due to condition (24))
≥ |X| · H(T) + |X| · H(Wi) (due to Theorem 4.7 and Theorem 4.9)
= |X| · (H(T) + H(Wi)).

Notice that, as we have already argued before, condition (16) implies that, as long as
1 ≤ |X| ≤ k − 1, any pair (AX , QX) is independent of i. Hence, the above bound can be
strengthened. More precisely, for any X such that 1 ≤ |X| ≤ k − 1, it follows that

H(AX ,QX) ≥ |X| · (H(T) + max
i

{H(Wi)}).

Moreover, if |X| = k, along the same line of the previous proof, it is easy to show that, for
any i = 1, . . . , n,

H(AX ,QX |T = i) ≥ kH(Wi) + (k − 1) · H(T).

Notice that Theorem 4.10 improves the lower bound given by Theorem 3.9 for general DOT
schemes.

Finally, we show a lower bound on the randomness the Receiver needs to generate the
queries in order to retrieve a certain secret.

Theorem 4.11 In any correct and private one-round (k,m)-DOT-
(n
1

)
scheme, if the se-

quence of secrets is implication-free, then it results

H(DR) ≥ (k − 1)H(T).
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Proof. Let X = {j1, . . . , jk} ⊆ {1, . . . ,m} be a subset of k indices. First notice that, from
(38) of Appendix A,

I(DR;QX |T) = H(DR|T) − H(DR|QX ,T)
= H(QX |T) − H(QX |DR,T).

From condition (17), we get that H(QX |DR,T) = 0, and, from (32) of Appendix A, we get
H(DR|QX ,T) ≥ 0. It follows that

H(DR|T) ≥ H(QX |T). (29)

Moreover, from (39) and (35) of Appendix A, we get that

H(QX |T) ≥ H(QX\{jk}|T) =
k−1∑
�=1

H(Qj�
|Qj1 , . . . ,Qj�−1

,T). (30)

On the other hand, from (38) of Appendix A, denoting by Y� = {j1, . . . , j�−1}, we get

I(T;Qj�
|QY�

) = H(Qj�
|QY�

) − H(Qj�
|QY�

,T)
= H(T|QY�

) − H(T|QY�+1
),

from which it follows that

H(Qj�
|QY�

,T) = H(Qj�
|QY�

) − H(T|QY�
) + H(T|QY�+1

).

Moreover, in any one-round (k,m)-DOT-
(n
1

)
, from condition (24) and property (33), for

� = 1, . . . , k, it follows that H(T|QY�
) = H(T). Therefore, for � = 1, . . . , k − 1, H(T|QY�

) =
H(T|QY�+1

) = H(T). Hence, for � = 1, . . . , k − 1,

H(Qj�
|QY�

,T) = H(Qj�
|QY�

). (31)

Moreover, due to Lemma 4.6, for � = 1, . . . , k−1, H(Qj�
|QY�

) ≥ H(T). Therefore, from (29),
(30) and (31), it results

H(DR|T) ≥
k−1∑
�=1

H(Qj�
|QY�

,T) ≥
k−1∑
�=1

H(Qj�
|QY�

) ≥ (k − 1)H(T).

Hence, applying (34) of Appendix A, we get

H(DR) ≥ H(DR|T) ≥ (k − 1)H(T).

Tightness of the bound. Notice that the above lower bound is tight. Indeed, the (one-
round) combinatorial constructions we will present in Section 6, meet the bound by equality.
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5 One-Round Protocols Based on Polynomial Interpolation

Two one-round protocols for (k,m)-DOT-
(2
1

)
have been proposed2 in [37]. The first one uses

sparse bivariate polynomials. The second one uses fully bivariate polynomials. Both con-
structions of (k,m)-DOT-

(2
1

)
use, as a building block, a sub-protocol from which a dishonest

Receiver can infer at most a linear combination of the secrets held by the Sender. The (k,m)-
DOT-

(2
1

)
protocol is then obtained by composing in a certain way multiple instances of the

sub-protocol. The general structure of the sub-protocol is given in Table 1.

Structure of the sub-protocols used in the design of one-round (k, m)-DOT-
(
2
1

)
in [37].

Let w0, w1 ∈ Fp be S’s secrets, and let i ∈ {0, 1} be R’s choice.
Set-up Phase.

• The Sender S generates a bivariate polynomial Q(x, y) with values in Fp such that Q(0, 0) =
w0, and Q(0, 1) = w1.

• Then, for j = 1, . . . , m, S sends the univariate polynomial Q(j, ·) to Server Sj .

Oblivious Transfer Phase.

• The Receiver R chooses a random polynomial Z such that Z(0) = i, and defines a univariate
polynomial V to be V (x) = Q(x, Z(x)) such that the degree of V is k − 1.

• Then, the Receiver R chooses a subset X ⊆ {1, . . . , m} of k indices and, for every j ∈ X ,
sends to Server Sj the value Z(j), and receives from Sj the value V (j) = Q(j, Z(j)).

• After having received the k values V (j), for j ∈ X , the Receiver R interpolates V and
computes V (0).

Table 1: The structure of the sub-protocol

In this section we describe one-round (k,m)-DOT-
(n
1

)
oblivious transfer protocols, which

generalize and strengthen the one-round (k,m)-DOT-
(2
1

)
protocols proposed in [37]. We

assume that 1 < k ≤ m, and implement our protocols over the finite field Fp, where p >
max{m,n} is prime. In Table 2 we describe the sub-protocol used in the design of the one-
round (k,m)-DOT-

(n
1

)
oblivious transfer protocol, which generalizes and strengthens the first

one-round (k,m)-DOT-
(2
1

)
protocol. Then, we show how to compose such a sub-protocol in

order to set up a (k,m)-DOT-
(n
1

)
, and we exhibit a proof of correctness and privacy of the

overall construction. Along the same line, in Table 4, we describe the sub-protocol used in the
design of a t-private one-round oblivious transfer protocol (a notion we will define later on),
which generalizes the second distributed oblivious transfer protocol. Due to the similarity
of the strategy to construct such a scheme with the strategy to set up the first one, we will
only sketch the description of the full scheme, resulting by composing multiple instances of
the sub-protocol.

2Notice that, a (k, m)-DOT-
(
2
1

)
can be used as a black box to set up “more complex” oblivious transfer

protocols in the same distributed model (see [23, 19, 10] for unconditionally secure reductions). In this
case, any improvement in the design of the available (k, m)-DOT-

(
2
1

)
, implies directly an improvement of the

performance of the more complex protocols.
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Let us start by analyzing the sub-protocol to set up a (k,m)-DOT-
(n
1

)
(see Table 2).

A Sub-Protocol for one-round (k, m)-DOT-
(
n
1

)
.

Let w0, w1, . . . , wn−1 ∈ Fp be S’s secrets, and let i ∈ {0, . . . , n − 1} be R’s choice.
Set-up Phase.

• The Sender S generates indepen-
dently and uniformly at random values a1, . . . , ak−1, r1, . . . , rn−1 ∈ Fp. Then, he sets up
an univariate polynomial a(x) =

∑k−1
j=0 ajx

j , where a0 = w0, and an n-variate polynomial

Q(x, y1, . . . , yn−1) = a(x) + b1y1 + · · · + bn−1yn−1,

where bi = riwi − w0, for i = 1, . . . , n − 1. It follows that Q(0, 0, . . . , 0) =
w0, Q(0, 1, 0, . . . , 0) = r1w1, . . . , Q(0, 0, . . . , 1) = rn−1wn−1.

• Then, for � = 1, . . . , n − 1, he shares independently r�, according to a Shamir’s (k, m)
threshold secret sharing scheme. Let rj

� , for j = 1, . . . , m, the corresponding shares. For
j = 1, . . . , m, the Sender S sends the (n − 1)-variate polynomial Q(j, y1, . . . , yn−1) and the
shares rj

1, . . . , r
j
n−1 to Server Sj .

Oblivious Transfer Phase.

• The Receiver R constructs n − 1 polynomials, Z1(x), . . . , Zn−1(x), of degree k − 1, in such
a way that (Z1(0), . . . , Zn−1(0)) is an (n − 1)-tuple of zeroes if the Receiver R is interested
in w0, i.e., i = 0, or an (n− 1)-tuple of zeroes and a single 1 in position i, if the Receiver R
is interested in wi, i.e., i ∈ {1, . . . , n − 1}. The remaining coefficients of Z1(x), . . . , Zn−1(x)
are chosen independently and uniformly at random in Fp.

• Then, the Receiver R chooses a subset X ⊆ {1, . . . , m} of k indices and, for every
j ∈ X , sends to Server Sj the values Z1(j), . . . , Zn−1(j) and receives the value V (j) =
Q(j, Z1(j), . . . , Zn−1(j)), and all the shares rj

1, . . . , r
j
n−1.

• After having received the k values V (j), for j ∈ X, the Receiver R interpolates a univariate
polynomial V (x) = Q(x, Z1(x), . . . , Zn−1(x)) of degree k − 1, and computes V (0) if i = 0,
or V (0)/ri, if i ∈ {1, . . . , n − 1}, where ri is reconstructed through the shares rj

i ’s.

Table 2: A sub-protocol for one-round (k,m)-DOT-
(n
1

)
.

From the description given in Table 2, it is easy to see that condition (17) is satisfied.
Indeed, every query Qj is uniquely determined by the index of the secret chosen by the
Receiver and her random values, as well as every answer Aj is uniquely determined by the
query Qj and the data Dj held by Sj.
Correctness. We show that the sub-protocol given in Table 2 satisfies Definition 4.1.
For � = 1, . . . , n− 1, let Z�(x) =

∑k−1
j=0 zj

�x
j be the polynomial generated by R, where zj

� , for
j = 1, . . . , k − 1 are random values. The polynomial V (x) interpolated by R

V (x) = Q(x,Z1(x), . . . , Zn−1(x))

can be written in explicit form as
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k−1∑
j=1

ajx
j + a0 + b1(z0

1 +
k−1∑
j=1

zj
1x

j) + · · · + bn−1(z0
n−1 +

k−1∑
j=1

zj
n−1x

j)

which can be re-arranged as

k−1∑
j=1

(aj + b1z
j
1 + · · · + bn−1z

j
n−1)x

j + a0 + b1z
0
1 + · · · + bn−1z

0
n−1.

For x = 0, the polynomial becomes V (0) = a0 + b1z
0
1 + · · ·+ bn−1z

0
n−1. If (z0

1 , . . . , z0
n−1) =

(0, . . . , 0), then V (0) = a0 = w0. On the other hand, if (z0
1 , . . . , z0

n−1) = (0, . . . , 1, . . . , 0)
where 1 is in position i, for a certain i ∈ {1, . . . , n − 1}), then V (0) = bi − a0 = riwi. From
the k shares rj

i , where j ∈ X, she reconstructs ri. Therefore, V (0)/ri is exactly the desired
secret, that is, wi.

Privacy. About the privacy property, stated by Definition 2.2, notice that:

• Condition (5) is satisfied due to the degree of the polynomials chosen by the Receiver.
Indeed, a coalition of k− 1 Servers, say SX , where X = {1, . . . , k− 1}, contacted by R,
gets, for each j = 1, . . . , n− 1, only k− 1 points of the polynomial Zj(x). Therefore, for
any possible choice of Zj(0) ∈ {0, 1}, the coalition interpolates a different and unique
polynomial Zj(x) of degree k, which agrees with the k − 1 received values. Since,
for j = 1, . . . , n − 1, all coefficients of Zj(x) but Zj(0) are chosen independently and
uniformly at random, for any (k − 1)-tuple of values Zj(1), . . . , Zj(k − 1) and for any
index i ∈ {0, . . . n − 1} chosen by the Receiver, it holds that,

Prob(Zj(1), . . . , Zj(k − 1)|i) =
1

pk−1
.

Denote with z the n−1 sequences of k−1 values Zj(1), . . . , Zj(k−1), for j = 1, . . . , n−1.
Then, for any index i ∈ {0, . . . n − 1} chosen by the Receiver, there exists a unique
sequence of (n − 1) polynomials interpolating z. Hence, it holds that Prob(z|i) =

1
p(n−1)(k−1) . Applying Bayes’ theorem, we have

Prob(i|z) =
Prob(i) · Prob(z|i)∑

j∈{0,...,n−1} Prob(j) · Prob(z|j)

=
Prob(i) · 1/p(n−1)(k−1)∑

j∈{0,...,n−1} Prob(j) · 1/p(n−1)(k−1)

=
Prob(i) · 1/p(n−1)(k−1)

1/p(n−1)(k−1) · ∑j∈{0,...,n−1} Prob(j)

= Prob(i).

Hence, the probability distribution Prob(i|z) of the n indices, given the “view” of the
k− 1 Servers (i.e., the (k− 1) tuples of (n− 1) values, obtained by interacting with R),
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is equal to the a-priori probability distribution of the n indices Prob(i), induced by the
Receiver’s choice. Moreover, the data DX held by the Servers, are independent of z
and i. Hence, Prob(i|z,DX) = Prob(i|z). As a consequence, the choice of the Receiver
is private.

• Condition (6). First notice that the Receiver does not get any information during the
set-up phase about the secrets. Then, let us assume w.l.o.g. that the coalition is com-
posed by Servers S1, . . . , Sk−1. They hold polynomials Q(1, y1, . . . , yn−1), . . . , Q(k −
1, y1, . . . , yn−1), and shares r1

1, . . . , r
k−1
1 , . . . , r1

n−1, . . . , r
k−1
n−1. We show that, for any

choice of n secrets w0, . . . , wn−1, and shares r1
1, . . . , r

k−1
1 , . . . , r1

n−1, . . . , r
k−1
n−1, there ex-

ists a sequence of random values r1, . . . , rn−1 such that the n-variate polynomial
P (x, y1, . . . , yn−1) = a(x) + b1y1 + · · · + bn−1yn−1, with coefficients a0 and bj , for
j = 1, . . . , n − 1, defined as in Table 2, satisfies the following property: for any
� ∈ {1, ..., k − 1}, it holds that P (�, y1, . . . , yn−1) = Q(�, y1, . . . , yn−1) and the shares
r1
1, . . . , r

k−1
1 , . . . , r1

n−1, . . . , r
k−1
n−1 are consistent with r1, . . . , rn−1.

The polynomial P (x, y1, . . . , yn−1) = a(x) + b1y1 + · · · + bn−1yn−1 is constructed as
follows: for i = 1, . . . , n − 1 the coefficients b1, . . . , bn−1 are equal to the coeffi-
cients of y1, . . . , yn−1 in the (n − 1)-variate polynomials Q(1, y1, . . . , yn−1), . . . , Q(k −
1, y1, . . . , yn−1) held by S1, . . . , Sk−1. Moreover, since a0 = w0 and bi = riwi − w0, for
i = 1, . . . , n − 1, for any choice of the secrets w0, . . . , wn−1 the coefficient a0 and the
values r1, . . . , rn−1 are uniquely determined. Then, the coefficients of

∑k−1
j=1 ajx

j are the
solution to the system of k − 1 linear equations given by P (�, 0, . . . , 0) = Q(�, 0, . . . , 0),
for � = 1, . . . , k − 1, whose variables are a1, . . . , ak−1. The solution is unique since, in
matrix form, the above system of linear equations is such that the matrix of coefficients
is a (k − 1) × (k − 1) Vandermonde matrix.

Therefore, given a sequence of secrets w0, . . . , wn−1 and the sequence of ran-
dom values r1, . . . , rn−1, there exists a one-to-one correspondence between the
choices of a set of coefficients a1, . . . , ak−1, and the sequences of polynomials
Q(1, y1, . . . , yn−1), . . . , Q(k − 1, y1, . . . , yn−1). Moreover, due to the properties of se-
cret sharing schemes, the shares r1

1, . . . , r
k−1
1 , . . . , r1

n−1, . . . , r
k−1
n−1 are consistent with

r1, . . . , rn−1, and do not give any information about them. Indeed, r1, . . . , rn−1 and
the shares r1

1, . . . , r
k−1
1 , . . . , r1

n−1, . . . , r
k−1
n−1 are statistically independent, i.e.,. denoting

by Shares the shares r1
1, . . . , r

k−1
1 , . . . , r1

n−1, . . . , r
k−1
n−1, and by r the values r1, . . . , rn−1,

it holds that
Prob(Shares|w, r) = Prob(Shares|r) =

1
p(n−1)(k−1)

.

Since the Sender S chooses the coefficients independently and uniformly at random
then, it holds that the probability of getting polynomials Q(1, y1, . . . , yn−1), . . . , Q(k −
1, y1, . . . , yn−1), once the Sender has chosen a sequence of secrets w =< w0, . . . , wn−1 >
with Prob(w) > 0, and the sequence of random values r =< r1, . . . , rn−1 >, is

Prob(Q(1, y1, . . . , yn−1), . . . , Q(k − 1, y1, . . . , yn−1)|w, r) = 1/pk−1.

Therefore, denoting with q the polynomials Q(1, y1, . . . , yn−1), . . . , Q(k −
1, y1, . . . , yn−1), the joint probability of q and Shares, given w and r is:

Prob(q, Shares|w, r) = Prob(q|w, r) · Prob(Shares|q, w, r) =
1

pk−1
· 1
p(n−1)(k−1)

.
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Applying Bayes’ theorem, we have

Prob(w, r|q, Shares) =
Prob(w, r) · Prob(q, Shares|w, r)∑

w′∈F n
p :Prob(w′)>0,r′∈Fp

Prob(w′, r′) · Prob(q, Shares|w′, r′)

=
Prob(w, r) · 1/p(n−1)(k−1)(k−1)∑

w′∈F n
p :Prob(w′)>0,r′∈Fp

Prob(w′, r′) · 1/p(n−1)(k−1)(k−1)

=
Prob(w, r) · 1/p(n−1)(k−1)(k−1)

1/p(n−1)(k−1)(k−1) · ∑w′∈F n
p :Prob(w′)>0,r′∈Fp

Prob(w′, r′)

= Prob(w, r).

Hence, it follows that the probability distribution Prob(w|q, Shares) of the n secrets,
given the k − 1 polynomials held by S1, . . . , Sk−1 and the shares Shares held by the
Servers, is equal to the a-priori probability distribution of the n secrets Prob(w), in-
duced by the Sender’s choices. Finally, since DR are truly random bits independent of
w, r, Shares and q, it holds that Prob(w|q, Shares,DR) = Prob(w|q, Shares).

• Condition (7) is not satisfied. Indeed, it is possible to show that in the protocol given in
Table 2 the Receiver can learn a linear combination of the secrets. Indeed, if the Receiver
does not follow the protocol and chooses certain values (Z1(0), . . . , Zn−1(0)), say for
example (2, 3, . . . , 1), then she gets a linear combination of the secrets w0, . . . , wn−1.

Notice that, in [37], for the case of two secrets, a proof that the Receiver can get no more
than a single linear combination of the two secrets by running the sub-protocol described in
Table 2 with k Servers was given. It is not difficult to show that the proof easily generalises to
our scheme for n secrets, i.e., after receiving information from k servers, the Receiver cannot
learn more than a single linear combination of w0, w1, . . . , wn−1. Indeed, our scheme extends
the scheme in [37] to deal with n secrets. Moreover, it enjoys a further security properties
i.e., Condition (6), which is not satisfied by the scheme of [37]. Indeed, in the protocol of
[37], each Server can compute a linear combination of the secrets.

The above protocol can be used to construct a (k,m)-DOT-
(n
1

)
, forcing the Receiver to get

at most one of the secrets held by the Sender and no joint information about the secrets, by
using multiple instances of the sub-protocol. More precisely, the sub-protocol given in Table
2, can be used as a building block to set up a (k,m)-DOT-

(n
1

)
. The idea is the following: the

Sender executes with the Receiver 2 parallel instances of the sub-protocol of Table 2, with
the constraint that the Receiver asks the same queries, i.e., sends the same values for both
instances. The first instance hides “masked” secrets, i.e., for i = 0, . . . , n − 1, the value ciwi

instead of simply wi. The other instance hides the masks ci which are needed in order to
recover the corresponding secret wi. If the Receiver sends correct values, then she obtains
one and only one masked secret from the first instance and the mask from the other instance.
Otherwise, she gets no information about the secrets.

The scheme is given in Table 3. We use parts of the sub-protocol described in Table 2,
which, to simplify the description, we denote as SubDOT (·). The inputs to the instances of
SubDOT (·) we use are sequences of suitably chosen secrets.

We show that the protocol given in Table 3 implements a (k,m)-DOT-
(n
1

)
.
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A Protocol for (k, m)-DOT-
(
n
1

)
.

Let w0, w1, . . . , wn−1 ∈ Fp be S’s secrets, and let i ∈ {0, . . . , n − 1} be R’s choice.
Set-up Phase.

• The Sender S executes simultaneously and independently the Set-up Phase of 2 in-
stances SubDOT1(·) and SubDOT2(·) of the sub-protocol given in Table 2 as follows: let
c0, c1, . . . , cn−1 be values, different from zero, chosen independently and uniformly at random
in Fp. Then, he executes:

Set-up Phase of SubDOT1(c0w0, c1w1, . . . , cn−1wn−1)
Set-up Phase of SubDOT2(c0, c1, c2, . . . , cn−1)

Every Server Sj receives from S, for � = 1, 2, the polynomial and the shares corresponding
to the random values r�

0, . . . , r
�
n−1, associated with SubDOT�(·).

Oblivious Transfer Phase.

• Let X ⊆ {1, . . . , m} be a subset of k indices. The Receiver R sends, for every j ∈ X, to
Server Sj , the same values described in Table 2, that is, R sends to Server Sj the values
Z1(j), . . . , Zn−1(j). However, she receives, from each of the k Servers, 2 values, according to
the instances SubDOT1(c0w0, c1w1, . . . , cn−1wn−1) and SubDOT2(c0, c1, c2, . . . , cn−1) and
the sequences of shares.

• If the Receiver’s choice is i ∈ {0, 1, . . . , n − 1}, then she obtains from
SubDOT1(c0w0, c1w1, . . . , cn−1wn−1) the value ciwi, and from the other instance
SubDOT2(c0, c1, c2, . . . , cn−1), the value ci.

• Then, a simple division in Fp, i.e., ciwi/ci, yields the desired secret.

Table 3: A one-round (k,m)-DOT-
(n
1

)
scheme: Set-up.

Correctness. From the description of the Oblivious Transfer Phase, it is easy to see that
Definition 4.1 is satisfied. The correctness of the sub-protocol of Table 2 guarantees that the
Receiver gets a masked secret and the mask. Then, a simple computation (i.e. division in
Fp) enables recovering the secret by removing the mask.

Privacy. The privacy property, stated by Definition 2.2, can be shown as follows:

• Condition (5) follows exactly from the same argument we have applied discussing the
protocol given in Table 2. We are repeating 2 times the protocol of Table 2, with
the constraint that the Receiver sends a single sequence of values instead of 2 distinct
sequences of values.

• Condition (6) holds because the two instances SubDOT1(·) and SubDOT2(·) are inde-
pendent and, each of them, does not lack any information about its own input, i.e.,
masked secrets and masks are all equiprobable.

• Condition (7) can be shown by analysing two cases. The Receiver uses a malicious
program R. In order to learn information about more than one secret, such a program
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cheats by sending an incorrect sequence of values z to the Servers SX . Notice that,
for any subset of k indices X, for any i = 0, . . . , n − 1, for any possible random string
DR, and for any malicious program R, the values computed through R and sent to SX ,

uniquely determine an index
∼
i , represented as a tuple (0, Z1(0), . . . , Zn−1(0)). Indeed,

the values sent by the Receiver can always be sees as evaluation of certain interpolated
polynomials Z1(x) =

∑k−1
j=0 zj

1x
j, . . . , Zn−1(x) =

∑k−1
j=0 zj

n−1x
j of degree k − 1, i.e., as a

sequence z given by Z1(j), . . . , Zn−1(j), for j ∈ X. Such an index
∼
i either is a value in

{0, . . . , n − 1} or does not belong to {0, . . . , n − 1}.
Case i). If

∼
i∈ {0, . . . , n − 1}, then, from the values the Receiver gets from the Servers

SX , she computes the secret w∼
i

and gets no additional information about the oth-
ers. Indeed, it is easy to check that, the interpolating polynomial V1(x) associated to
SubDOT1(·) is equal to

V1(x) =
k−1∑
j=1

(aj + b1z
j
1 + · · · + bn−1z

j
n−1)x

j + a0 + b1z
0
1 + · · · + bn−1z

0
n−1

=
k−1∑
j=1

ejx
j + c∼

i
r∼

i
w∼

i

where ej = aj + b1z
j
1 + · · ·+ bn−1z

j
n−1, for j = 1, . . . , k− 1 and, similarly, for the second

instance SubDOT2(·), the polynomial V2(x) is equal to V2(x) =
∑k−1

j=1 gjx
j+c∼

i
r′∼

i
, where

gj = a′j + b′1z
j
1 + · · · + b′n−1z

j
n−1, for j = 1, . . . , k − 1, and r0 = r′0 = 1.

Hence, the Receiver could gain information about the other secrets by analysing the
coefficients ej and gj , for j = 1, . . . , k − 1. Indeed, the polynomials V1(x) and V2(x) are
an equivalent representation of the information (i.e., sets of points) that the Receiver
gets by interacting with the Servers. Therefore, there in no loss of generality in focusing
on them.

Notice that, the Receiver has full control over the elements zi
j ’s but has no control

over a1, . . . , ak−1 and a′1, . . . , a′k−1, and over the coefficients c0, . . . , cn−1, hidden in
b1, . . . , bn−1, b

′
1, . . . , b

′
n−1, which are chosen uniformly at random by the Sender.

We show that the probability of getting e1, . . . , ek−1 and g1, . . . , gk−1 is equal to
(1/pk−1)2, independently of the remaining secrets. Indeed, once fixed the values of
bi, b

′
i and zi

j ’s, the sums b1z
j
1 + · · · + bn−1z

j
n−1 and b′1z

j
1 + · · · + b′n−1z

j
n−1 are deter-

mined, and any choice of aj and a′j implies different values for ej and gj . Therefore,
for i = 1, . . . , n − 1, independently of the values bi and b′i (and, hence, of the remaining
secrets), the choice of the values a1, . . . , ak−1 and a′1, . . . , a′k−1, determines the values
e1, . . . , ek−1 and g1, . . . , gk−1.

Let us denote with w∗ the choices of the remaining secrets, with z the sequence of
values sent by the Receiver, and with r and r′ the sequences of random values used by
the Sender. Then, the transcript CX of the conversation between the Receiver and the
Servers is equivalent to (z, e1, . . . , ek−1, g1, . . . , gk−1, w∼

i
c∼

i
r∼

i
, c∼

i
r′∼

i
, Shares). It follows

that:
Prob(CX |i,DR, w∼

i
, c∼

i
, w∗, r, r′) = (1/pk−1)2n.
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Therefore, due to Bayes’ theorem and the independence of w∗ from i,DR, r, r′ and c∼
i
,

we have that the Prob(w∗|i,DR, CX , w∼
i
, c∼

i
, r, r′) is equal to

Prob(w∗|i,DR, w∼
i
, c∼

i
, r, r′) · Prob(CX |i,DR, w∼

i
, c∼

i
, r, r′, w∗)∑

w′:Prob(w′>0) Prob(w′|i,DR, w∼
i
, c∼

i
, r, r′) · Prob(CX |i,DR, w∼

i
, c∼

i
, r, r′, w′)

= Prob(w∗|i,DR, w∼
i
, c∼

i
, r, r′) = Prob(w∗|w∼

i
).

Hence, from the Receiver’s point of view, once a secret is known, the other n − 1
secrets still have the same a-priori probabilities, i.e., Prob(w|i,DR, CX , w∼

i
, c∼

i
, r, r′) =

Prob(w|w∼
i
).

Case ii). We prove that, from the values the Receiver gets from the Servers SX , she
computes no information about the secrets at all. Indeed, as we have discussed before,
the sub-protocol SubDOT (·) leaks at most one linear combination of the secrets. Such a
result can be formally proved by applying the same argument used in [37] for the case of
two secrets. The sub-protocol SubDOT1(·) hides the secrets c0w0, c1w1, . . . , cn−1wn−1;
while, the sub-protocol SubDOT2(·) hides the secrets c0, c1, . . . , cn−1. Hence, the Re-
ceiver, running the protocol, gets at most two linear combinations:

γ1 = α0c0w0 + . . . + αn−1cn−1wn−1

γ2 = α0c0 + . . . + αn−1cn−1

which can be expressed in a matrix form as follows:

[
α0w0 · · · αn−1wn−1

α0 · · · αn−1

]
×

⎡
⎢⎢⎢⎢⎢⎣

c0

...

cn−1

⎤
⎥⎥⎥⎥⎥⎦

=
[

γ1

γ2

]

We have to show that Prob(w|i,DR, CX) = Prob(w). The transcript of the interaction
CX is equal to (z, a), where z is the sequence of values the Receiver sends to the Servers
SX , and a is the sequence of answers she receives. Since from (i,DR, CX) the Receiver
gets at most the above two linear combinations, in order to prove our claim it is enough
to show that Prob(w|γ1, γ2) = Prob(w), once the coefficients αi’s are fixed and known.

Let us assume that the secrets w0, . . . , wn−1 are all distinct, i.e., we add a unique pad
to each of them, and that at least two coefficients among the α′

is are different from
zero. Indeed, if all coefficients are zero, then the Receiver does not get information
about the secrets at all, while, if only one coefficient is different from zero, then the
Receiver gets the corresponding secret and no information on the others. Let us say
that these two coefficients are αi and αj. Then, the determinant of the corresponding
2 × 2 sub-matrix is equal to αiαjwi − αjαiwj 
= 0. Hence, the two rows of the matrix
of the system are linearly independent. Therefore, the above system has pn−2 solution
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vectors (c0, . . . , cn−1), and the Prob(γ1, γ2|w) is equal to 1
pn−2 . Applying Bayes’ theorem

we have that:

Prob(w|γ1, γ2) =
Prob(w) · Prob(γ1, γ2|w)∑

w′:Prob(w′)>0 Prob(w′) · Prob(γ1, γ2|w′)
= Prob(w).

Remark. To set up the scheme the Sender needs (k − 1) + (n − 1) random values
a1, . . . , ak−1, r

�
1, . . . , r

�
n−1 in Fp to construct Q(x, y1, . . . , yn−1), and (k−1)(n−1) random val-

ues to share r�
1, . . . , r

�
n−1, required by the set-up phase of SubDOT�(·), for � = 1, 2. Moreover,

he needs n additional random values c0, . . . , cn−1. Hence, H(D1, . . . ,Dm) = (2kn+n−2) log p.
However, we can show that the same random values a1, . . . , ak−1 can be used in both instances
of SubDOT (·) and the values r′1, . . . , r′n−1 can be computed as function of r1, . . . , rn−1. Thus
the randomness can be reduced to (kn + n − 1) log p.

A sub-protocol for t-private weak one-round (k, m)-DOT-
(
n
1

)
.

Let w0, w1, . . . , wn−1 ∈ Fp be S’s secrets, and let i ∈ {0, . . . , n − 1} be R’s choice.
Set-up Phase.

• Let dx, dy and dz be integers such that dx + dzdy(n − 1) = k − 1. The Sender S generates
independently and uniformly at random values r0, r1 . . . , rn−1 ∈ Fp, and sets up an n-variate
polynomial with values in Fp

Q(x, y1, . . . , yn−1) =
dx∑

j=0

dy∑
�1=0

· · ·
dy∑

�n−1=0

aj,�1,...,�n−1x
jy�1

1 · · · y�n−1
n−1

where a0,...,0 = r0w0, for i = 1, . . . , n− 1,
∑dy

�i=0 a0,...,�i,...,0 = riwi, and all other coefficients
are chosen uniformly at random. It holds that, Q(0, 0, . . . , 0) = r0w0, Q(0, 1, 0, . . . , 0) =
r1w1, . . . , Q(0, 0, . . . , 1) = rn−1wn−1.

• Then, for � = 0, . . . , n − 1, he shares independently r�, according to a Shamir’s (k, m)
threshold secret sharing scheme. Let rj

� , for j = 1, . . . , m, the corresponding shares. For
j = 1, . . . , m, S sends the (n − 1)-variate polynomial Q(j, y1, . . . , yn−1) and the shares
rj
0, . . . , r

j
n−1 to Server Sj .

Oblivious Transfer Phase.

• The Receiver R chooses n−1 random polynomials Z1(x) . . . , Zn−1(x) of degree dz such that
(Z1(0), . . . , Zn−1(0)) is an (n − 1)-tuple of zeroes if i = 0 or an (n − 1)-tuple of zeroes and
a single 1 in position i, if i ∈ {1, . . . , n − 1}.

• Then, the Receiver R chooses a subset X ⊆ {0, . . . , n − 1} of k indices, and sends, for
every j ∈ X, to Server Sj the values Z1(j), . . . , Zn−1(j), and receives the value V (j) =
Q(j, Z1(j), . . . , Zn−1(j)) and all the shares rj

1, . . . , r
j
n−1.

• After having received the k values V (j), for j ∈ X, the Receiver R interpolates a univariate
polynomial V (x) = Q(x, Z1(x), . . . , Zn−1(x)) of degree k − 1, and computes V (0)/ri, where
ri is reconstructed through the shares rj

i ’s.

Table 4: A sub-protocol for t-private weak one-round (k,m)-DOT-
(n
1

)
.
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Strengthening and generalising the second construction of [37], which uses fully n-variate
polynomials, we can set up a sort of DOT protocol in which condition (5) of Definition 2.2
holds against subsets of Servers SX , such that |X| < k − 1, and in which condition (11)
of Definition 2.3 is satisfied with respect to a coalition among the Receiver and a subset of
Servers SX , such that |X| = t < k − 1. We refer to such a protocol as to a t-private weak
one-round (k,m)-DOT-

(n
1

)
. In Table 4 we describe the sub-protocol that can be used to set

up a t-private weak one-round (k,m)-DOT-
(n
1

)
.

Correctness. Definition 4.1 is satisfied. Indeed, denoting as before by Zj(x) =
∑dz

r=0 zr
j x

r

the polynomials generated by R, the polynomial V (x) interpolated by R

V (x) = Q(x,Z1(x), . . . , Zn−1(x))

can be written as

dx∑
j=0

dy∑
�1=0

· · ·
dy∑

�n−1=0

aj,�1,...,�n−1x
j(z0

1 +
dz∑

j=1

zj
1x

j)�1 · · · (z0
n−1 +

dz∑
j=1

zj
n−1x

j)�n−1

Therefore, it is immediate to see that, if for j = 1, . . . , n − 1, z0
j = 0, then V (0) = a0,...,0.

On the other hand, assuming that z0
i = 1, while, for j 
= i it is z0

j = 0, the only term which

appears in V (0) is
∑dy

li=0 a0,...,0,�i,0...,0y
li
i and it is easy to see that

V (0) =
dy∑

li=0

a0,...,0,�i,0...,0.

Privacy. Along the same lines of the proof given for the sub-protocol described in Table
2, we can show that condition (5) of Definition 2.2 holds with respect to a coalition of dz

Servers, and condition (6) of Definition 2.2 is satisfied with respect to a coalition of dx Servers.
However, the protocol given in Table 4 does not satisfy condition (7) of Definition 2.2 and,
hence, condition (11) of Definition 2.3, but it guarantees that the Receiver can learn at most
a linear combination of the secrets. The same strategy applied in Table 3 can be used to set
up a t-private weak one-round (k,m)-DOT-

(n
1

)
, where condition (7) of Definition 2.2 holds,

and condition (11) of Definition 2.3 is also satisfied, with respect to a coalition of size t < k−1
Servers and the Receiver. The threshold t depends on the particular choices of dx, dy, dz and
k.

6 Combinatorial Constructions

In this section we propose some combinatorial constructions for distributed oblivious transfer.
Some of these constructions require trivial computations once the scheme has been set up by
the Sender. The one-round protocols meet the lower bound on the number of random bits
the Receiver must use to set up the queries, given by Theorem 4.11. However, they are not
so efficient in terms of Server memory storage and communication complexity.
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6.1 One-Round Constructions

We start by giving protocols which require one round of interaction to recover a secret.
The constructions are based on well-known combinatorial structures. In order to provide an
intuition of the ideas underlying the following protocols, we start by looking at an example
of a one-round (2, 2)-DOT-

(3
1

)
.

Set-up Phase. Assume that the three secrets held by the Sender are w0, w1 and w2. The
Sender constructs a 2 × 32 matrix A with values chosen in Fp

A =
[

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 a1,8

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7 a2,8

]

in such a way that the sum of the values modp of every column is one of the secrets. There-
fore, we say that every column of A hides a secret. The rule used to hide a secret by means
of a column is depicted in Table 5 and explained below.

Index column 0 1 2 3 4 5 6 7 8
Representation in base 3 00 01 02 10 11 12 20 21 22
Corresponding secret index 0 1 2 1 2 0 2 0 1

Table 5: Correspondence secret-column

The indices of the columns of A, i.e., 0, 1, . . . , 8, represented in base 10 are given in the first
row. The representations of such indices in base 3 are given in the second row. The third
row contains the sum mod3 of the digits of the representations in base 3. For example, the
column whose index is 0 has representation in base 3 equal to 00. Hence, 0 + 0 mod 3 = 0,
which is the value reported in the third row. The column whose index is 1 has representation
01. Hence, 0 + 1 mod 3 = 1. The column whose index is 5 has representation 12. Hence,
1+2 mod 3 = 0, and so on. In general, the column whose index is j ∈ {0, 1, . . . , 8}, represented
in base 3 by cj

1c
j
2, hides the secret wi, for i ∈ {0, 1, 2}, if and only if cj

1 + cj
2 mod 3 = i.

Therefore, it is easy to check that columns whose indices are 0, 5 and 7 hide w0, columns
whose indices are 1, 3 and 8 hide w1, and columns whose indices are 2, 4 and 6 hide w2. Once
the matrix A has been set up, the Sender sends the first row of A to S1 and the second to
S2.

Oblivious Transfer Phase. To recover a secret among w0, w1, w2, let us say w1, the
Receiver chooses one of the columns which hides w1, for example column 3, and sends c3

1 = 1
to S1 and c3

2 = 0 to S2. Every Server sends to the Receiver a subset of the values of his
own row. More precisely, S1 compares 1 with the first digit cj

1 of the representation in base
3 of column j, for j ∈ {0, 1, . . . , 8}. If they are equal, then S1 sends the value a1,j. Server
S2 does the same by comparing 0 with the second digit cj

2 of the representation in base 3 of
column j, for j ∈ {0, 1, . . . , 8}. Therefore, the Receiver gets the values a1,3, a1,4, a1,5 from S1

and a2,0, a2,3, a2,6 from S2, and computes w1 = a1,3 + a2,3 mod p.

The reader can check by hand that the above example yields a one-round (2, 2)-DOT-
(3
1

)
.

The protocol for the general case is given in Table 6. We show that this protocol implements
a One-Round (k, k)-DOT-

(n
1

)
.
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A One-Round (k, k)-DOT-
(
n
1

)
Construction.

Let w0, w1, . . . , wn−1 ∈ Fp be S’s secrets and let i ∈ {1, . . . , n} be R’s index.
Set-up Phase

• S sets up a k × nk matrix A of random values in Fp as follows: for j ∈ {0, . . . , nk − 1}, the
sum of the values of column A[·, j] is equal to wi if, denoting by cj

1 · · · cj
k the representation

in base n of j, then
∑k

�=1 cj
� mod n = i.

• S, for q = 1, . . . , k, sends the q-th row A[q, ·] to the Server Sq.

Oblivious Transfer Phase

• R chooses a value j ∈ {0, . . . , nk − 1} such that
∑k

�=1 cj
� mod n = i and, for q = 1, . . . , k,

she sends the digit cj
q to Server Sq.

• Server Sq, for � = 0, . . . , nk − 1, sends to the Receiver the pair (�, A[q, �]) if and only if the
q-th digit of the n-ary representation of � is equal to cj

q.

• R sums up the values A[1, j], . . . , A[k, j], recovering the secret, that is wi =
∑k

h=1 A[h, j] mod
p.

Table 6: A One-Round (k, k)-DOT-
(n
1

)
Construction

Correctness. Definition 4.1 is satisfied since, once R has chosen column j, whose n-ary
representation is cj

1 . . . cj
k and has sent, for q = 1, . . . , k the digit cj

q to Server Sq, among
other values, certainly she receives back A[1, j], . . . , A[k, j]. Hence, R can compute wi as∑k

h=1 A[h, j] mod p.

Privacy. The privacy property, stated by Definition 2.2, can be shown as follows:

• Condition (5) is satisfied: a coalition of k − 1 Servers, say SX , where X = {1, . . . , k −
1}, contacted by R, cannot infer in which secret she is interested. Indeed, assume
that column j, chosen by R to recover the secret, has n-ary representation cj

1 . . . cj
k.

Then S1, . . . , Sk−1, receive only cj
1 . . . cj

k−1 from R. Since the index i of the secret
wi, hidden by column j, is given by

∑k
�=1 cj

� mod n, for any index i ∈ {0, . . . , n − 1}
chosen by the Receiver, there is exactly one value cj

k such that
∑k−1

�=1 cj
� + ck

j mod n =
i. Hence, Prob(cj

1, . . . , c
j
k−1|i) = 1

n . Therefore, using Bayes’ theorem, it follows that
Prob(i|cj

1, . . . , c
j
k−1) = Prob(i). Finally, since the private information DX is independent

of cj
1, . . . , c

j
k−1, it holds that Prob(i|DX , cj

1, . . . , c
j
k−1) = Prob(i|cj

1, . . . , c
j
k−1).

• Condition (6) basically holds for the same reason we have seen discussing Condition (5).
For any coalition of k − 1 servers, say SX , where X = {1, . . . , k − 1}, SX does not gain
information about any secret from the data DX they possess. Indeed, let DX be the set
of values {A[1, j], . . . , A[k − 1, j], for j = 0, . . . , nk − 1}. Since for any i = 0, . . . , n − 1,
secret wi is hidden by

∑k
q=1 A[q, j] mod p, for certain columns j ∈ {0, . . . , nk−1}, then,

from S′
Xs point of view, for any secret wi, there is exactly one value A[k, j] such that∑k−1

q=1 A[q, j] + A[k, j] mod n = wi. Simple algebra and Bayes’ theorem show that, for

33



all w such that Prob(w) > 0, it holds that Prob(w|DX ) = Prob(w). Finally, since DR

are truly random bits, independent of w and DX , it holds that Prob(w|DX ,DR) =
Prob(w|DX ).

• In order to show condition (7) we have to consider only one case, i.e., Case i). In-
deed, in the above protocol, for any index i and for any possible random string
DR, even if the Receiver’s program is malicious, the integer values it sends to the
Servers uniquely identify a column j ∈ {0, . . . nk − 1} and the corresponding index
∼
i∈ {0, . . . , n − 1}. Such an invariant holds because if the Receiver sends out to a
Server a value which does not belong to {0, . . . , n − 1}, then the Server just does not
reply. Hence, the Receiver surely computes w∼

i
. However, all the values of a column

are needed to compute a secret, and each value is essential to determine the secret.
Therefore, for j ∈ {0, . . . , nk − 1}, whose representation is given by cj

1 . . . , cj
k, and for

q = 1, . . . , k, denote by V aluesq,j = {(�,A[q, �])|� = 0, . . . , nk − 1, and c�
q = cj

q} the set
of pairs of values the Receiver gets from Server Sq. Then, the transcript CX is equal
to (cj

1, . . . , c
j
k, V alues1,j, . . . , V aluesk,j), and it follows that Prob(w|i,DR, CX , w∼

i
) =

Prob(w|w∼
i
).

Using some well-known combinatorial structures, we can generalize the above construc-
tion, in order to set up a (k,m)-DOT-

(n
1

)
. More precisely, let t, q, r and λ be integers such

that 1 ≤ t ≤ q and r ≥ 2. An orthogonal array OAλ(t, q, r) is a λrt × q array of r symbols,
say {0, 1, . . . , r− 1}, such that within any t columns, every possible t-tuple of symbols occurs
in exactly λ rows (see [31] for constructions and references). Using an orthogonal array and
threshold secret sharing schemes3, we can set up a (k,m)-DOT-

(n
1

)
(see Table 7).

Example. We present a one-round (2, 3)-DOT-
(3
1

)
using the protocol described in Table 7.

Set-up Phase. The Sender constructs and publishes the following matrix obtained by
transposing an OA1(2, 4, 3):

I =

⎡
⎢⎢⎣

0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2
0 1 2 1 2 0 2 0 1
0 1 2 2 0 1 1 2 0

⎤
⎥⎥⎦ .

Then, he shares the secret associated with each column by means of an independent copy of
a (2, 3)-threshold secret sharing scheme. Finally, he sends the shares associated to row j to
Sj for j ∈ {1, 2, 3}.
Oblivious Transfer Phase. Let X = {2, 3} be a 2-subset of {1, 2, 3}, denoting Servers
S2, S3. Suppose that R wishes to recover the secret w1. Hence, she chooses one of the
columns 3, 4, 5, say c = 5, and sends 0 to S2 and 1 to S3. The contacted Servers reply by
sending the following values

• S2 sends (0, sh2,0), (5, sh2,5) and (7, sh2,7)

• S3 sends (1, sh3,1), (5, sh3,5) and (6, sh3,6).

3A (k, m)-threshold secret sharing scheme is a method by means of which a dealer shares a secret among
a set of m participants in such a way that: 1) any subset of participants of size greater than or equal to k
reconstructs the secret; 2) any subset of size less than k does not get any information about the secret [43].
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A One-Round (k, m)-DOT-
(
n
1

)
Construction

Let w0, w1, . . . , wn−1 ∈ Fp be S’s secrets, and let i ∈ {1, . . . , n} be R’s choice.

Set-up Phase.

• The Sender S sets up an orthogonal array OA1(k, m + 1, n). We denote the transpose of
such an OA1(k, m + 1, n) by I and we assume that it is public. The first row I[0, ·] of I
establishes “which column hides which secret”.

• Then S, for each c ∈ {0, . . . , nk − 1}, shares the secret wI[0,c] using a (k, m)-threshold secret
sharing scheme. Let us denote the shares by sh1,c, . . . , shm,c. For each column is used a
different scheme, i.e., threshold secret sharing schemes are independent.

• Finally, for j = 1, . . . , m, S sends shj,0, . . . , shj,nk−1 to Server Sj .

Oblivious Transfer Phase

• Let X = {p1, . . . , pk} be a subset of k elements of {1, . . . , m}. R chooses a random column
c of the matrix I such that I[0, c] = i, and, for j ∈ {1, . . . , k}, sends the value yj = I[pj , c]
to Server Spj .

• For j ∈ {1, . . . , k}, Server Spj sends (d, shpj ,d) to the Receiver R, for all d such that I[pj , d] =
yj. R gets n shares from each of the k Servers.

• Finally, R applies the reconstruction function of the threshold secret sharing scheme to
shp1,c, . . . , shpk,c, and she reconstructs the secret wi.

Table 7: A One-Round (k,m)-DOT-
(n
1

)
Construction

Therefore, the Receiver can recover w1 using (5, sh2,5) and (5, sh3,5).

Correctness. The protocol satisfies Definition 4.1 since the Receiver, for any secret and for
any column she has chosen to retrieve the secret, gets from the contacted Servers a sufficient
number of shares. Indeed, assume that to recover wi she has chosen column c and, without
loss of generality, has sent for j = 1, . . . , k, the value yj = I[j, c] to Server Sj . Then, she has
received, among others, certainly the k pairs (c, sh1,c), . . . , (c, shk,c), enabling her to recover
wi.

Privacy. The privacy property, stated by Definition 2.2, can be shown as follows:

• Condition (5) is satisfied: Indeed, assume that k − 1 Servers contacted by R, say SX

where X = {1, . . . , k − 1}, collude in order to figure out the index i. If R has chosen
column c to recover wi, they have received the values y1 = I[1, c], . . . , yk−1 = I[k−1, c].
It is not difficult to see that, due to the structure of an OA1(k,m+1, n), this (k−1)-tuple
appears along any k-restriction of the matrix exactly k times, and for each instance,
the corresponding value of the k-th row is different. In particular, let us consider the
k-restriction defined by rows 0, 1, . . . , k− 1, i.e., the row which represents the indices of
secrets and the rows associated with the Servers SX . Since each instance of the (k−1)-
tuple y1, . . . , yk−1 is completed exactly once with a different value of y0 in {0, . . . , n−1}
(which represents an index of a possible secret), then using Bayes’ theorem, it follows
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that Prob(i|y1, . . . , yk−1) = Prob(i). Since data DX are independent of y1, . . . , yk−1, it
follows that Prob(i|DX , y1, . . . , yk−1) = Prob(i|y1, . . . , yk−1).

• Condition (6) also holds: a coalition of k−1 Servers, say SX where X = {1, . . . , k−1},
does not get any information about any secret. Indeed, each secret is shared according
to a (k,m) threshold secret sharing scheme. Let DX be the set of pairs {(d, shj,d)|j =
1, . . . , k − 1, and d = 0, . . . , nk − 1}. Due to the properties of secret sharing schemes,
for any sequence of secrets w such that Prob(w) > 0, it holds that, Prob(w|DX) =
Prob(w). Finally, since DR are truly random bits independent of w and DX , then
Prob(w|DR,DX) = Prob(w|DX).

• Condition (7) holds due to the structure of an orthogonal array OA1(k,m + 1, n). We
need to consider only Case i). Indeed, for any index i and for any possible random
string DR, even if the Receiver’s program is malicious, the integer values it sends
to a set of Servers, say SX where X = {1, . . . , k − 1}, uniquely identify a column
j ∈ {0, . . . , nk −1} and the corresponding index

∼
i∈ {0, . . . , n−1}. Then, R, from some

of the shares received as reply to the values she sends to the Servers SX , belonging
to the restriction of a column j of the orthogonal array, reconstructs w∼

i
. However,

analysing the remaining shares, she misses at least one share needed to recover the secret
associated to any other column. More precisely, for j = 1, . . . , k, denote by V aluesj

the set of pairs {(d, shj,d)|I[j, d] = yj for d = 0, . . . , nk − 1}. Then, the transcript CX

of the interaction with the Servers SX is equal to (y1, . . . , yk, V alues1, . . . , V aluesk). It
holds that Prob(w|i,DR, CX , w∼

i
) = Prob(w|w∼

i
).

Server memory storage and communication complexity of the combinatorial schemes are quite
heavy. The following technique enables us to reduce both resources. Indeed, looking at the
protocol described in Table 6 in the particular case of 2 secrets, notice that it is not necessary
that all the k × 2k values ai,j are independent. For example, they can be chosen in such a
way that the following relation holds: let j and j′ be two different columns of the matrix A
whose binary representations are bj

1 . . . bj
k and bj′

1 . . . bj′
k . Then, for i = 1, ..., k, let

A[i, j] = A[i, j′] if and only if bj
1 = bj′

1 , . . . , bj
i = bj′

i .

Let us consider an example assuming that k = 3. For 3 Servers, we have:

000 001 010 011 100 101 110 111
a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7

The values ai,j can be grouped as

a1,0 = a1,1 = a1,2 = a1,3, and a1,4 = a1,5 = a1,6 = a1,7

for the first row,

a2,0 = a2,1, a2,2 = a2,3, a2,4 = a2,5, and a2,6 = a2,7
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for the second row, and

a3,0, a3,1, a3,2, a3,3, a3,4, a3,5, a3,6, a3,7

for the third row. In this example, Server S1 gets 2 values, Server S2 gets 4 values and Server
S3 gets 8 values. Hence, Server memory storage and communication complexity are reduced.
An interesting open problem is to find more efficient representations for the matrix of values.
A Protocol for General Access Structures. The main idea underlying the combinatorial
schemes is that an orthogonal array is used as an indexing structure for several sharings of
the secrets4. We can pursue the same idea in order to support general access structures.

Let us start by informally clarifying the notion of DOT for a general access structure.
Let S = {S1, . . . , Sm} be a set of Servers. An access structure A on S is a collection of

subsets A ⊆ 2S\{∅}. An A-DOT-
(n
1

)
is a protocol satisfying the following requirements:

• Correctness. From each subset A ∈ A, called qualified, the Receiver R gets enough
information to recover any one of the secrets at her choice.

• Receiver’s Privacy. Any subset A /∈ A, called forbidden, does not get any information
about the index of the secret R recovers.

• Sender’s Privacy w.r.t. a forbidden subset and the Receiver. A coalition of the Receiver
and a subset of Servers A /∈ A, does not get any information about the n secrets.

• Sender’s Privacy w.r.t. a “Greedy” Receiver. Given the transcript of the interaction with
a subset of Servers A ∈ A, the Receiver gets information about at most a single secret,
and no information about the others. This property holds even if the Receiver, once
has computed a secret, colludes with A /∈ A, a subset of dishonest Servers.

A formal definition of an A-DOT-
(n
1

)
can be stated along the same lines of Definitions

2.1 and 2.2.
To explain the protocol and how to construct the indexing structure, let us con-

sider a simple case. Let S = {S1, S2, S3, S4} be a set of 4 Servers, and let P3 =
{{S1, S2}, {S2, S3}, {S3, S4}} be an access structure on the set of Servers S. This access
structure is well-known in the secret sharing scheme theory and its information rate ρ, which
is the maximum ratio between the size of the secret and the size of the share given to the
user5, is equal to 2

3 . Assume that the secret is a pair of values (k1, k2) belonging to Fp′ ×Fp′ .
The secret can be shared among P3 as shown in Table 8.

Servers Shares for: (k1, k2)
S1 x, z
S2 k1 + x mod p′, k2 + z mod p′, w
S3 k1 + w mod p′, k2 + y mod p′, z
S4 w, y

Table 8: A secret sharing scheme for P3.
4Indeed, notice that also the constructions given in Table 6, can be re-phrased along the same line of the

protocol described in Table 7. In this case the orthogonal array used is an OA1(k, k + 1, n).
5The reader is referred to [45] for background on secret sharing schemes.
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The values x, y, z, and w are random values chosen in Fp′ . The dealer computes the shares
given in Table 8 and sends row i to Server Si.

We can construct a P3-DOT-
(n
1

)
using this secret sharing scheme as building block. More

precisely, each secret is shared many times with different instances of the secret sharing
scheme. At the same time, an indexing matrix which represents all these sharings can be
setup using as “rule” to fill in the entries of each column the same secret sharing scheme.

To exemplify, assume that we have 9 = 32 secrets. Each secret (ki, kj) can be indexed
by (i, j) ∈ F3 × F3. An indexing matrix I can be set up considering 34 sharings for each key
(i.e., the number of possible choices for x, y, z, and w when seen as elements belonging to F3).
For example, the restriction of the indexing matrix I to the key (k1, k2) indexed by (1, 2) is
reported in Table 9.

(1,2) · · · (1,2)
S1 0, 0 · · · 2, 2
S2 1, 2, 0 · · · 0, 1, 2
S3 1, 2, 0 · · · 0, 1, 2
S4 0, 0, · · · 2, 2

Table 9: Partial view of the indexing matrix I, corresponding to the 34 sharings of the secret
(k1, k2).

Notice that, the share for S2 corresponding to the first sharing of (1, 2) is (1, 2, 0). Indeed,
it is easy to check that choosing x = 0, y = 0, z = 0, and w = 0 it holds that 1 + 0 mod 3 =
1, 2 + 0 mod 3 = 2, and 0 mod 3 = 0. Similarly, the share for S2 corresponding to the last
sharing of (1, 2) is (0, 1, 2). Indeed, it is easy to check that choosing x = 2, y = 2, z = 2, and
w = 2, it holds that 1 + 2 mod 3 = 0, 2 + 2 mod 3 = 1, and 2 mod 3 = 2.

In Table 9, each of the 34 columns indexed by (1, 2) represents a sharing of (k1, k2) ∈
Fp′ × Fp′ . We assume that the 32 · 34 sharings for the 32 secrets are maintained in another
(corresponding) matrix A: more precisely, each column of A contains a sharing of a certain
key (ki, kj) (see Table 10).

(k1, k2) · · · (k1, k2)
S1 sh

(1,2)
(0,0) · · · sh

(1,2)
(2,2)

S2 sh
(1,2)
(1,2,0) · · · sh

(1,2)
(0,1,2)

S3 sh
(1,2)
(1,2,0) · · · sh

(1,2)
(0,1,2)

S4 sh
(1,2)
(0,0) · · · sh

(1,2)
(2,2)

Table 10: Partial view of the matrix A, containing the 34 sharings of the secret (k1, k2).

The Receiver can choose one of the column of I and can ask a subset B ∈ P3 to receive the
shares in A, whose indices match the entries of the column of the matrix I, in correspondence
of the Servers in B. In our example, the Receiver, to retrieve (k1, k2), can choose the first
column of the partial view of matrix I and can send (1, 2, 0) to S3 and (0, 0) to S4, receiving
from S3 all the shares (belonging to the third row of matrix A) whose indices are (1, 2, 0)
(and, among these, surely sh

(1,2)
(1,2,0)), and from S4 all the shares (belonging to the fourth row
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of matrix A) whose indices are (0, 0) (and, among these, surely sh
(1,2)
(0,0)).

It is not difficult to see that the construction is correct, due to the reconstruction property
of the secret sharing scheme. In our example sh

(1,2)
(1,2,0) and sh

(1,2)
(0,0) enable the Receiver to recover

(k1, k2). Moreover the scheme is private since, from each subset of Servers belonging to P3,
the Receiver can recover one and only one secret of her choice, getting no information on
the others. On the other hand, a forbidden subset of Servers F /∈ P3 neither get information
about the secret R wishes to recover from the values sent by her nor can compute information
about any secret, due to the security property of the secret sharing scheme.

Notice that, if we have n = p2 secrets, the construction seen before requires p4 sharing
for each secret, and an indexing matrix I with p6 columns.

At this point it is not difficult to figure out how the same strategy can be applied to
any access structure. We would like just to point out the use of the secret sharing for the
construction of both the indexing structure I and the sharing of the secrets. Perhaps this
design technique can be applied successfully also to other cryptographic protocols. The
protocol can be generalized to arbitrary access structures A on the set of Servers.

Let n = pr and, for i = 1, . . . , n, let wi ∈ F r
p′ be S’s secrets. Let each index i be

represented by (i1, . . . , ir) ∈ F r
p . Moreover, let A be an access structure on the set of the m

Servers, and let Σ be a secret sharing scheme for A with information rate ρ = r
u represented,

as before, in tabular form. Finally, assume that Σ uses, to share a secret, t random values
belonging to Fp′ . The protocol is described in Tables 11 and 12.

In order to show the correctness and the privacy of the protocol it is enough to prove that
the indexing structure, given by the matrix I, satisfies the same properties of an orthogonal
array, the combinatorial structure we have used in the threshold case. Indeed, notice that,
when the general access structure considered in the above construction is a threshold struc-
ture, a secret sharing scheme with information rate ρ = 1 (called ideal [45]), i.e., where each
share has the same size of the secret, realizing the access structure does exist. As shown by
K. Martin [35] and, independently by Dawson et al. [20], if we represent such a secret sharing
scheme by means of a distribution table, this table is exactly an orthogonal array. For the
general case, a proof that the indexing structure satisfies the same properties of an orthogonal
array can be achieved arguing by contradiction: for any fixed set of rows of the matrix I,
corresponding to a qualified subset of Servers, if two different columns j and j

′
have the same

t-tuples, row by row, then j = j
′
, due to the matrix generation rule. The correctness and

privacy properties of the DOT construction easily follow from the same observations we have
made in analysing the threshold case.
Remark. Notice that all results and bounds presented in Sections 3 and 4, by using stan-
dard techniques, can be opportunely stated and proved for DOT schemes for general access
structures. In particular, concerning with one-round protocols, Theorem 4.4 can be easily
extended to A-DOT-

(n
1

)
. If X denotes a subset of indices of Servers such that SX /∈ A but

SX ∪ {Sj} ∈ A, where j /∈ X, an adversary, given only Dj and (QX , AX), can compute all
the secrets.

6.2 Two-Round Constructions

It is possible to gain in terms of privacy and efficiency of computations if we allow one more
round of interaction between the Receiver and the Servers. A simple protocol is described in
Table 13.
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A One-Round A-DOT-
(
n
1

)
Protocol.

Set-up Phase

• S sets up a public indexing matrix I, of order (m + 1) × pr+t, which represents, for each
of the pr secrets, pt different sharings according to Σ. The matrix I is filled in as follows:
the first row says which secret the column hides. More precisely, for i = 1, . . . , pr and
j = 1, . . . , pt, the value I[0, j +(i− 1)pt] = i = (i1, . . . , ir). Then, for q = 1, . . . , m, the entry
I[q, j + (i − 1)pt] represents the index of the share given to Server Sq for the j-th sharing
of the i-th secret, and is equal to (vj

q,1, . . . , v
j
q,�i

) ∈ F �i
p where �i ≤ u, These values are

computed using Σ as “rule”, and by considering (i1, . . . , ir) (i.e., the representation of i in
F r

p ) as the secret, and all possible sequences (d1, . . . , dt) ∈ F t
p. These sequences correspond

to the pt random values belonging to Fp′ , used by Σ to generate the pt sharings for wi.

• Once the indexing matrix has been set up, for each secret wi ∈ (Fp′)r, S computes the pt

sharings. Let us denote, for the j-th sharing of the secret, by

shi
(vj

q,1,...,vj
q,�i

)

the share for Server Sq according to Σ. We assume that a matrix A, of order m × pr+t,
contains in each column one of such sharings.

• For i = 1, . . . , n, for q = 1, . . . , m, and for j = 1, . . . , pt, S sends to Server Sq the share
shi

vj
q,1,...,vj

q,�i

, i.e., all the shares belonging to the q-th row of the matrix A.

Table 11: A One-Round A-DOT-
(n
1

)
Protocol: Set up Phase

Correctness. The Receiver, once she has received all the values of a column, computes the
secret by means of a simple sum.

Privacy (sketch). The Privacy property, stated by Definition 2.2, can be shown developing
the following arguments:

• Condition (5) of Definition 2.2 is satisfied because a coalition of k − 1 Servers does not
get any information about which secret R wishes to recover, since the k − 1 Servers do
not know which secret is hidden by which vector.

• Condition (6) holds because the Receiver and a coalition of k − 1 Servers, does not get
any information about any secret. Indeed, each secret is actually shared according to
a (k, k) threshold secret sharing scheme, and they hold only k − 1 shares for each of
them.

• Condition (7) holds because the Receiver R can retrieve at most one secret: Indeed, all
the values of a single vector are needed for computing one of the secrets. Hence, if she
gets all the values of a vector, then she gets no information about the secret hidden by
the other vector. On the other hand, if she gets values belonging to the two different
vectors from different Servers, then she gets no information on both secrets at all.
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A One-Round A-DOT-
(
n
1

)
Protocol.

Oblivious Transfer Phase

• R, to recover wi, chooses a column of I say the g-th one, such that I[0, g] = (i1, . . . ir),
chooses a subset of Servers B ∈ A and sends, to each Sq ∈ B, the tuple yq = I[q, g].

• Each Server Sq ∈ B sends to R, for any column z such that I[q, z] = yq, the pair column-
share (z, A[q, z]).

• R reconstructs the secret by using the pairs (g, A[q, g]) sent by Servers Sq ∈ B.

Table 12: A One-Round A-DOT-
(n
1

)
Protocol: Oblivious Transfer Phase

It is worthwhile to point out that the two-round construction above described enjoys
condition (11) of Definition 2.3, i.e., the further privacy property that is impossible to achieve
using a one-round protocol: Indeed, a coalition of k − 1 Servers and the Receiver, after the
latter has recovered one of the secrets, still cannot compute the other without the help of the
last Server, due to the sharing of secrets by means of a (k, k) secret sharing scheme.

Notice that, if we compress the above protocol into one round, we can obtain a random
DOT where the Receiver can recover one secret but she cannot choose which one. This
functionality can be realized if the Servers simply send to the Receiver the “addressing bits”,
that is rj ’s, and all but one of the values v0[j] and v1[j], for j = 1, . . . , k. In such a case,
one of the Servers, say Sj, chooses uniformly at random which of the two values v0[j], v1[j]
to send R.

The above protocol can be extended to realize a DOT for a general access structure on
the set of Servers as well as a DOT for any number of secrets. The extensions can be done as
follows: in order to implement a DOT for a general access structure A on the set of Servers,
say an A-DOT-

(2
1

)
, the bit r, which establishes which vector hides w0, is shared among the m

Servers, according to a secret sharing scheme for A. Then, if r = 0, the secret w0 is shared by
the first vector and w1 by the second, according to a secret sharing scheme for A; otherwise,
w0 is shared by the second vector and w1 by the first. Once the Receiver has recovered the
value of r, contacting a subset of Servers belonging to A, she can recover one of the secrets
by sending a request for shares to the same subset of Servers that were contacted before.

On the other hand, an A-DOT-
(n
1

)
requires that, instead of a bit, r is a value in {0, . . . , n−

1} and, instead of two vectors sharing w0 and w1, there are exactly n vectors v0, . . . , vn−1,
sharing the secrets w0, . . . , wn−1, respectively. The value r, shared among the Servers through
a secret sharing scheme for A, establishes the correspondence between the vectors and the n
secrets. In other words, if r = 2 then the third vector v2 shares w0, the fourth shares w1, and
so on, following a cyclic order modulo n. Applying the same argument described before for
the case of two secrets, it is not difficult to show that also this is correct and private.
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A Strong (k, k)-DOT-
(
2
1

)
Let w0, w1 ∈ Fp be S’s secrets.
Set-up Phase.

• S chooses k random bits rj , and computes the bit r, xoring the rj ’s, i.e., r =
⊗k

j=1 rj .

• Moreover, S sets up two vectors with k entries in Fp, v0 and v1, choosing the first k − 1
entries at random and computing

v0[k] = wr −
k−1∑
j=1

v0[j] mod p, and v1[k] = w1−r −
k−1∑
j=1

v1[j] mod p.

• Then, for j = 1, . . . , k, he sends the bit rj and the values v0[j] and v1[j] to Server Sj .

Oblivious Transfer Phase.

• In a first round of communication, R asks to each Server Sj the bit rj , and computes r.
Then, for j = 1, . . . , k, if R is interested in w0 and r = 0, asks Server Sj the value v0[j];
otherwise, if r = 1, asks v1[j]. Symmetrically, to recover w1, if r = 1, she asks v0[j], while if
r = 0, she asks v1[j].

• Finally, R sums up modp the received values.

Table 13: A Two-Round (k, k)-DOT-
(2
1

)

7 Data to the Receiver

In this section we consider the setting in which the Receiver holds some data. More precisely,
we assume that during the setup phase, the Sender S sends data not only to the m Servers
but also to the Receiver R. Intuitively, by giving information to the Receiver we should be
able to achieve a stronger privacy condition. The two-round protocol described in Table 13
(and all its generalizations) can be transformed in a one-round protocol for the new model.
Indeed, notice that the random bit each Server transmits to the Receiver during the first
round, can be eliminated if the Sender, during the set up, privately says to the Receiver
which vector which secret hides (see Table 14).

Notice that, k − 1 Servers do not have any information about the secrets. At the same
time, the Receiver is still not able to gain extra-information about other secrets, apart the
one that she recovers honestly. Actually the above protocol is very simple: each secret is
shared according to a (k, k) threshold scheme and only the Receiver knows which shares
correspond to which secret. The generalization of the above protocols to the case of a general
access structure on the set of Servers and to n secrets can be done along the same line of the
two-round protocol without information in set up phase to the Receiver.

We point out that the protocol given in Table 14 shows also that the results of Section 4
do not hold if DR is information sent by the Sender to the Receiver in set-up phase. Indeed,
D1, . . . ,Dk and DR are related, the lower bound on the size of DR given by Theorem 4.11 is
not satisfied, and the protocol realizes a strong (k, k)-DOT-

(2
1

)
.
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A Strong (k, k)-DOT-
(
2
1

)
with information to the Receiver

Let w0, w1 ∈ Fp be S’s secrets.
Set-up Phase

• S chooses a random bit, say r.

• Then, S sets up two vectors with entries in Fp, v0 and v1, choosing the k − 1 entries at
random and computing

v0[k] = wr −
k∑

j=1

v0[j] mod q, and v1[k] = w1−r −
k∑

j=1

v1[j] mod q.

• Finally, for j = 1, . . . , k, S sends the values v0[j] and v1[j] to Server Si and the bit r to R.

Oblivious Transfer Phase

• If R is interested in w0 and r = 0, then, for j = 1, . . . , k, asks to Server Sj the value v0[j];
otherwise, if r = 1, asks v1[j]. Symmetrically, to recover w1, if r = 0, she asks v1[j], while if
r = 1, she asks v0[j].

• Then, R sums up modq the received values vi with ri, recovering the secret.

Table 14: One-Round (k, k)-DOT-
(2
1

)

8 Applications

The protocols described before have several interesting applications and connections with
other cryptographic protocols. Let us quickly describe some of them.

Privacy Preserving Auctions and Mechanism Design [39]. The notion of DOT was
introduced in [37] to improve the protocol of [39]. More precisely, in that protocol, there
are three parties: an auctioneer, many bidders, and an agency supporting the auction. The
auctioneer advertises the auction and its rules. The bidders submit their bids in “encrypted
form” to the auctioneer, and the auctioneer, with the help of the agency, can compute the
winner of the auction in such a manner that the privacy of the bidders (i.e., non-essential
information about their own bids) is preserved. The weak point of the protocol is that if the
auctioneer and the agency collude, then the privacy of the bids is lost. In order to strengthen
the protocol, the agency can be split in two parts: a central agency, that operates only in a
set up phase, and m Servers, with which the auctioneer communicates in order to compute
the auction. In this case the auctioneer needs to collude with k out of the m Servers in order
to violate the privacy of the bidders. The impossibility result for one-round (k,m) protocols
private against a coalition of k − 1 Servers and the Receiver we have shown in Section 4, in
this setting means that the highest degree of privacy sought for in [39] with this approach
cannot be achieved. On the positive side, the two-round protocols described in Section 6 can
be applied to this framework but the communication pattern changes and some more details
must be taken into account.

Symmetric Private Information Retrieval. Distributed Oblivious Transfer protocols
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have connections with symmetric private information retrieval schemes [26]. A PIR scheme
[12] enables a user to retrieve an item of information from a public accessible database in
such a way that the database manager cannot figure out from the query which item the
user is interested in. However, the user can get information about more than one item. On
the other hand, in SPIR (Symmetric Private Information Retrieval) schemes [26], the user
can get information about one and only one item, i.e. even the privacy of the database
is considered. In PIR and SPIR schemes, the emphasis is placed on the communication
complexity of the interaction of user and Servers. Therefore, a SPIR Scheme can be seen as a
communication-efficient 1-out-of-n oblivious transfer scheme. The main differences between
the model we have considered and (information theoretic) SPIR schemes are that in SPIR
schemes the Receiver communicates with k out of k Servers in order to retrieve an item while
in our setting the Receiver can choose k out of m Servers, where k ≤ m. This property is
useful since it guarantees a sort of Robustness for the SPIR scheme, in the sense that even
if some Server crashes, the item can still be retrieved by the user by means of the other
available ones. Hence, a communication-efficient threshold DOT scheme realizes a robust
SPIR scheme. Another important difference is that in information theoretic PIR and SPIR
schemes the database is replicated among the Servers. Hence, every Server knows the content.
In our model only a k-subset of Servers can reconstruct the database.

Another interesting relation of the DOT model we have studied is with information the-
oretic PIR schemes with preprocessing [2]. The set up phase performed by the dealer can
be seen as the preprocessing stage performed by the database owner in [2]. The combi-
natorial constructions we have shown are communication-inefficient but they require trivial
computation for the Servers, once the scheme has been set up.

Just to emphasize the connection, notice that, using the DOT constructions presented in
Section 7, we can set up a robust unconditionally secure symmetric private retrieval scheme.
The database D is simply distributed by the owner among m Servers, according to the (k,m)-
DOT scheme for n secrets of Section 7.

9 Conclusions

In this paper we have studied unconditionally secure distributed oblivious transfer protocols.
We have presented lower bounds on the resources required to implement such protocols, some
impossibility results for one-round schemes, and new constructions which are optimal with
respect to some of the given bounds. Moreover, we have shown that with a second round of
interaction the highest possible privacy level in this model can be achieved with, at the same
time, a suitable reduction of resources (randomness, memory storage and communication
complexity). The same effect can be achieved modifying the model for DOT by allowing the
Sender to send information during the set up phase even to the Receiver. In this case the
two-round protocol we have shown in the previous section can be simply transformed in a
one-round protocol. This is another example of a tradeoff. Several questions and interesting
open problems come up from this study. Among others:

• The design of a one-round DOT protocol meeting all the bounds given by the informa-
tion theoretic analysis.

• Techniques to improve the communication complexity of some of the presented schemes
with application to SPIR with preprocessing.
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• Identification of applicative settings which can benefit from this distributed implemen-
tation of the oblivious transfer.

Recently two papers have addressed the issue of security under composition.
The authors of [34] have investigated the question of whether security of protocols in the

information theoretic setting implies security under composition.
In [14] for unconditionally secure two-party protocols a security definition based on a small

set of information theoretic conditions was proposed, and it was shown that such a definition
turns out to be equivalent to the definition based on the ideal/real model paradigm [29] which
enjoys the sequential composability property.

It would be nice to identify the information theoretic conditions that a DOT protocol
need to satisfy in order to preserve security under composition, and to derive bounds on the
resources in this model.

More generally, it would be nice to come up with information theoretic conditions for
multi-party protocols which guarantee security under composition.
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A Information Theory Elements

In this appendix we briefly recall some concepts of information theory. The reader is referred
to [13] for details.

A discrete random experiment is defined by a finite set, called sample space, consisting
of all elementary events, and a probability measure assigning a non-negative real number to
every elementary event, such that the sum of all these probabilities is equal to 1. An event of
a discrete random experiment is a subset of the sample space, and the probability assigned
to it is the sum of the probabilities of its elementary events.

A discrete random variable X is a mapping from a sample space to a certain range X,
and is characterized by its probability distribution {PX(x)}x∈X that assigns to every x ∈ X
the probability PX(x) of the event that X takes on the value x.
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The entropy of X, denoted by H(X), is a real number that measures the uncertainty
about the value of X when the underlying random experiment is carried out. It is defined by

H(X) = −
∑
xεX

PX(x) log PX(x),

assuming that the terms of the form 0 log 0 are excluded from the summation, and where the
logarithm is relative to the base 2. The entropy of a random variable satisfies 0 ≤ H(X) ≤
log |X|, where H(X) = 0 if and only if there exists x0 ∈ X such that Pr(X = x0) = 1;
whereas, H(X) = log |X| if and only if Pr(X = x) = 1/|X|, for all x ∈ X. The deviation
of the entropy H(X) from its maximal value can be used as a measure of non-uniformity of
the distribution {PX(x)}x∈X . The entropy is also interpreted as a measure of the amount of
information given on average by the random variable, i.e., the amount of information given
on average by the result of the random experiment associated with it.

Given two random variables X and Y, taking values on sets X and Y , respectively,
according to a probability distribution {PXY(x, y)}x∈X,y∈Y on their Cartesian product, the
conditional uncertainty of X, given the random variable Y, called conditional entropy and
denoted by H(X|Y), is defined as

H(X|Y) = −
∑
y∈Y

∑
x∈X

PY(y)PX|Y(x|y) log PX|Y(x|y).

Notice that the conditional entropy is not the entropy of a probability distribution but the
average over all entropies H(X|Y = y). Simple algebra shows that

H(X|Y) ≥ 0 (32)

with equality if and only if X is a function of Y . The conditional entropy is a measure of the
amount of information on X, once given Y.

The mutual information between X and Y is given by

I(X;Y) = H(X) − H(X|Y).

Since,
I(X;Y) = I(Y;X) and I(X;Y) ≥ 0, (33)

it is easy to see that
H(X) ≥ H(X|Y), (34)

with equality if and only if X and Y are independent. The mutual information is a measure
of the common information between X and Y.

Given n + 1 random variables, X1, . . . ,Xn,Y, the entropy of X1, . . . ,Xn given Y can be
written as

H(X1, . . . ,Xn|Y) = H(X1|Y) + H(X2|X1,Y) + · · · + H(Xn|X1, . . . ,Xn−1,Y). (35)

Therefore, for any sequence of n random variables, X1, . . . ,Xn, it holds that

H(X1, . . . ,Xn) =
n∑

i=1

H(Xi|X1, . . . ,Xi−1) ≤
n∑

i=1

H(Xi). (36)

49



Moreover, the above relation implies that, for each k ≤ n,

H(X1, . . . ,Xn) ≥ H(X1, . . . ,Xk). (37)

Given three random variables, X, Y, and Z, the conditional mutual information between
X and Y given Z can be written as

I(X;Y|Z) = H(X|Z) − H(X|Z,Y) = H(Y|Z) − H(Y|Z,X) = I(Y;X|Z). (38)

Since the conditional mutual information I(X;Y|Z) is always non-negative we get

H(X|Z) ≥ H(X|Z,Y). (39)

Finally, given three random variables, X, Y, and Z, such that Z is a function of Y, i.e.,
Z = f(Y), then it holds that

H(X|Y) = H(X|Z,Y). (40)
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