Optimising SD and LSD in presence of non-uniform probabilities of revocation

By

Paolo D'Arco and Alfredo De Santis

The Broadcast Encryption Problem [Ber91, FN94]

- A center C broadcast a msg to a set N of receivers
- A subset R of them are revoked and should not be able to decrypt the msg

Applications Key protection in media

- Content is distributed on CD, DVD, memory-card...
 - content is encrypted
- · Players/Recorders are the receivers
 - typically are stateless
 - Receivers are given decryption keys at manufacturing

Goal:

- Revoke non-compliant players
 - revoked player cannot decode future content
- Trace the identity of a "cloned"/"hacked" player
 - black-box tracing
- Example: CPRM

Desiderata

- Low bandwidth: Small message expansion -E(content) not much longer than original message.
- Amount of **storage** at the users I_u small
 - Also at the center
- Resiliency to large coalitions of users who collude and share their resources

Contents of this talk

- > Subset Cover framework: SD and LSD
 - > Stateless receivers
- > Revocation: non-uniform case
- > Optimisation problems: coding theory
 - > LKH schemes: Huffman codes
 - > 5D and LSD: Algorithms for Campbell's penalties
- > Conclusions

Subset Cover Framework [NNL01]

Framework encapsulates many previous schemes

- Idea: to revoke a subset R, partition the remaining users into subsets from some predetermined collection.
- Encrypt for each subset separately

An algorithm in the framework:

Underlying collection of subsets (of users/devices)

$$S_1, S_2, \dots, S_W$$
 $S_j \subseteq N$.

- Each subset S_j is associated with a long-lived key L_j
 - A device $\mathbf{u} \in S_j$ should be able to deduce L_j from its secret information $\mathbf{I}_{\mathbf{u}}$

The Broadcast Algorithm

- Choose a session key K
- Given R, find a partition of N\ R into disjoint sets

$$S_{i_1}, S_{i_2}\,, \ldots\,, S_{i_m}$$

$$N \backslash R \,=\, \bigcup \,\, S_{i_j}$$
 with associated keys $L_{i_1}, L_{i_2}\,, \ldots\,, L_{i_m}$

Encrypt message M

$$[i_1, i_2, \dots, i_m], \quad C_l = E_{\text{Li}_l}(\mathbf{K}), \quad \dots, \quad C_m = E_{\text{Li}_m}(\mathbf{K}) \qquad F_{\mathbf{K}}(\mathbf{M})$$

Decryption (user u)

$$[i_1, i_2, ..., i_m], C_l = E_{Li_l}(K), ..., C_m = E_{Li_m}(K)$$

HEADER

Body

- Either
 - Find the subset i_j such that $u \in S_{i_j}$, or
 - null if $u \in R$ u is revoked!
- Obtain L_{i_j} from the private information L_{i_j}
- lacksquare Compute $D_{Li_j}(C_j)$ to obtain K
- Decrypt $F_K(M)$ with K to obtain the message.

Complete Subtree

Subset Cover of non-revoked devices Complete Subtree Method

- revoked
- non-revoked

cover

Subset Difference

 $S_{i,j}$ = Set of all leaves in the subtree of V_i but <u>not</u> in V_j

Subset Cover of non-Revoked Devices Subset-Difference Method

Key-Assignment Subset-Difference Method

- Naive approach to the key assignment:
 - ightharpoonup assign a key $L_{i,j}$ to every pair $[v_i, v_j]$ in the tree
 - impractical: each device must store O(n) keys...
- Use G, a pseudo-random sequence generator that *triples* the input length $(k \rightarrow 3k)$ à la GGM

Key-Assignment Subset-Difference Method

- Use G to derive a labeling process
 - S label at node,
 - $G_L(S)$ label at left child, $G_R(S)$ label at right child
 - $G_M(S)$ key at node.

$$G(S) = \begin{bmatrix} G_L(S) & G_M(S) & G_R(S) \\ G_L(S) & G_R(S) \end{bmatrix}$$

Assign to each node V_i a label LABELi

The key $L_{i,j} = G_M$ of the label LABEL, at node V_j derived from LABEL, down towards V_j

Key-Assignment Subset-Difference Method

Providing Keys to Devices

- A device corresponds to a leaf u in the tree
- For every V_i ancestor of u whose label is S
 - u receives all labels at nodes that are hanging off the path from V_i to u.
 These labels are all derived from S.
- lacktriangle u can compute all keys of the sets it belongs to rooted at V_i , and *only* them.

Layered Subset Difference [HS02]

Idea: A small collection of S_{i,j}

 v_i , v_k , v_j nodes along root-to-leaf path

$$S_{i,j} = S_{i,k} \cup S_{k,j}$$

The tree has √logn special levels. Levels between two special levels form a layer.

 $S_{i,j}$: v_i and v_j at the same layer or v_i is at a special level

Layered Subset Difference

Performance

- · CS
 - User storage: logn +1
 - Broadcast size: rlog(n/r)
- SD
 - User storage: O(log²n)
 - Broadcast size: O(r)
- · LSD
 - User storage : O(log^{3/2}n)
 - Broadcast size: O(r)

n = # users r = # revoked users

Non-Uniform Probabilities

- Due to historical or legal reasons some geographic areas show different adversarial behaviours
- We would like to give less keys to devices held by malicious users, more to thustworthy ones
- User revocation: A probability distribution is available
- · CS, SD, and LSD: the binary tree structure changes

Non-Uniform Probabilities

How to construct binary trees satisfying some optimality criteria

Revocation strategy?

It is easy to verify that the subset cover strategy

- at every iteration increases the number of covering subsets $\mathbf{S}_{i,j}$ by **at most two**, and reduces **by one** the number of revoked leaves (Lemma 3 of NNL01)
- the property is **independent of** the structure of the tree, i.e., it holds even if the tree is not a full binary tree
- hence, the revocation strategy has the same costs of SD and LSD (i.e., O(r) broadcast msg size)

Previous work

Multicast: Tree-based schemes

Users are associated to leaves. Receive keys assigned to nodes along the root-to-leaf path. The scheme is statefull.

Multicast: Join and Revoke

GC

- delete K1, K3, K7, K14, K29
- · generate new keys K'1, K'3,K'7,K'14
- send encrypted mgs

```
E K_{28}(K'14),

E K'_{14}(K'7), E K_{15}(K'7),

E K_{6}(K'3), E K'_{7}(K'3),

E K_{2}(K'1), E K'_{3}(K'1),
```

Revoke u. All keys along the root-to-leaf path need to be updated. The new keys are communicated to the users

LKH vs CS

- Same key assignment but different use
- CS keys never change (stateless)
- LKH keys updated due to join/revoke

Optimising user key storage in CS and LKH in presence of non-uniform prob. distribution is the **same**. Studied in [PB01].

LKH schemes Key assignment [PB01]

Problem 1

Which properties the keys assigned to the nodes of the key-tree have to satisfy to get a "secure" scheme?

Secure Scheme

- The GC can always securely communicate with a non-revoked user
- Keys held by revoked users do not cover the subset of keys held by a non revoked user

Key Index (KID)

- KID_i = string obtained concatenating of all keys along the path
- KID_i unique w.r.t.
 permutation of concatenated keys

Distinct keys to leaves and prefix-free KIDs > secure assignment

Does not hold: the keys of U_1 are covered by the keys of U_5 and U_7

$$KID_1 = K_1 | K | K^* | SK$$

$$KID_5 = K_5 | K_1 | K^* | SK$$

$$KID_7 = K_7 | K | K^* | SK$$

A new characterization

For each leaf node u:

- Kpath, = multiset of keys along root-to-leaf path
- Hpath_u = multiset of keys of nodes at distance 1 from the path

Key-tree secure w.r.t a single revoke operation if and only if

- 1. Keys in Kpath, all distinct
- 2. Keys in Hpath_u all distinct
- 3. $Kpath_u \cap Hpath_u \neq 0$

Optimal key assignment [CEK+99, CWSP98]

In any 1- secure key-tree the number of distinct keys is at least 2logn +1

LKH schemes Key assignment

Sequence of key-trees: T_0 , T_1 , T_2 , ...

Theorem. A LKH scheme is secure w.r.t revoked users if in T_0 all keys associate to nodes are distinct and the join and revoke operations maintain such an invariant, i.e., at session j, for any j=1,2, ..., all keys of T_j are distinct among them and from all the previously used and deleted ones.

LKH schemes Key assignment [PB01]

Problem 2

In presence of a non uniform probability distribution of user revocation, how to construct a tree which minimises the average numbers of keys a user has to store?

Minimising Average Lenght

 p_i = probability of revocation of user i

 I_i = lenght of the path from the root to the leaf associated to user i

Problem: find lengths minimising $\sum_{i=1}^n p_i l_i$

Coding theory

Each path can be seen as a binary codeword associated to a leaf. Due to the structure of the tree, the set of codewords is prefix-free and the lengths satisfy Kraft's inequality

Huffman algorithm solves the problem!

SD and LSD

Optimization Criteria

$$\sum_{i=1}^n p_i l_i^2$$

$$\sum_{i=1}^n p_i \frac{l_i^2}{\sqrt{\log n}}$$

Subset Difference

Layered Subset Difference

Unfortunately, Huffman algorithm does not minimise the above measures

Huffman Algorithm

$$\sum_{i=1}^n p_i l_i$$

$$\sum_{i=1}^n p_i l_i^2$$

Campbell's Penalties [Cam66]

Given a continuous (strictly) monotonic increasing cost function

 $arphi(l)\!:\! R_{\scriptscriptstyle +}\! o\! R_{\scriptscriptstyle +}$ the value to minimise is

$$L(p,l,\varphi) = \varphi^{-1} \left(\sum_{i} p_{i} \varphi(l_{i}) \right)$$

The value $L(p,l,\phi)$ is the mean length for the cost function ϕ . For brevity it is called "the penalty".

[Lar89] gave an algorithm for $\varphi(x)=\alpha x+\beta x^2$, with a and β non negative (time and space complexity $O(n^3)$).

Quasiarithmetic penalties [Bae06]

Definition 2: Let $f(l,p): \mathbb{R}_+ \times [0,1] \to \mathbb{R}_+ \cup \{\infty\}$ be a function nondecreasing in l. Then

$$\tilde{L}(\boldsymbol{p}, l, f) \triangleq \sum_{i \in \mathcal{X}} f(l_i, p_i)$$
 (3)

is called a generalized quasiarithmetic penalty. Further, if f is convex in l, it is called a generalized quasiarithmetic convex penalty.

Generalisation of Campbell's problem (i.e., $f(l_i,p_i)=p_i \varphi(l_i)$)

Algorithms for finding minimum penalties codes

- Nodeset Notation (alternative to tree notation)
- Each node (i,l) represents both the share of the penalties L(p,l,f) (weight) and the share of the Kraft sum k(l) (width).

l (level) $\rho(2, 1) = \frac{1}{2}$ $\rho(3,1) = \frac{1}{2}$ $\rho(4,1) = \frac{1}{2}$ Nodeset ass. to item $i \rightarrow$ First I, nodes of column i $\mu(2,1) = p_2$ $\mu(3, 1) = p_3$ $\mu(4,1) = p_4$ $\mu(1,1) = p_1$ Nodeset associated to lenght distribution I → $\rho(1, 2) = \frac{1}{4}$ $\rho(2, 2) = \frac{1}{4}$ $\rho(3,2) = \frac{1}{4}$ $\rho(4, 2) = \frac{1}{4}$ 2 Union of nodesets ass. to $\mu(2,2) = 3p_2$ $\mu(3, 2) = 3p_3$ $\mu(1, 2) = 3p_1$ $\mu(4, 2) = 3p_4$ the n items $\rho(1, 3) = \frac{1}{8}$ $\rho(2,3) = \frac{1}{8}$ $\rho(3,3) = \frac{1}{9}$ $\rho(4,3) = \frac{1}{8}$ To nodeset ass, to item i 3 corresponds codeword c, $\mu(2,3) = 5p_2$ $\mu(4,3) = 5p_4$ $\mu(1, 3) = 5p_1$ $\mu(3, 3) = 5p_3$ with lenght I, 2 3 1 4 i (item)

Coin Collector's Problem

Let 2^Z denote the set of all integer powers of two. The *CC* problem considers m coins with width $\rho_i \in 2^Z$ and weigth $\mu_i \in R$. The final problem parameter is t, the total width

$$\begin{array}{ll} \text{Minimize}_{\left\{B\subseteq\left\{1,\ldots,m\right\}\right\}} & \sum_{i\in B} \mu_i \\ \text{subject to} & \sum_{i\in B} \rho_i = t. \end{array}$$

We thus wish to choose coins with total width t such that the total weight is as small as possible.

The Package-Merge algorithm [Lar90] solves efficiently the problem

Reduction

Any optimal solution to the Coin Collector's Problem, represented by a subset of coins N, where the parameters are

- total width t=n-1
- width $\rho_i(i,l) = 2^{-l}$
- weight $\mu_i(i,l) = f(l,p_i) f(l-1,p_i)$

is a nodeset for an optimal solution to the coding problem

Conclusions

- ✓ Analysis of LKH assignment scheme
- ✓ Characterization for key assignment
- ✓ Non-uniform probabilities of revocation: keytrees in SD and LSD and coding theory
- ✓ Efficient solutions available

Main References

[Bae06] M. Baer, *Source Coding for Campbell's Penalties*, IEEE Transactions on Information Theory, vol. 52, n. 10, 4380—4393, 2006.

[PB01] R. Poovendran and J. S. Baras. *An information theoretic analysis of rooted-tree based secure multicast key distribution schemes*. IEEE Transactions on Information Theory, 47(7):2824–2834, November 2001. Preliminary version in *Advances in Cryptology: Crypto '99*, Vol. 1666, pp. 624–638, Springer-Verlag, 1999.

[NNL01] D. Naor, M. Naor, and J. Lotspiech. *Revocation and tracing schemes for stateless receivers*. In Advances in Cryptology: Crypto'01, volume 2139 of *LNCS*, pages 41–62. Springer-Verlag, 2001.

[HS02] D. Halevy and A. Shamir. *The LSD broadcast encryption scheme*. In Advances in Cryptology— Crypto '02, volume 2442 of *LNCS*, pages 47–60, 2002.

Some of the above slides are from Moni Naor's presentation of [NNL01], available at http://www.wisdom.weizmann.ac.il/~naor/