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Abstract

A self-healing key distribution scheme enables dynamic groups of users of an unreliable
network to establish group keys for secure communication. In such a scheme, a group
manager, at the beginning of each session, in order to provide a key to each member of the
group, sends packets over a broadcast channel. Every user, belonging to the group, computes
the group key by using the packets and some private information. The group manager can
start multiple sessions during a certain time-interval, by adding/removing users to/from the
initial group. The main property of the scheme is that, if during a certain session some
broadcasted packet gets lost, then users are still capable of recovering the group key for that
session simply by using the packets they have received during a previous session and the
packets they will receive at the beginning of a subsequent one, without requesting additional
transmission from the group manager. Indeed, the only requirement that must be satisfied,
in order for the user to recover the lost keys, is membership in the group both before and
after the sessions in which the broadcast messages containing the keys are sent.

This novel and appealing approach to key distribution is quite suitable in certain military
applications and in several Internet-related settings, where high security requirements need
to be satisfied. In this paper we continue the study of self-healing key distribution schemes,
introduced by Staddon et al. in [37]. We analyse some existing constructions: we show an
attack that can be applied to one of these constructions, in order to recover session keys, and
two problems in another construction. Then, we present a new mechanism for implementing
the self-healing approach, and we present an efficient construction which is optimal in terms
of user memory storage. Finally, we extend the self-healing approach to key distribution,
and we present a scheme which enables a user to recover from a single broadcast message
all keys associated with sessions in which he is member of the communication group.

Keywords: Group Communication, Key Distribution, Self-Healing.

1 Introduction

Self-Healing Key Distribution. How to distribute session keys for secure communication to groups
of users of a network, in a manner that is resistant to packet loss, is an issue that has not been
addressed in-depth in the past. Indeed, the greatest part of the literature assumes an underlying
reliable network. Recently, in [37], an interesting approach to deal with this scenario has been
proposed. A self-healing key distribution scheme [37] enables a dynamic group of users to establish
a group key over an unreliable network. In such a scheme, a group manager, at the beginning



of each session, in order to provide a key to each member of the group, sends packets over a
broadcast channel. Every user, belonging to the group, computes the group key by using the
packets and some private information. The group manager can start multiple sessions during a
certain time-interval, by adding/removing users to/from the initial group. The main property of
the scheme is that, if at the beginning of a certain session some broadcasted packet gets lost, then
users are still capable of recovering the group key for that session simply by using the packets
they have received at the beginning of a previous session and the packets they will receive at
the beginning of a subsequent one, without requesting additional transmission from the group
manager. Indeed, the only requirement that must be satisfied, in order for the user to recover the
lost keys, is membership in the group both before and after the sessions in which the broadcast
messages containing the key are sent. In other words, the user can recover lost keys associated
with sessions “sandwiched” between two sessions in which the user is member of the group and
correctly receives the broadcast messages.

The benefits of such an approach basically are: reduction of network traffic, reduction of the
work load on the group manager, and a lower risk of user exposure through traffic analysis.

Applications. Several settings in which session keys need to be used for a short time-period,
in order to reduce the amount of ciphertext available to an adversary, or need to be updated,
due to frequent changes in the group structure, can profictably use such schemes. Military-
oriented applications [32] as well as Internet applications [37] (e.g., broadcast transmissions,
pay-per-view TV, information services, et cetera) are few important examples. In a battle field,
communication is often carried over a wireless and unreliable network (tactical ad-hoc network),
where user mobile devices are powered by batteries: once a battery is off, or a user mobile device
is caught by the enemy, the device must be removed from the group; as well as it can rejoin the
group once the power is on again or the user device has been recovered. Moreover, due to the
hierarchical structure of military groups, some information might need to reach only a certain
subsets of the whole communication group. Hence, several such restricted subgroups of the main
communication group can be active during the same time interval (i.e., multiple sessions), and
some users (e.g., troop officials) can belong to all subgroups. Finally, there could be a need for
adding new devices at any time. In such a setting, the group manager can start in a certain time-
interval several secure communication sessions, and it is necessary to have a flexible mechanism
to distribute cryptographic keys to the recipients.

A more useful and comfortable setting is broadcast communication over low-cost channels:
live-event transmissions (e.g., concerts, formal cerimonies, ice-hockey games, ...) for users who
have subscribed to (and paid for) the service, can benefit from such schemes too. Electronic
services delivering sensitive content/information to authorized recipients can take advantage from
self-healing key distribution schemes as well.

Previous work. Broadcast Encryption is one of the closest area to the subject of this paper.
Originated in [2], and formally defined in [19], it has been extensively studied (e.g., [3, 8, 22, 39,
29, 40]), and it has grown up in different directions: mainly, re-keying schemes for dynamic groups
of users (see, [44, 10, 11, 35, 15] to name a few), and broadcast schemes with tracing capability
for dishonest users [12, 34, 16, 20, 41, 42, 43, 38, 21, 36, 24, 25]. Moreover, several papers have
addressed the special case of users revocation from a privileged subset [26, 1, 31, 30, 23].
However, all the above papers assume that the underlying network is reliable. The authors of
[33] and [45], have considered a setting in which packets can get lost during transmission. In the
first case, error correction techniques have been employed. In the second, short hint messages
have been appended to the packets. The schemes given in [26], by accurately choosing the values
of the parameters, can provide resistance to packet loss as well. Recently, in [37, 27] the issue of
packet loss due to the presence of an unreliable network has been addressed, and the key recovery
approach pursued in both papers is quite similar: each packet enables the user to recover the



current key and a share of previous and subsequent ones. In [14] also this problem is considered.
The paper generalises several known constructions in order to gain resistance to packet loss.
Finally, in [32], the schemes given in [37] have been improved in terms of both memory storage
and communication complexity.

Our Contribution. In this paper we continue the study of self-healing key distribution schemes.
We analyse some existing constructions: we show an attack that can be applied to one of these
constructions, in order to recover session keys, and two problems in another construction. The
first problem implies that group members can be excluded from the communication group in
presence of packet loss. The second one gives to a user who joins the group the possibility
of recovering past session keys, associated to groups in which she does not belong to. Then,
we present a new mechanism for implementing the self-healing property, and we present an
efficient construction which is optimal in terms of user memory storage. Finally, we extend the
self-healing approach, and we present a scheme which enables a user to recover from a single
broadcast message all keys associated with sessions in which he is member of the communication

group.

2 Background

In this section we briefly recall some basic notions of Information Theory [13]. Indeed, in the
following section, we will use the entropy function to state the properties that self-healing key
distribution schemes have to satisfy.

A discrete random experiment 1s defined by a finite set, called sample space, consisting of
all elementary events, and a probability measure assigning a non-negative real number to every
elementary event, such that the sum of all these probabilities is equal to 1. An event of a discrete
random experiment is a subset of the sample space, and the probability assigned to it is the sum
of the probabilities of its elementary events.

A discrete random variable X is a mapping from a sample space to a certain range X, and
is characterized by its probability distribution {Px(z)}zex that assigns to every z € X the
probability Px(z) of the event that X takes on the value z.

The entropy of X, denoted by H(X), is a real number that measures the uncertainty about
the value of X when the underlying random experiment is carried out. It is defined by

— 3" Px(a) log Px(x),

rzeX

assuming that the terms of the form 0log( are excluded from the summation, and where the
logarithm is relative to the base 2. The entropy satisfies 0 < H(X) < log | X|, where H(X) =0
if and only if there exists g € X such that Pr(X = z¢) = 1; whereas, H(X) = log|X| if and
only if Pr(X = z) = 1/|X|, for all # € X. The deviation of the entropy H(X) from its maximal
value can be used as a measure of non-uniformity of the distribution {Px(z)}zex.

Given two random variables X and Y, taking values on sets X and Y, respectively, according
to a probability distribution { Pxy (#,y)}zex yey on their Cartesian product, the conditional un-
certainty of X, given the random variable Y, called conditional entropy and denoted by H (X|Y),
is defined as

H(X|Y) = Z Z Py (y) Px)v (z|y) log Px)y (]y)-
yeY zeX

Notice that the conditional entropy is not the entropy of a probability distribution but the average
over all entropy H(X|Y = y). Simple algebra shows that

H(X[Y) >0 (1)



with equality if and only if X is a function of Y.
The mutual information between X and Y is a measure of the amount of information by
which the uncertainty about X is reduced by learning Y, and viceversa. It is given by

I(X;Y) = H(X) - HX|Y) = H(Y) — H(Y|X).

Since,

I(X;Y)=1(Y;X) and I(X;Y) >0, (2)

it is easy to see that

H(X) > H(X]Y), (3)

with equality if and only if X and Y are independent. Along the same line, given three random
variables, X, Y, and Z, the conditional mutual information between X and Y given Z can be
written as

I(X;Y|Z) = H(X|Z)- H(X|ZY) (4)
H(Y|Z) - H(Y|Z X) = I(Y;X|Z).

Since the conditional mutual information I(X;Y|Z) is always non-negative, it holds that

H(X|Z) > H(X|ZY). ()

A useful equality, widely applied in information-theoretic proofs, is given by the so-called chain
rule. Tt is stated as follows: given n random variables, X, ...X,,, the entropy of X; ...X,, can
be written as

H(Xl,,Xn) = H(X1)+H(X2|X1) ++H(Xn|X1Xn_1) (6)

3 The Model

The model we consider in this paper is a slightly modified version of the one given in [37].

Let U be the finite universe of users of a network. A broadcast unreliable channel is available,
and time is defined by a global clock. Let GM be a group manager who sets up and manages,
by means of join and revoke operations, a communication group, which is a dynamic subset of
users of Y. Let G; C U be the communication group established by GM in session j. Each user
U; € G holds a personal key S;, received from GM before or when joining G;. A personal key
S; can be seen as a sequence of elements from a finite set, and can be used as long as user U; is
not removed by GM from the group. Individual personal keys can be related.

We denote the number of sessions, supported by the scheme, by m, the set of users revoked
by GM in session j by R;, and the set of users who join the group in session j by Join;. Hence,
G; = (Gj-1 U Joinj) \ R;. Moreover, for j = 1,...,m, let K; be the session key chosen by GM
and communicated to the group members through a broadcast message, B;. For each U; € Gj,
the key Kj; is determined by B; and the personal key S;.

Let S;,B;, K; be random variables representing the personal key for user U;, the broadcast
message Bj; and the session key K; for session j, respectively. The probability distributions
according to whom the above random variables take values are determined by the key distribution
scheme and the random bits used by GM. In particular, we assume that session keys K; are chosen
independently and according to the uniform distribution.

Then, using the entropy function, we state the following definition':

1Tn order to simplify the notation, for any subset of users G' = {Uil,...,U,'g} C U, where i1 < 13 < ... < 1gq,
we will denote the random variables X;, ... Xig by means of X .



Definition 3.1 Let U{ be the universe of users of a network, let m be the mazimum number of
sessions, and let t be the marimum number of users that can be revoked by GM.

1. D(t,m,U) is a session key distribution scheme if the following are true:

(a) For each member U; € G;, the key K; is determined by B; and S;. Formally, it holds
that:
H(K;[Bj,S;i) = 0.

(b) What users learn from the broadcast B; and their own personal key cannot be deter-
mined from the broadcast or personal keys alone. Formally, it holds that:

H(Ky,...,Kn|By,...,By) = H(Ki,...,Kn|Si,...,S,)
= H(Ki,... K,

where S1,...,S,, denote the personal keys of users Uy,..., U, in G1U...UG,,.

2. D(t,m,U) has t-revocation capability if, for each session j, let R = R;UR;_1 U ...UR;y
such that |R| < t, the group manager GM can generate a broadcast message B; such that
all revoked users in R cannot recover K;. Formally, it holds that:

H(K;|B;,B;_1,...,B1Sg) = H(Kj),
where Sp denotes the personal keys of all users in R.

3. D(t,m,U) is self-healing if the following properties are satisfied:

(a) Every U; € G,, not revoked before session s, from broadecasts B, and B;, where 1 <
r < s < m, can recover all keys Ky, for £ = r, ..., s. Formally, it holds that:

H(KT; . .,K3|Si;BT5Bs) =0.

(b) Let BC R, UR,_1U...URy be a coalition of users removed before session r and let
C C Joing U Joing4q1 U ... U Joing, be a coalition of users who join the group from
session s. Let |BUC| < t. Then, such a coalition does not get any information about
keys K;, for any r < j < s. Formally, it holds that:

H(K,,...,K.1|B1,...,B,.,85,Sc) = HK,,...,K._1).

where Sp denotes the personal keys of users in B, and S¢ denotes the personal keys
of users i C.

The definition is divided in three parts: the first one states the conditions that must be
satisfied in a session key distribution scheme. The second and the third parts define the additional
t-revocation and self-healing properties. More precisely, condition (a) of point 1. establishes that
every user U;, belonging to the communication group during session j, can compute K;, using
only his own personal key S; and the broadcast message B;. Condition (b) essentially establishes
that neither the full sequence of broadcast messages nor the personal keys of all users alone, give
information about session keys.

Point 2. formally defines the #-revocation capability of the scheme: the property establishes
that, for any subgroup of at most ¢ users that must be revoked, the group manager can broadcast
a message enabling non-revoked users to compute a new session key, while revoked users do not
gain any information about such a new key.



Point 3. characterizes the self-healing approach. Condition (a) simply states that a user
belonging to the group during sessions r and s, where r < s, can recover every lost key Kj,
sent by the group manager during session j, for » < j < s. On the other hand, condition (b)
establishes a security requirement that must be satisfied. If B denotes a subset of users belonging
to the group until session » and C' denotes a subset of users who joined the group in session s, and
|BUC| <t then, by pooling together all information the two subsets of users received when they
were members of the group, they do not gain any information about keys K;, used in sessions in
which they were not member of the group, i.e., sessions r < j < s.

Our model is slightly different from [37]. First of all, we have removed from the definition the
following condition:

For any subset F' C U, such that |F| < t, and for each U; € F, the users in F cannot
determine anything about S;. Formally, it holds that:

H(S;|SF,B1,...,By) = H(S)),
where Sp denotes the personal keys of all users in F.

It has recently been pointed out in [32] that the schemes given in [37] do not meet the above
requirement. Also the construction given in [4] does not meet such a condition. In [6], by using
information theoretic arguments, it is shown that the above condition is impossible to obtain.

Then, in the model given in [37], a random variable Z; ; is used for representing the total
amount of information that user U; € G; gets from a broadcast message B; and his own personal
key S; (amount of information that can be greater than the key K;). By using such a variable
point 1.(a) of the definition, for example, is therein stated by saying that H(Z; ;|B;,S;) = 0,
and H(K;|Z; ;) = 0. We have preferred to give a simplified formalization of the conditions by
focusing directly on the secret keys.

Points 1.(b), 3.(a), 3.(h), and 2. are stronger in our model. Indeed, we have expressed condi-
tions 1.(b), 3.(a) and 3.(b), in terms of the joint entropy of the keys instead of considering a single
key (e.g., H(K1,...,Kn|S1,...,8,) = H(K4,...,Ky,) instead of H(K;|S1,...,8,) = H(K;),
for i = 1,...,m); while, in condition 2., we have required that revoked users do not get any
information on a new key even if they pool together their personal keys and previous broadcast
messages. In [37] broadcast messages are not considered in condition 2. However, all constructions
therein given satisfy such stronger requirements.

The constructions we will consider in the rest of the paper are implemented over a finite prime
field Fy;. Hence, group keys, broadcast messages, and personal keys will be sequences of elements
in Fy, and all operations of the schemes will take place in Fj.

In the above model, the group manager can change the structure of the initial group of users by
means of revoke and join operations. However, this does not mean that the scheme is dynamic
in the sense that the group manager can provide a session key to any group of users at any time.
Indeed, according to point 2., the users that can be permanently revoked from the communica-
tion group are at most ¢ for all lifetime of the scheme. Moreover, the model does not fix any
upperbound on the number of new users that can join the system but in all constructions we will
see the number of join operations depends on the size of the finite prime field F,;. The bigger the
size, the more users can join the scheme. However, the drawback is that memory storage and
communication complexity rise up proportionally to the size of F,. If an upper bound g on the
size of G, for j = 1,...,m, is known, and for security reason a group key must be at least 80-bit
long, then F, must be such that ¢ > max{2% g}.



4 A Construction and an Attack

In this section we analyze the self-healing key distribution schemes proposed in [37]. We start
by recalling the first construction therein given. The aim is twofold: to offer to the reader a
real example of a method implementing a self-healing key distribution scheme, and to point out
the difficulty the design of these schemes gives rise to. Indeed, even if the following construction
(which does not provide user revocation) satisfies several conditions of the definition of a self-
healing key distribution scheme, we show that, for j = 2,...,m — 1, an adversary who gets the
sequence of broadcasts B;_1, B;, Bj;1, can recover Kj.

The idea of the following construction is the distribution, with each broadcast, of shares of past
and future session keys. More precisely, a user U;, who belongs to the group communication in
session ¢, recovers from the broadcast message B, the session key K, but also shares of past and
future session keys. Hence, two broadcast messages for sessions ¢ and r enable recovering keys
for “sandwiched” sessions r < j < £. The shares of past session keys are implemented by means
of a sequence of polynomials < p1(x), ..., pm(2) >; while, the shares of future session keys are
implemented by < q1(z),...,qgm(x) > .

Let Fy[z] be the set of all univariate polynomials with coeflicients in Fy, and let ¢ be a positive
integer.

CONSTRUCTION 1 (given in [37]):
Assume that G1 = {U1,...,U,}.
Set-up

The group manager:

¢ chooses uniformly at random 2m polynomials in Fy[z], each of degree t, say
hi(z),...,hm(z),p1(z),...,pm(z), and m session keys, K1,...,Km € F,

o defines, for each j =1,...,m, a polynomial in Fy[z], say ¢;(z) = K; —p;(z)

e sends in a private way to user U;, for ¢ = 1,...,n, as personal key the
sequence of values S; =< h1(2),...,hm(7) > .
Broadcast
In session j € {1,..., m}, the group manager broadcasts
B, = <hi(z)+mp(@),... . hj-1(2) +py—r(z), hy(z) + K,

hivi(z) + gi41(2), -y A (®) + gm(z) >,

where each term of B; represents a single polynomial obtained by applying the
sum operator.

Session Key and Shares Recovery in Session j:
For all i € {1,...,n}, user U; from broadcast B;:
e recovers K; by evaluating hj(z) + K; at 1 and by subtracting k(1)

¢ recovers session key shares < pi(i),...,p;—1(1) > evaluating, for £ =
1,...,7 — 1, the polynomials h(z) + ps(z) at 1 and subtracting h,(7)

e recovers session key shares < qj4+1(2),...,qm () > evaluating, for £ = j +
1,...,m, the polynomials hs(z) + q¢(x) at 1 and subtracting h(z).




The self-healing mechanism works as follows: from broadcast B, user U; recovers, among
others, shares qo41(7), ..., gm(%) of future sessions j, for j = £+ 1,...,m. Then, in session r, from
the broadcast B,, she gets K, as well as, among others, shares of past sessions p1(7), ..., pr_1(7).
Therefore, for £ < j < r, she can compute K; = p; (i) + ¢;(4).

Unfortunately, the structure of the broadcast message in the above protocol allows an adversary
who gets the sequence of broadcasts By, ..., B,y,, to recover K;, for any j =2,...,m— 1.

Attack. An adversary can recover a session key as follows: if the adversary has received
B;_1, Bj, and Bji1, then he has got h;(z) + ¢;(2), h;(2) + K;, and h;(z) + p;(z), respectively.
But,

2(hj(2) + Kj) — [(Rj(2) + 4j(2)) + (hj(z) + p;(2))] = K;,
since pj(x) + ¢;(z) = Kj.

The attack points out that with such an approach of using redundance in each broadcast, in
order to provide the possibility of recovering lost keys, the design of the scheme must carefully
consider the composition of different pieces of the broadcast messages.

The attack does not apply to Constructions 3,4 and 5 of [37], due to the use in those schemes
of unrelated polynomials in each broadcast. In other words, in session j a sequence of (different)

polynomials s;1(),...,5;m() is used for masking the session keys and the shares of past and
future session keys.

However, in the above construction, if the structure of the broadcast is opportunely modified,
it is possible render useless the attack described before. More precisely, let

Bj = <m(@)+pi(@),. .. hj1(2) +pj-1(x), 2 hj(z) + Kj,
hjpi(z) + gipa(@), - b (2) + g (2) >

In this case it is not difficult to see that a straightforward application of the proposed attack
does not work since

2hj(2) + Kj = [(hj(2) + () + (h(z) + pj(2))] = 0.
More precisely, we can show the following result?:

Theorem 4.1 Let F, be a finite prime field where ¢ > 2, and assume that the modified CON-
STRUCTION 1 is implemented over such a field. An adversary, once received By, ..., By,, does
not learn any wnformation about Ky, ..., K.

Proof. To simplify the discussion we can assume, without loss of generality®, that in Con-
STRUCTION 1 the polynomials h;(z), p;(z) and ¢;(x) are simple constants h;, p; and g¢;.

The information that can be recovered from By, ..., By isgiven by C1 = 2-h1+ K1y, ...,Cp =
2 ho, + K, P = h1 +p1,.., Pt = A1 +pm_1,Q2 = hy —}-QQ,...,Qm = h,, + qm. It 1s
pretty easy to see that the available values do not enable us to infer any information about the
m session keys. Indeed, we can show that the following system of 3m equations and 3m variables
Pls--sPmyP1, -y hm,q1, - -, qm, for any fixed m-tuple of values for K1,..., K,,, has one and
only one solution. More precisely,

2Notice that, instead of 2, we could use any other field element r different from 0 and 1, i.e., changing the
broadcast message with r - h;(z) + K.

3TIn the general case with t-degree polynomials, we can apply the same proof technique exactly * times con-
sidering, for ¢ = 0,...,¢ — 1, the systems of equations given by the coefficients of the polynomials for each term

rt.



hi+p =P pr=P—-h

h’!ﬂ—l +p1n—1 = P’IIL—l Pm—1 = P‘rn—l - h7IL—1
2-h + K1 =0C; hy = (Cl — [(1) . 2_1

2 hm+ K, =C,, is equivalent to hm = (C — Kun) Lot
ha +q = Q2 g2 = Q2 — ho

hm + gm = Qm Gm = Qm — hm
g =K g =Ki—p

Pm + qm = I(’IIL Pm = [(771. — 4m

and has solution given by
P11 = P1 — (Cl — 1(1) . 2_1

Pm—-1 = P — (G'm—l - l(m—l) . 2_1
hl = (Cl — [(1) . 2_1

B = (Cyn — Kpp) - 271
G2 = QQ — (CQ — [(2) . 2_1

Gm = Qm — (Cm — Kyn) - 27!
q1 = [(1 — [P] — (C] — I(]) . 2_1].
P =Km —[Qm — (Crm — Kim)-27"].

Thus, an adversary holding the sequence By, ..., By, does not learn any information about
the whole sequence Ky, ..., Kp,. ]

Notice that in the original construction the above property is not satisfied because some
sequences < Kj,..., K, > are not possible given the sequence of broadcast messages <
B],...,Bm > .

5 Lower Bounds

The size of the personal key, each user has to store, and the size of the broadcast the GM has
to send at the beginning of every session, in order to establish a new group key, can be lower
bounded by using Information Theory Tools. We start by recalling the following simple lemma
(a slightly more general version is given in [37]):

Lemma 5.1 Let X, Y, and W be three random variables. If H(X|Y, W) =0 and H(X|W) =
H(X), then
H(Y) > H(X).

Proof. Notice that I(Y;X|W) can be written as:
H(Y|W) — H(Y|W,X) = H(X|W) — H(X|W,Y).

From (1) we get that H(Y|W,X) > 0, while from the hypothesis we have that H(X|W) = H(X)
and H(X|W,Y) = 0. Therefore, applying (5), we get that

H(Y) > H(Y|W) > H(X).

Hence, the result holds. ]



Since all session keys are chosen uniformly at random, in the following we denote by H (K)
the entropy of a random variable K, assuming values over a finite set K according to the uniform
probability distribution.

Using the above lemma, we can show the following theorem (which gives the same result
proven for the model in [37]):

Theorem 5.2 In any self-healing key distribution scheme, for any U; belonging to the group
since session j, where j € {1,...,m}, it holds that

H(Si) > H(Kj,...,Kp) > (m—j+1)logg.

Proof. Since condition 3.(a) implies that H(K;,...,K;|B;j, By, S;) = 0 and condition
1.(c) that H(K;,...,Kn|B1,By) = H(K;,...,K;;), from Lemma 5.1 we get that H(S;) >
H(K;,...,K;). From the independence of Kj,..., K, and the assumption that all keys are
chosen uniformly at random, it holds that

= (m—j+1)logg.
u

Notice that, since for any random variable X it holds that H(X) < log|X]|, we get that
log|Si| > (m — j + 1) log ¢q. The above inequality says that every user who belongs to Gy has to
store a personal key of at least mlog ¢ bits.

Using close techniques, it is not difficult to show a lower bound on the size of the broadcast.
We start by recalling another simple lemma.

Lemma 5.3 Let X, Y, and W be three random variables. If H(Y|W) =0 then
H(X|Y, W) = H(X|W).
Proof. Notice that H(Y|W) = 0 implies H(Y|X, W) = 0. Indeed, (1) and (5) yield
0< H(Y|X, W) < H(Y|W) = 0.
The mutual information 7(X;Y|W) can be written either as H(X|W) — H(X|W,Y) or
as H(Y|W) — H(Y|X,W). Since H(Y|W) — H(Y|X, W) = 0, it holds that H(X|W) =
H(X[Y, W).
|
Theorem 5.4 In any self-healing key distribution scheme, for any j =2,...,m,
H(Bj) = (7 —1)logg.
Proof. Notice that

I(By;Ki,...,K,;|S;B1) = H(B,;|S:B1)— H(B;|S;,Bi,Ki,...,K,)
H(Ki,...,K;|S,B) — H(Ky,...,K,|S;, By, B;).

Applying the chain rule (6), we have that

H(Ki,...,K;|S:,B1) = H(K:|S;, B1) + H(K>, ..., K,|S:B1,K1).
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Condition 1.(a) implies that H(K;|S;, B1) = 0, while Lemma 5.3 and condition 1.(b) yield
H(Ks, ..., K,|S;,B1, K1) = H(Ks, ..., K,|S:,B1) = H(Ko, ..., K;).
Moreover, due to condition 3.(a), it holds that
H(Ki,...,K,|S:, Bi,B;) = 0.
Hence,
H(B;) > H(B,|S:,B:)—~ H(B,|S:,B1,Ki,....K,)
> H(K»,...,K;)=(j—1)loggq.

By applying a similar argument, it is possible also to show that H(B1) > H(K) = loggq.

6 A New Construction

In this section we describe some new self-healing key distribution schemes. The novelty of these
schemes, compared to the ones given in [37], lies in a different self-healing technique. Instead
of sending, with every broadcast message, shares for recovering past and future session keys,
we send additional information which enables the users to recover lost keys from two received
broadcast messages.

The first construction we propose does not support user revocation and collusion attacks, but
these features can be easily built upon this basic scheme. We start by giving such a simplified
scheme, in order to emphasize the self-healing technique we have employed.

SCHEME 1.

Assume that G1 = {U1,...,U,}.
Set-up

The group manager:

e chooses uniformly at random m values, say hi, ..., h,,, and m session keys,
Ki,...,Kmin Fy

o defines, for each y =1,...,m, the value z; = h; + K
e sends in a private way, for 1 = 1,...,n, to user U; as personal key the
sequence of values S; =< hi1,...,hm >
Broadcast
The group manager GM, in sessions 1 and 2 broadcasts B; = z; and B; = 2,
respectively. In session 7 € {3,...,m}, he broadcasts
By =<z14+z2,...,21 +zj_1,2; > .

Key Computation in Session j

For all i € {1,...,n}, user U; from broadcast Bj recovers K; = z; — hj.

11



Notice that a new user can always join the group at the j-th session: The group manager
GM gives him a public identifier » in F, \ {1,...,n}, and sends him S, =< h;,... hy, > as a
personal key.

We can show that the above construction realizes a self-healing key distribution scheme with-
out collusion resistance and revocation capabilities. More precisely, we can prove the following
theorem.

Theorem 6.1 SCHEME 1 satisfies conditions 1.(a), 1.(b) and 3.(a) of Definition 3.1.

Proof. Condition 1.(a) easily follows noticing that, for all i € {1,...,n}, user U; recovers K;
from the broadcast Bj, by evaluating z; — h;. Condition 1.(b) can be shown in two parts. It is
straightforward to see that the personal keys alone do not give any information about any key:
Indeed, the session keys are independent of the personal keys, and they are chosen according
to the uniform probability distribution. Moreover, we can prove that the broadcast messages
By, ..., Bpy alone do not give any information about the session keys as follows: The broadcast
messages are given by:

By =<2z >

By =< 29 >

By =< 21 + 29,23 >

By =< z1 4+ 23,21 + 23,24 >

By =<zi+za,21+ 23,21+ Zmet1, Zm >

It is easy to see that several pieces are repeated a few times. Eventually, an adversary gets
21, 22,...,%m. However, since every z;, for j = 1,...,m, perfectly hides keys K;, by means of
the corresponding value of the personal key, the adversary does not gain any information about
the keys.

On the other hand, condition 3.(a) holds since a broadcast message, say B,, sent after B;,
enables the user to compute z1 = (21 + 2;) — 2;, by means of which the user can subsequently
LeCOVer Zj41,...,%r—1 from B, and, hence, the whole sequence of session keys, K;,...,K,. 1

Along the same lines of [37], applying the technique developed in [1, 31], we can use uni-
variate t-degree polynomials for providing user revocation. To this aim, notice that Lagrange’s
interpolation formula for a polynomial P(z) from ¢ + 1 values at points zg, ..., z; different from

0 says that we can compute
¢

P(0) = Y AiP(w:)

i=0
where the A; = Hj# —2_ are the Lagrange’s coefficients and depend on the points ;.
7 i

The following construction describes a self-healing session key distribution scheme with revo-
cation capability and resilient to collusion attacks.
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SCHEME 2.
Assume that G1 = {U1,...,U,}.

Set-up

The group manager GM:

e chooses, independently and uniformly at random, m polynomials of degree

t, say s1(z),..., sm(z) € Fy[z], and m session keys, K1,..., K., € F,
o defines, for each j =1,..., m, the value z; = K; + s;(0)
e sends in a private way, for 1 = 1,...,n, to user U; as personal key the
sequence of values S; =< s1(2),...,sm(2) > .
Broadcast

Let R; C G;j—1 denote the set of users revoked in session 7, and let R = R; U
R;_1 U...U Ry, such that |R| < t. The group manager GM:

e chooses a set of indices (different from 0) W = {w], ... w!}, such that the
indices of the users in R, denoted by the set Ig, are contained in W, i.e.,
Ir C W, but Wnlg; =0, where Ig; represents the set of indices of the
users in Gj.

e broadcasts in session 3, a message B; given by the concatenation BJ1||BJ2 of
the sequences le and Bj2 where, for y =1,2

Bj=<z;>||<wi,. .. wisi(w)...,swl)>
while, in session j € {3,...,m},
le =<z14+22,...,21 +z5-1,2; >,
and
Bf =< wiyowi si(wl), s (w)) > ||BJ2—1

denoting by B the empty sequence.
Key Computation in Session j

User U;:

o recovers s;(0) applying Lagrange’s formula to {(wz,sj(wi‘))}hlw,t and
(1,55(2))

¢ computes K; computing z; — 5;(0)

A new user U;, can join the group at the j-th session: the group manager GM gives him a
public identifier r in Fy \ {1,...,n} and sends him S, =< s;(7),...,sm(r) > as a personal key.
Notice that if a certain user U; is revoked in session j, then he must be revoked in all future
sessions. In other words, the pair (4, s,(¢)) must be part of the broadcast message By, for any
£ =1j,...,m. Hence, the scheme allows for revoking up to ¢ users from the group.

We can now show the following result:

Theorem 6.2 SCHEME 2 s a self-healing key distribution scheme.
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Proof. All conditions required by Definition 3.1 are satisfied.

e Condition 1.(a) easily follows noticing that, for all : € {1,...,n}, user U; recovers K; from
the broadcast message B; computing s;(0) and then K; = z;(i) — s;(0).

Condition 1.(b) can be shown in two parts. It is straightforward to see that the personal
keys alone do not give any information about any key: Indeed, the session keys are still
independent of the personal keys, and they are chosen according to the uniform probability
distribution. Moreover, we can prove that the broadcast messages By, ..., By, alone do not
give any information about the session keys as follows: The broadcast messages are given

by:

1 1 1 1
B =< 217"‘)1a"'7"‘)t731(w1)7"'7";1(wt)>
By =< z3,wi,...,wi, s2(wi), ..., s2(wip) >
3 3 3 3
Bs =< z1 4+ 22,23,wi1,...,wi, s3(wi), ..., s3(wi),
2 2 2 2 1 1 1 1

Wiy, wiys2(wi), .o, sa(wi )y wiy ey wiy s1(wr), e, s1(we ) >

B, =<zi+ 22,21+ 23,...,21 + Zm—1, Zm,
A 1 1 13
Wiy wi Sm(w), e S (W), w, e wp, s1(wr )y
v
31(‘*’t)>
It is possible to compute z1, za,...,zm from the broadcast messages. It is not difficult

to see that every z;, for j = 1,...,m, perfectly hides keys K;, by means of s;(0) since
zj = [X'j + Sj(()).

Condition 2 is satisfied because, a user U;, revoked in session j, does not get any information
about s;(0): he can count only on ¢ points since the point s;(7), provided by his own
personal key, is part of the broadcast message B; sent by the group manager, i.e., the
values i, 5;(7) are in B?. For any guess of a 5;(0) he can interpolate a different polynomial
s;j(x). Therefore, K; is completely safe.

Condition 3.(a) (i.e., the self-healing property) follows by noticing that, from any two
broadcasts B, and B, where r < s, user U; can compute all keys Kj, for r < j < s. The
mechanism 1s exactly the same described in SCHEME 1: the only difference in this case is
that, once the user has recovered z,41,...,2,—1 then he needs, for j = r+1,...,5s—1, the
values of ¢ points (plus the point provided by his own personal key), in order to compute
5;(0). But these collections of points are provided by the second part of the broadcast
messages By, i.e., BZ.

Condition 3.(b) holds because users revoked before session r, do not get any information
about Kj;, for j > r, by themselves. At the same time new users, who join the group after
session s, cannot contribute with any point to recover a key K;, communicated during
sessions j < s. Hence, session keys K, for any » < j < s, are completely safe with respect
to joint coalitions of size at most ¢ of new and revoked users.

In terms of memory storage and communication complexity, our construction requires that

user U; stores a personal key S; of size |S;| = (m — j + 1)logq, which is optimal with respect
to Theorem 5.2, and, for j > 3, it has broadcast size |B;| = jlogq + 2¢jloggq. Hence, there is
a substantial improvement compared to [37], where |S;| = m?logq and |B;| = m(t + 1)logq +
tlog ¢+ mt(t+ 1) log g. Moreover, our scheme is still a bit more efficient than the scheme recently
given in [32], where the personal key of every user is 2(m — j + 1) log ¢ bits, and the size of the
broadcast is [(m + j 4+ 1)t + (m + 1)]log ¢ bits.
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We stress that the main difference of our protocol, compared to the one given in [37, 32], lies in a
different implementation of the self-healing property: In [37, 32] any user, belonging to G, from
B, and B; can recover all keys K, for every r < j <'s. In our protoco] it is not difficult to see
that user U;, from B, and B, can recover K; for any session j < s in which U; is member of the

group. Moreover, notice that the scheme given in [37, 32] satisfies the following condition : Every
user U; € G, from a single broadcast B;, can compute only information about K;. Formally, it

holds that:
H(Ky,...,K;_1,K,;, K 41,...,Km|Si,B,) = H(K1,...,K;_1,K,;11,...,Km). (1)

In our scheme, such a strong condition is not satisfied because an authorized user can get from
B; partial information about previous keys of sessions in which he belongs to the group. Such a
possibility 1s not a problem in terms of security.

7 Key-recovery from a single Broadcast

In this section we propose another key-recovery method. This method has the following ad-
vantage, compared to the mechanism introduced in [37]: in those schemes, the users can only
recover the keys belonging to sessions “sandwiched” between two sessions in which the user gets
the broadcast messages. In particular, if the user loses the first message By and gets message B;
for a certain session j, then he has no way for recovering the lost session keys. With the following
scheme, a user can recover all lost session keys (for sessions in which he belongs to the group)
by using only the current broadcast message. From a formal point of view, the key-recovery
property we require, which replaces 1.(a), 3.(a) in Definition 3.1, is the following:

1. For any £ < s < m, and for any user U; € Gy, who is not revoked before session s, the key
Ky 1s determined by B, and S;. Formally, it holds that:

H(K@|BS,SZ‘) = 0. (8)

The following scheme, which slightly modifies the previous one, describes a scheme resilient
to collusion attacks, with key-recovery and with revocation capabilities.
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SCHEME 3.

Assume that G1 = {U1,...,Un}.
Set-up

The group manager GM:

o chooses, independently and uniformly at random, m polynomials of degree
t, say s1(z),..., sm(z) € Fy[z], and m session keys, K1,..., K., € F,

o defines, for each j =1,..., m, the value z; = K, + s,(0)

e sends in a private way, for 1 = 1,...,n, to user U; as personal key the
sequence of values S; =< $1(i),..., 8m(2) > .
Broadcast

Let R; C Gj_1 denote the set of users revoked in session 3, and let R = R; U
R;_1 U...U Ry, such that |R| < t. The group manager GM:

o chooses a set of indices (different from 0) W = {w?,... ,w{}, such that the
indices of the users in R, denoted by the set Ig, are contained in W, i.e.,
Ir C W, but Wnlg; =0, where Is; represents the set of indices of the
users in Gj.

¢ broadcasts in session j € {1,...,m} a message B; given by the concatena-

tion B;HB]2 of the sequences le and BJQ7 where:

1
Bj =< z5,z;-1,...,21 >

and
B; =<w],...,wl, s;(wl),...,s5(wl) > ||B]2_1

denoting by Bi the empty sequence.
Key Computation in Session j

User U;:

® recovers S](O) applying Lagrange’s formula to {(wz,s](wi,‘))}(=1w7¢ and
(1, 5;(4))

e computes K; evaluating z; — s,(0)

Along the same lines of the proof given for SCHEME 2 the above scheme can be shown to be
correct and secure. In particular, Condition (8) is satisfied because, from any broadcast B; user
U;, belonging to the group Gy, can compute all keys K;, for £ < s. Indeed, once the user has
recovered the polynomial z, from Bj, then he needs exactly ¢ points, plus the point provided by
his own personal key, in order to compute s,(0). But these collections of points are computable

by using BZ.

In the above scheme we allow from a single broadcast message B; to recover K, for any £ < s,
if the user was member of the group during those sessions. In terms of memory storage and
communication complexity, also this construction requires that user U; stores a personal key S;
of size |S;| = (m — j + 1) logq, which is optimal with respect to Theorem 5.2, and, for j > 1, it

has broadcast size |B;| = jloggq + 2tjlogg.
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8 Long-Lived Schemes

The schemes presented in the above sections enable the group manager GM to establish a session
key with the users for m different sessions. Along the same lines of [37], applying a standard
cryptographic technique, we can set up computationally secure long-lived protocols, i.e., protocols
where the number of sessions is not fixed, by using a public generator g of a cyclic subgroup
H C Fj of prime order p, and by moving all computations to the exponent. However, as we will
point out later on, the computationally secure long-lived scheme given in [37] (i.e. construction
5) has two problems. We modify the scheme to solve one of them, while the other seems to be
an interesting open problem.

The key idea, on which the long lived scheme is based, is to do interpolation in the exponents.
Since, as we have seen before, Lagrange’s interpolation formula for a polynomial P(z) from ¢+ 1
values at points zg, ..., z; different from 0 says that we can compute

t

P(0)=>_ XiP(x:)

i=0

where the A\; = HJ.# % are the Lagrange’s coefficients and depend on the points z;, then we
can also compute
t
| t
gP(O) _ gZi:u XiP(wi) _ Hg)\lP(z,). (9)
i=0

Interpolation in the exponents was first used by Feldman in [18] in order to enable each participant
in a secret sharing scheme to verify his own share, received from a possibly dishonest dealer, with
no loss in security. Such a property was guaranteed by the difficulty of computing the discrete
log in certain finite multiplicative groups. Since then, interpolation in the exponents has been
applied in several papers. In the following construction it is used to allow users to evolve their
personal keys from one set of m sessions to multiple sets of m sessions. This is accomplished
through the broadcast of random values from the group manager, which are used by the group
members for computing, in each new set of m sessions, a new instance of their own personal keys.

More precisely, the long-lived scheme is implemented by using repeatedly SCHEME 3, per-
forming the computation in the exponents (similarly, we can make long-lived also SCHEME 2).

The group manager, for the a-th set of m sessions, defines the session keys as g1, ... g
and broadcasts some random values g’=',... g'>=. Each user U; uses his/her sequence of
values < s1(i),..., 8, (i) > for computing < gv=151()  gvemsm(i) > which can be seen as
the instance of the personal key for the a-th run of the long-lived scheme. Then, every user
in the communication group recovers the session key g% from 2o = gFeitva,355(0) and
wijl, Wt gleti@an) o gvesi@s ) available from the broadcast Bj;, and by using his/her

own value ¢V~i%i()) for computing the value g?=7%5(%) and, then, gKei = zmj/g““wisi(o).

As we will see later, the security of such an extended scheme relies on the difficulty of solving
the decisional Diffie-Hellman problem (DDH, for short) in H, which is a well-known assumption
used in cryptography.

Let ¢ be a positive integer, let g be a generator of a cyclic subgroup H C Fj of prime order
p in which the DDH assumption holds.
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SCHEME 4.
Assume that G1 = {U1,...,Un}.
Set-up

The group manager GM:

o chooses, independently and uniformly at random, m polynomials of degree
t in both variables, say s1(z),..., $m(z) with coefficients in F},.

e sends in a private way, for 1 = 1,...,n, to user U; the sequence of values
Si =< Sl(i), . 7Sm(lh) > .

Computation of fresh values and keys for the a-th set of m sessions

The group manager GM:

o chooses, uniformly at random, integers va1,...,vam € Fp and computes
Ve v
the sequence U P, =< g">1,...,g">™ >

o chooses, uniformly at random, m values, K 1,..., Ko m € Fp and, for each
7=1,...,m, he defines z,,; = gTCenitva,isil0)

When the group manager needs to send a new session key, then he applies the following steps:
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SCHEME 4.
Broadcast during the a-th set of m sessions

Let R; C G;_1 denote the set of users revoked in session 7, and let R = R; U
R;_1 U...U Ry, such that |R| < t. The group manager GM:

¢ chooses a set of indices (different from 0) W = {w,,,...,w},,;}, such that
the indices of the users in R, denoted by the set Ir, are contained in W,
ie, Ir CW, but Wnlg, =0, where Ig; represents the set of indices of
the users in Gj.

e broadcasts in session 5 € {1,...,m} a message B; given by the concatena-
tion B}||B; of the sequences B, and B}, where:

le =UPa|| < za,jy Zaj—1y. .« Za,1 >,
and
B; =< wi’l, R wiyt,gu“’jsj(wial), s ,gv“’jsj(wi:t) > ||BJ2_1
denoting by Bg the empty sequence.
Key Computation during the a-th set of m sessions

User U; in session j:

. . s (wd ),
e recovers "% (%) interpolating {(w?, ,, 9" J(w"al))}Z=1,“.,t and
(i.g7)

e gets the session key g computing za,;/g"=7%(?,

Key Computation. It is easy to see by simple algebra that condition (8) is satisfied in each set
of m sessions. From the broadcast messages and his own personal key, a group member can
compute the session keys she is entitled to. We could also extend the scheme for enabling key-
recovery over more than one set of m sessions, by sending during the a-th set of m sessions also
the sequences UP,,UP,_1,...,UP; and the broadcast messages of previous sets of m sessions.
However, the size of the broadcast will be too large. An interesting open problem is to find more
efficient constructions. A first improvement could be, instead of generating uniformly at random,
integers vy 1, ...,%,m € F, and computing U P, =< g”=1,...,g">™ > to use only one random
value r as a seed for a pseudo-random generator, in order to derive the other values.

A Weakness in Construction 5 of [37]. Notice that ScHEME 4 is different from Construction 5 of
[37] in an important aspect: we are sending with each broadcast the values that are used for
computing the instances of the personal key in each new set « of m sessions. In [37], these values
are sent by means of a single broadcast message at the beginning of the a-th set of m sessions.
But since we are assuming that the network is not reliable, if some user does not receive such a
message, then she has no way for computing her personal key. It follows that such a user gets
out from the communication group.

Join. Notice that a second problem associated with Construction 5 of [37] and our scheme lies
in the join operation in presence of new users. A straightforward extension of a scheme for m
sessions does not work. Tf a new user gets an identifier » and the sequence < s1(7), ..., sm(r) >,
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then from the broadcast messages of previous sessions, she can recover session keys associated to
groups where she does not belong to. On the other hand, if the user joins the group in session
Jj and gets the sequence < s;(r), ..., s, (r) >, then she cannot use the personal key during the
first j — 1 sessions of subsequent sets of m sessions and she can still recover previous session keys.
It seems difficult to slightly modify Construction 5 of [37] and SCHEME 4 in order to enable a
secure join.

Computationally Secure Schemes. In order to show that the above construction is secure, we
have to provide a definition of what we mean by “computationally secure”. Indeed, if the key
computation condition and the key-recovery condition (the self-healing property, resp., if we
extend SCHEME 2) can still be stated in terms of information theory, the security conditions
given by Definition 3.1 do not apply to this new scenario.

Notice that a broadcast message contains, in a certain sense, an encryption of the value of
the session key. Such an encryption can be “opened” only by group members. In our scheme, for
example, the encryption is represented by z, ; and it can be opened by computing and removing
the term g¥~%(%). Notice that this is essentially an El Gamal encryption [17].

Informally speaking, we say that the scheme is computationally secure with respect to revoked
users, if the following condition is satisfied: for any session j and for any set of revoked users
of size less than or equal to ¢, it is computationally infeasible to distinguish with non-negligible
probability between the session key at time j and a random value, given their View, which consists
in their own personal keys and broadcast messages before, on, and after time j.

Security of SCHEME 4. We can show that ScHEME 4 is computationally secure with respect to
revoked users assuming the difficulty of solving the DDH problem in a large group of prime order.
Loosely speaking, the DDH assumption says that, given a cyclic group H and a generator g, it is
computationally infeasible to establish if a certain triple < g2, g%, y > is of the form < g%, g, g** >
or < g%,¢% g¢ >, where a, b, and ¢ are chosen uniformly at random in {0, ..., |H|—1}. For details
the reader is referred to [9].

The idea is to divide the proof in two steps: first we consider the case where m =1 (i.e., the
basic scheme is used for providing a single session key), and then we extend the proof to the case
m > 1.

When m = 1, the broadcast message Bj; is:

Ko4vqs(0)

Vg Vas(Wa, Vas(Wa,
<g*.9 yWa,ly- - s Wa ty g ( 1);"'ag ( ) >,

where we have used va, Wa 1, ...,wa + and s(-) instead of vy 1, wl ,...,w} , and s1(-) to simplify
: :

the notation. A coalition of ¢ users, say Uy, ..., U, revoked at the a-th iteration of the scheme
has the following View:

o the sequence of values s(1),...,s(t)

e o — 1 tuples of (2t 4 4) elements, say

< g, "ot O wewpy, gt en) L grat s gFs guat(0) s
where § = 1,...,a — 1, and for some j = 1,...,¢, we might have wg; = i (i.e., some
users among Uy, ..., U; have already been revoked before the a-th set of sessions). The

(2t + 4)-tuples represent information that Uy, ..., U; have received (and computed) when
they were members of the communication group.

e a (2t + 2)-tuple for the a-th set given by

<gva,gK°+U°’8(0),],...,t,gv"'g(l) ’gvas(t) >

yooe .
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e ¢ tuples of (2t 4+ 2) elements, say
< gUngKg-H/gs(O)’ 1’ B .,t,gv”’(l), N .’gws(t) >

where £ > «, corresponding to future broadcast messages in which the users are kept
revoked.

The coalition is successful in breaking the scheme if there exists an efficient algorithm A that,
given the View, with non-negligible probability, can determine whether a challenge value v is g%
or it is a random element in H.

We show that such an algorithm A can be used to construct an efficient algorithm A’ for
solving the DDH problem.

Notice that, for each value gKatvas(0) given gV« g¥s and g?#*(%) the value of e is uniquely
determined. Hence, given the View, the value g¥« is uniquely determined.

The idea of the proof is the following: given the challenge triple < g%, g% y > for the DDH
problem, chosen uniformly at random, A’ first generates a View, i.e., a set of tuples to be given
in input to A, which have exactly the same distribution of tuples produced by a real execution of
SCHEME 4, but are constructed in such a way that the output of A on them gives also an answer
to the DDH problem. Then, A is run on this View, and its output is taken as the output of A

More precisely, A’ constructs the input for A as follows: it chooses uniformly at random
values s(1), ..., s(t) in F,, and computes ¢g*(") ..., g*(). These values are used in constructing
the a-th tuple, corresponding to the a-th set, and the tuples associated with future sets, i.e.,
the (o + 1)-th, (a + 2)-th, .... Moreover, some of them are also used for constructing tuples
associated with previous sets of sessions. Indeed, in constructing previous (to the a-th) tuples,
some values are associated with users in {Uy,...,U;} who have already been revoked at that
time, but some other values do not correspond to users in the communication group, and need to
be used in order to construct the broadcast message. Notice that these values must be consistent
with the polynomial s(z) on which s(1),..., s(t) belong to.

The idea is to choose these values all on the polynomial s(z) interpolated by s(1),...,s(?)
and s(0), where s(0) = b, the exponent of g* in the DDH challenge triple < g%, ¢*, y >. Such an
operation is possible by using Lagrange’s interpolation formula in the exponents. Indeed, it is
not difficult to see that, given (1,¢°M), ... (t,g*®)), (0, ¢*(?)), where s(0) = b, equation (9) can
be used to construct pairs of values (wﬁyj,gs(‘”ﬂsi)), where wp ; is chosen uniformly at random in
F,\{0,1,...,t}, and ¢*(“s) is obtained by computing

t
gs("‘)ﬂ;j) — gZz:o Ais (i) = Hg)\is(i), (10)
1=0

wp, T

where the Lagrange’s coefficients are in this case given by A; = Hr# .
Let us fix a revocation schedule, i.e., the users the group manager revokes and the corre-
. . . 1
sponding revocation times, as well as the set of wg ; values. Then, A proceeds as follows:

o chooses, uniformly at random, a+¢ values of v1, ..., Va4 4, and a+¢ valuesof K1,..., Koyg,
for computing session keys g%, ... gKe+s
e constructs a — 1 tuples of the form
< g, g e we L wp e, gt Wsn) L guerlen) gKs guss(0) s
where § = 1,...,a — 1. Notice that, if in the g¢-th tuple, for 1 < ¢ < a — 1, the value
wg; =1, for some i = 1,...,t, then ¢*@) is already available. Otherwise, it is computed
according to (10). Notice that all the tuples can be efficiently computed, since g is the

public generator of the group, ¢° is the second element of the triple < g%, ¢°,y >, and all
other terms can be obtained by simple exponentiations.
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e constructs the tuple

< ga)gKQ-I—GS(O)’ ]" st "t)gGS(l)J s "gGS(t) >

where g2 is the first term of the triple < g%, g%,y >
e constructs other ¢ tuples

< g'7, gTatvas(0) g gves() o gves(t)

DA )

where B =a+1,...,a+ ¢. Again, all elements of the tuple can be constructed.

Observe that, by construction, the above View? has the same distribution of the real View.

Then, A" constructs the challenge v = gFKo+25(0) . y=1 where y is the third term of the triple
<g" 9" y>. ,

Finally, the algorithm A gives in input to A the View and the challenge 7. Notice that:

If y = g, then v = g¥«. On the other hand, if y is a random value, then v is a
random wvalue.

Therefore, If A outputs that ~ is the session key g%~ then A outputs that < g%, ¢° y > is
of the form < g%, g% ¢g* > . On the other hand, if A outputs that 4 is a random value, then A
outputs that < g%, ¢° y > is a random triple < g%, g%, ¢° >.

It follows that A’ solves the DDH problem with the same non-negligible probability with
which A distinguishes a session key from a random value. Hence, if the DDH assumption holds,
then SCHEME 4 is secure with respect to revoked users.

To extend the proof to the case where m > 1, note that the polynomials s1(z), ..., sm(x)
are chosen independently and uniformly at random. In the general case, the coalition Uy, ..., Uy,
revoked at the j-th session of the a-th set of m sessions, has the following view:

e m sequences of values < s1(1),...,sm(1) >, ..., <s1(t),...,sm(t) >
e m-(a—1)+ (j—1) tuples of (2t + 4) elements
e a (2t+2)-tuple for the j-th session in the a-th set

e ¢ tuples of (2t 4 2) elements associated with the other m — j sessions of the a-th set and
future sets of m sessions

whose structure is identical to the structure of the tuples considered for the case in which m =
1. Assuming that there exists an efficient algorithm A which distinguishes with non-negligible
probability a session key from a random value in the challenge, then we can construct again an
algorithm A" which solves the DDH problem. In such a case, A" constructs the input for A by
using (m — 1)(a + ¢) tuples produced by a real execution of SCHEME 4, and constructs a + ¢
tuples, which correspond to the j-th sessions of the o + ¢ sets of m sessions, exactly according
to the strategy we have used for the case m = 1. Tt is easy to see that all tuples given in input
to A have the same distribution of real ones. Hence, A" solves DDH with the same probability
with which A breaks SCHEME 4.

Performance. Tt is easy to see that the size of the personal key of each user is equal to mloggq
bits, while the broadcast size is equal to mlogq + jlogq + 2tjlog g bits. However, notice that ¢
must be big enough so that DDH is difficult in H (see [28] for choosing the parameter).
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9 Conclusions and Open Problems

In this paper we have analysed key distribution schemes with key-recovery capabilities, enabling
groups of users to establish a common key for secure communication over an unreliable network.

We have analysed some constructions given in [37], showing an attack that can be applied to
the basic construction, in order to point out the threats underlying the design of such schemes,
and a weakness in the long-lived construction, for which some members can be excluded from
the communication group in presence of packet loss.

Then, we have proposed a new self-healing key distribution scheme, which is optimal in terms
of user memory storage and quite efficient in terms of communication complexity. Finally, we
have slightly modified the model, in order to extend the self-healing model, and we have proposed
a scheme which enables a user to recover from a single broadcast message all keys associated with
sessions in which he is member of the communication group.

The self-healing approach is a new and suitable method for key distribution. Many applica-
tions can benefit from efficient and secure implementations. Further research could be done in
order to clearly identify the attacks that might be implemented in such models, the constraints
affecting available schemes, and to design more efficient and flexible schemes.

Towards this goal, in [6], it is shown that the collusion resistance condition, introduced in the
model of [37], is impossible to achieve.
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