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Abstract

In this paper we investigate the issues concerning with the use of a single server across
a network, the Key Distribution Center, to enable private communications within groups of
users. After providing several motivations, showing the advantages related to the distribution of
the task accomplished by this server, we describe a model for such a distribution, and present
bounds on the amount of resources required in a real-world implementation: random bits,
memory storage, and messages to be exchanged. Moreover, we introduce a linear algebraic
approach to design optimal schemes distributing a Key Distribution Center and we point out
that some previous constructions belong to the proposed framework.

Keywords: Key Distribution, Protocols, Distributed Systems.

1 Introduction

Private communications over insecure channels can be carried out using encryption algorithms.
If a public key infrastructure is available, public key algorithms can be employed. However, in
this setting, if a user wishes to send the same message to n different users, he has to compute
n encryptions of the message using n different public keys, and he has to send the message to
each of them. Moreover, public key encryption and decryption are slow operations and, when the
communication involves a group of users, hereafter referred to as a conference, this communication
strategy is completely inefficient from a computational and communication point of view as well.
An improvement on the “trivial” use of public key algorithms can be the hybrid approach: a
user chooses at random a key and sends it, in encrypted form (public key), to all the other members

*The work of the first and second authors was partially supported by Ttalian Ministero dell’Istruzione,
dell’Universita e delle Ricerca in the framework of the project ” Azioni Integrate Italia-Spagna”. The work of the
third and the fourth authors was partially supported by Spanish Ministerio de Ciencia y Tecnologia under project
TIC 2000-1044.



of the conference. Then, they can privately communicate using a symmetric algorithm. Indeed,
symmetric encryption algorithms are a few orders of magnitude more efficient than public key ones.
Triple-DES, RC6, and RIJINDAEL, for example, are fast algorithms, spreadly used, and supposed
to be secure. Besides, if a broadcast channel is available, a message for different recipients needs to
be sent just once. Hence, better performances can be achieved with symmetric algorithms.

However, the hybrid protocol described before is still not efficient, and it is possible to do better.
Actually, the question is how can be set up an efficient protocol to provide a common key to each
conference.

A common solution is the use of a Key Distribution Center (KDC, for short), a server responsible
of the distribution and management of the secret keys. The idea is the following. Each user shares
a common key with the center. When he wants to securely communicate with other users, he sends
a request for a conference key. The center checks for membership of the user in that conference,
and distributes in encrypted form the conference key to each member of the group. Needham and
Schroeder [31] began this approach, implemented most notably in the Kerberos System [32], and
formally defined and studied in [3], where it is referred to as the three party model.

The scheme implemented by the Key Distribution Center to give each conference a key is called
a Key Distribution Scheme (KDS, for short). The scheme is said to be unconditionally secure if its
security is independent from the computational resources of the adversaries.

Several kinds of Key Distribution Schemes have been considered so far: Key Pre-Distribution
Schemes (KPSs, for short), Key Agreement Schemes (KASs, for short) and Broadcast Encryption
Schemes (BESs, for short) among others. The notions of KPS and KAS are very close to each other
[6, 29, 10]. BESs are designed to enable secure broadcast transmissions and have been introduced in
[23]. The broadcast encryption idea has grown in various directions: traitor tracing [21], anonymous
broadcast transmission [26], re-keying protocols for secure multi-cast communications [18, 20, 34].

Our attention in this paper focusses on a model improving upon the weaknesses of a single KDC.
Indeed, in the network model outlined before, a KDC must be trusted; moreover, it could become
a communication bottleneck since all key request messages are sent to it and, last but not least, it
could become a point of failure for the system: if the server crashes, secure communications cannot
be supported anymore.

In [30] a new approach to key distribution was introduced to solve the above problems. A
Distributed Key Distribution Center (DKDC, for short) is a set of n servers of a network that
jointly realizes the same function of a Key Distribution Center. A user who needs to participate to
a conference, sends a key-request to a subset at his choice of the n servers. The contacted servers
answer with some information enabling the user to compute the conference key. In such a model, a
single server by itself does not know the secret keys, since they are shared between the n servers, the
communication bottleneck is eliminated, since the key-request messages are distributed, on average,
along different paths, and there is no single point of failure, since if a server crashes, the other are
still able to support conference key computation.

In subsequent papers [17, 7], the notion of DKDC has been studied from an information theoretic
point of view. Therein, the authors introduced the concept of a distributed key distribution scheme
(DKDS, for short), a scheme realizing a DKDC, showing that the protocol proposed in [30], based
on f-wise independent functions, is optimal with respect to the amount of information needed to set
up and manage the system.

In [17, 7], a threshold access structure was considered on the set of servers, that is, the subsets
of servers authorized to help the users in recovering the conference keys were determined in terms
of their cardinality. In this paper, we extend the model studied in [17, 7] by considering a general
access structure on the set of servers, that is, we consider an arbitrary family of qualified subsets
of servers. Any user, in order to recover a conference key, has to contact all the server in any set
belonging to the access structure.

We present bounds holding on the model using a reduction technique which relates DKDSs to
Secret Sharing Schemes [5, 35]. This technique enables us to prove lower bounds on the memory



storage, on the communication complexity and on the randomness needed to set up the scheme in
an easy and elegant way. Moreover we describe a linear algebraic approach to design DKDS using a
linear secret sharing scheme and a family of linear /-wise independent forms. The optimality of the
obtained constructions relies on the optimality of the secret sharing scheme used as building block.
Finally, we emphasize the suitability of this approach that allows a unified description of seemingly
different schemes, pointing out that some previous constructions can be seen as instances of the
proposed framework.

Organization of the paper. A short overview of secret sharing schemes is given in Section 2,
where basic definitions and results are recalled. A model for distributed key distribution schemes
and the notation we use in the paper are given in Section 3. Some lower bounds on the amount of
information stored by the servers and sent to reply to the key-request messages, and on the number
of random bits required to set up the scheme are given in Section 4. In Sections 5 a linear algebraic
method to construct DKDSs from any linear secret sharing scheme is described, and some examples
are presented in Section 6. Finally, Section 7 is devoted to conclusions and some open problems.

B

2 Secret Sharing Schemes

A secret sharing scheme is a method by means of which a secret can be shared among a set P of n
participants in such a way that qualified subsets of P can recover the secret, but any non-qualified
subset has absolutely no information. Secret sharing were introduced in 1979 by Blakley [5] and
Shamir [35]. The reader can find an excellent introduction in [39]. The collection of subsets of
participants qualified to reconstruct the secret is usually referred to as the access structure of the
secret sharing scheme. Formally, we have:

Definition 2.1 Let P be a set of participants, a monotone access structure A on P is a subset
A C 2P\{0}, such that
AcAACA CP= A €A

Since, as we will see later, the reconstruction property of a secret sharing scheme naturally induces
the monotonicity property, all access structures we are going to consider are monotone.

For any participant P € P, let us denote by K(P) the set of all possible shares given to participant
P. Suppose a dealer D wishes to a share the secret s € S among the participants in P (we shall
assume that D ¢ P). To this aim, he gives to each participant P € P a share from K (P), chosen
according to some (non necessarily uniform) probability distribution. Given a set of participants
A=A{P,,...,B } CP, where i; <...<i,, denote by K(4) = K(P ) x---x K(P,).

Any secret sharing scheme for secrets in S and a probability distribution {pg(s)}scs naturally
induce a probability distribution on K(A), for any A C P. Denote such probability distribution by
{Px(4)(a) }aex (a)- To avoid overburdening the notation, with the same symbol A we will denote both
a subset of participants and the random variable taking values in K (A) according to the probability
distribution {PK(A)(G)}aeK(A); analogously, with S we will denote both the set of secrets and the
random variable taking values in S according to {ps(s)}ses. For any s € S and a € K(A) with
Prea) (a) > 0 denote by p(s|a) the probability that the secret is equal to s given that the shares held
by participants in A are equal to a. In terms of Shannon’s entropy!, we say that a secret sharing
scheme is a perfect secret sharing scheme with secrets chosen in S, or simply a secret sharing scheme
with secrets chosen in §, for the monotone access structure A C 27 if

1. Any subset A C P of participants enabled to recover the secret can compute the secret:

Formally, for all A € A, it holds that H(S|A) = 0.

1 The reader is referred to the Appendix A for the definition of the entropy function and some basic properties.




2. Any subset A C P of participants not enabled to recover the secret has no information on the
secret value:

Formally, for all A ¢ A, it holds that H(S|A) = H(S).

Property 1 means that the value of the shares held by A € A completely determines the secret
s € S. On the other hand, Property 2 means that the probability that the secret is equal to s given
that the shares held by A € A are a, is the same as the a priori probability of the secret s.

The efficiency of a secret sharing scheme is measured by means of an “information rate”, which
relates the size of the secret with the size of the shares given to the participants. More precisely,
given a secret sharing scheme X for the access structure A, on the set of secrets S, we define the
information rate p(X, A, S) as

log|S]
maxpep log |[K (P)|

p(X,A,S5) =

and the optimal information rate of A as
p(A) = sup p(X, A, )

where the supremum is taken over the space of all possible sets of secrets S, |S| > 2, and all secret
sharing schemes for A. Secret sharing schemes with information rate equal to one, which is the
maximum possible value of this parameter, are called ideal, and an access structure A on § is said
to be ideal if there exists an ideal secret sharing scheme X realizing it.

Secret sharing schemes have been extensively studied during the last years, and a huge amount
of results can be found in the literature (see [38]). One of the basic issue in the area of secret
sharing schemes is that of estimating the information rate of the scheme, that is, the ratio between
the size of the secret and that of the largest share given to any participant. This problem has
received considerable attention in the last few years (e.g., [2, 9, 13, 14, 15, 16, 40, 8, 33]). The
practical relevance of this issue is based on the following observations: Firstly, the security of any
system tends to degrade as the amount of information that must be kept secret, i.e., the shares of
the participants, increases. Secondly, if the shares given to participants are too long, the memory
requirements for the participants will be too severe and, at the same time, the shares distribution
algorithms will become inefficient. Therefore, it is important to derive significative upper and lower
bounds on the information rate of secret sharing schemes.

A special class of secret sharing schemes, on which our constructions of DKDSs will be based
on, is the class of linear secret sharing schemes (LSSS, for short). We briefly recall some basic facts.
Let F be a vector space of finite dimension over a finite field GF(q). For every P; € PU{D = Py},
let E; be a vector space over GF(q), and let m; : F — Fj; be a surjective linear mapping. Let us
suppose that these linear mappings satisfy the following properties: for any 4 C P,

ﬂ ker m; C kermg or ﬂ ker m; + ker mg = E.
P,cA P,eA

The family of vector spaces and the linear surjective mappings above defined determine the following

A:{ACP : ﬂ kerfriCkerﬂ'o}.

P,cA

access structure

A linear secret sharing scheme with secrets chosen in Fy for the access structure A can be defined
as follows: for a secret k € Fo, the dealer uniformly chooses a vector v € F such that mo(v) = k and
sends to each participant P; € P the vector a; = m;(v) € E; as its share. A formal proof that this
is a secret sharing scheme for the access structure .4 with secrets chosen in Eg can be derived by a
straightforward application of the following lemma.



Lemma 2.2 Let E, Fy and Fy be vector spaces over a finite field GF (q). Let us consider two linear
mappings po : E — Fo and ¢1 : E — FEq, where @q is surjective. Let us suppose that a vector x € F
is chosen uniformly at random and let us consider the random variables Xog and X corresponding
to zo = wo(z) and x1 = p1(z), respectively. Then,

1. H(Xo|X1) = 0 if and only if ker p1 C ker ¢,
2. H(Xo|X1) = H(Xo) if and only if ker p1 + ker oo = E.

Proof. Let 1 = ¢1(x). Then, zo € wo(z') + wo(ker p1), where &’ € E is any vector such that
1(2') = 1. Besides, all values in ¢o(z') 4+ wo(ker 1) are equiprobable and it is easy to see that g
can be uniquely determined from x4 if and only if po(ker ¢1) = {0}, i.e., if and only if ker o1 C ker @o.
On the other hand, the value 21 does not provide any information about the value z¢o if and only
if po(ker 1) = Eo. In any other case, the value of z; provides partial information about zg. We
can prove that gg(ker 1) = Eg if and only if ker ¢ 4+ ker g = E. Indeed, let us suppose that
wo(ker ¢1) = Eo. Then, for any x € E, there exists y € ker ¢ such that ¢o(z) = ¢1(2). Therefore,
= y+ (¢ —y), where y € kerpy and z — y € ker pg. Reciprocally, if ker ¢1 + ker g = E, then
Eo = ¢o(E) = po(ker ¢1 + ker ¢og) = @o(ker 1). Hence, the result holds. [ |

Notice that the above result, applied to our linear algebraic framework, says that the sets in 4
whose linear mappings satisfy the condition (p, ¢4 kerm; C kermo are sets allowed to recover the
secret. On the contrary, the ones whose mappings satisfy the condition ﬂPlEA ker m; + kermg = E
obtain no information on the secret.

The information rate of this scheme is p = dim Eo/(maxi<ij<n dim F;). In a LSSS the secret is
computed by a linear mapping. More precisely, for every A_:_{Pil, ..., P} € A, there exists a
linear mapping x4 : Fj, X --- x E; — Fp that enables the participants in A to compute the secret.

Linear secret sharing schemes were first introduced by Brickell [12], who considered only ideal
linear schemes with dim E; = 1 for any P; € P U {D}. General linear secret sharing schemes were
introduced by Simmons [36], Jackson and Martin [25] and Karchmer and Wigderson [27] under other
names such as geometric secret sharing schemes or monotone span programs.

3 The Model

Let U = {Uy,...,Un} be a set of m users and let § = {S4,...,5,} be a set of n servers. Each user
has private connections with all the servers. Let us consider an access structure A C 25 on the set of
servers and two families C,G C 2¥ of subsets of the set of users. C is the family of conferences, i.e.,
the family of group of users which want to securely communicate, and G is the family of tolerated
coalitions, i.e., the family of coalitions of users who can try to break the scheme in some way. A
distributed key distribution scheme is divided in three phases: an initialization phase, which involves
only the servers; a key-request phase, in which users ask for keys to servers; and a key-computation
phase, in which users retrieve keys from the messages received from the servers contacted during the
key-request phase.

Initialization phase We assume that the initialization phase is performed by a privileged subset
of servers Py = {S1,...,5;} € A. Each of these servers, using a private source of randomness r;,
generates some information that securely distributes to the others. More precisely, for i = 1,...,1,
Si sends to S; the value ~; ;, where j = 1,...,n. At the end of the distribution, for i = 1,...,n, each
server S; computes and stores some secret information a; = f(y1,4,...,7%,:), where f is a publicly
known function.



Key-request phase Let C, € C be a conference. Each user U; in C}, contacts the servers
belonging to some subset P € A, requiring a key for the conference C,. We denote such a key by
kp. Server S; € P, contacted by user Uj, checks® for membership of U; in Cy; if U; € C, then S;
computes a value yﬁj = F(a;, j, h), where F is a public known function. Otherwise, S; sets yﬁj =1,

a special value which does convey no information about xp. Finally, S; sends the value yzl-'fj to Uj.

Key-computation phase Once having received the answers from the contacted servers, each
. _ h h . . T

user U; in C, computes kp = Gp(Y7, ;s inPle')’ where i1,...,% p| are the indices of the contacted

servers, and G p is a publicly known function.

We are interested in formalizing, within an information theoretic framework the notion of a
DKDS, in order to quantify ezactly the amount of resources that a real-world implementation of
such a system can require. We use the entropy function because it enables a compact, elegant,
and concise description of the model, and permits to take into account all possible probability
distributions on the entities of the system. To this aim, we need to setup our notation.

- Let € C 24 be the set of conferences on i/ indexed by elements of # = {1,2,...}.

- For any subset G = {Uj,,...,U;,} C U of users, denote by Cq = {C} € C : C, NG # B} the
set of conferences containing some user in G, and by Hg = {h € H : C), € Cgz} the set of
corresponding indices. Let £ = maxgeg |C| be the maximum number of conferences that are
controlled by any coalition in G.

- Fori=1,...,t,let I'; ; be the set of values v; ; that can be sent by server S; to server S;, for
j=1,...,n,and let I'; =Ty ; x --- x I'; ; be the set of tuples that S;, for j = 1,...,n, can
receive during the initialization phase.

- Let K} be the set of possible values for the key xp, and let A; be the set of values a; the server
S; can compute during the initialization phase.

- Finally, let YZZ be the set of values ygj that can be sent by S; when it receives a key-request
message from U; for the conference C},.

Given three sets of indices X = {iy,...,4,}, where iy < iy...< 1., Y = {j1,...,js}, where j; <
J2...<Jjs,and H = {hy,..., hy}, where hy < hy... < h;, and three families of sets {7;}, {7} ;} and
{Ti}jj}, we denote by Tx = Tj, x---xT; ,by Txy =T;, j, -+ xTj_j;, X+ xT; ; x---xTj_; ,and

h h h h h h h h
byT)I({y — Th, x...x]"iltjsx...xj"irtjlx...x]}rfjsx...xj"ilfj X.“Xj-‘ilt,jsX“.Xj-;:rtsjlx.“xj-‘irtyjs’

the corresponding Cartesian products. According to this notation, we will consider several Cartesian
products, defined on the sets of our interest (see Table 1).

'y Set of tuples that can be received by server S;, for j €Y

I'x; Set of tuples that can be sent by server S; to §;, fori € X

I'x,y Set of tuples that can be sent by server S; to Sj,fori€ X and j €Y

Kx Set of tuples of conference keys

Ax Set of tuples of private information a;

Y)?i Set of tuples that can be sent by S;, for ¢ € X, to U; for the conference Cj

Y2 Set of tuples that can be sent by Si,...,5, to U;, with j € G, for C},

v Set of tuples that, for any h € H, can be sent by S1,...,5, to U;, with j € G, for Cj

Table 1: Cartesian Products

We will denote in boldface the random variables T; ;,T;,..., Y& assuming values on the sets
T;;,Tj,...,YX, according to the probability distributions Pr Priy.-s Pyg.
Roughly speaking, a DKDC must satisfy the following properties:

1,77

2We do not consider the underline authentication mechanism involved in a key request phase.



- Correct Initialization Phase. When the initialization phase correctly terminates, each
server S; must be able to compute his private information a;. On the other hand, if server S;
misses/does-not-receive just one message from the servers® in Pr sending information, then S;
must not gain any information about a;. We model these two properties by relations 1 and 2
of the formal definition.

- Consistent Key Computation. Each user in a conference C, C & must be able to compute
the same conference key, after interacting with the servers of a subset P € A at his choice.
Relations 3 and 4 of the formal definition ensure these properties. More precisely, relation 3
establishes that each server uniquely determines an answer to any key-request message; while,
property 4 establishes that each user uniquely computes the same conference key, using the
messages received by the subset of authorized servers he has contacted for that conference key.

- Conference Key Security. A conference key must be secure against attacks performed by
coalitions of servers, coalitions of users, and hybrid coalitions (servers and users). This is the
most intriguing and difficult property to formalize. Indeed, the worst case scenario to look after
consists of a coalition of users G € G that honestly run the protocol many times, retrieving
several conference keys and, then, with the cooperation of some dishonest servers, try to gain
information on a new conference key, which was not requested before. Notice that, according to
our notation, the maximum amount of information the coalition can acquire honestly running
the protocol is represented by Y?G{G\{h}; moreover, dishonest servers, belonging to F ¢ A,
know I'r and, maybe, I'z y. This random variable takes into account the possibility that
some of the dishonest servers send information in the initialization phase (i.e. Z C F N Py).
Hence, they know the messages they send out to the other servers in this phase. Relation 5
ensures that such coalitions of adversaries, do not gain information on any new key.

Formally, a Distributed Key Distribution Scheme with access structure .4 on § can be defined as
follows:

Definition 3.1 Let &/ = {Uy,...,U,} be a set of users and let S = {S4,...,S5,} be a set of servers.
Let us consider an access structure .4 C 25 on the set of servers and two families C,G C 2U of subsets
of the set of users. An (A, C,G)-Distributed Key Distribution Scheme (for short, (A, C,G)-DKDS) is
a protocol which enables each user of C}, € C to compute a common key kj, interacting with a subset
of authorized servers in A of the network. More precisely, the following properties are satisfied:

For each i =1,...,n, H(A;|T;) = 0.

For each X C Pr, X # Pr,and i € {1,...,n},, H(A;|T'x,;) = H(A;).

For each C}, € C, for each U; € C},, and for each : = 1,...,n, H(Yﬁj|Ai) = 0.
For each C}, € C, for each P € A, and for each U; € C}, H(KHY?DJ) =0.
For each C}, € C, for each G € G, and for each subset F ¢ A

QU W N —

HKu Y5 DTz ) = H(K),
where Z = FN Prand N ={1,...,n}.

Notice that a DKDC implemented by a DKDS is a deterministic system at all. Random bits are
needed only at the beginning (i.e. initialization of the system), when each server in Pr uses his own
random source to generate messages to deliver to the other servers of the network.

In the following, without loss of generality and to emphasize the real-world oriented motivations

of our study, we assume that the conference keys are uniformly chosen in a set K. Hence, for
different h, h' € H, H(K}p) = H(Kj/) = log |K|.

3Without loss of generality, we choose Py as one of the smallest subsets in A because one of our aim is to minimize
the randomness (i.e., the number of random bits needed to set up the scheme) and the communication complexity of
the initialization phase.

-1



4 Communication Complexity, Memory Storage, and Ran-
domness of a DKDS

A basic relation between (A,C,G)-DKDS and Secret Sharing Schemes enables us to derive some
lower bounds on the memory storage, on the communication complexity, and on the number of
random bits needed to set up the scheme.

4.1 Preliminaries

We state some results which will be useful in proving the lower bounds.

The following simple lemma establishes that, given three random variables A, B, and C, if B is
a function of C, then B gives less information on A than C.

Lemma 4.1 Let A, B, and C be three random variables such that H(B|C) = 0. Then, H(A|B) >
H(A|C).

Proof. Notice that, (3) and (8) of Appendix A imply
0 < H(B|AC) < H(B|C) = 0.
Since from (7) of Appendix A,
I(A,B|C) = H(A|C)— H(A|BC)
— H(B|C)— H(BJAC) = 0.

then, H(A|C) = H(A|BC). But (8) of Appendix A, implies H(A|B) > H(A|BC). Therefore,
H(A|B) > H(A|C), which proves the lemma. [ |

Given any four random variables A, B, C, and D, if H(B|C) = 0, then, along the line of the above
proof, we can show that

H(A|BD) > H(A|CD). (1)

The next lemma, instead, establishes that the amount of information a subset of servers gains
about the conference keys depends on the membership of the subset along the access structure A,
and is all-or-nothing in fashion.

Lemma 4.2 Let P and F be two subsets of S such that P € A and F ¢ A. Moreover, let H, =
{h1...,h.} CH be a subset of indices of conferences. Then, it holds that

H(K'HrlAP) = 0, (md H(K'HrlAF) = H(K'Hr)

Proof. Let G = {Uj,,...,U;,} be a set of users, such that #, C Hg. Notice that,

0 < H(Ky,|Ap) (from (3) of Appendix A)
< H(Ky, |Y17;L773) (from Lemma 4.1 )
< ZH(KhjlY};DjG) (from (4) and (8) of Appendix A)
7j=1
< ZH(K;!JY?#) (from (8) of Appendix A where t € Cj,, NG)

7j=1
= 0 (from Property 4 of Definition 3.1).



The second equality can be shown in a similar way. Indeed, from the definition of a DKDS easily
follows that H(Ap|T'r) = 0 and H(Kq.tr\{hj})|YGHr\{hj}) = 0. Applying equation 1, we get

H(Kp\ g3 | ArKy,\(4,)) > H(K, [TrTsnY S ), (2)

Hence, a simple algebra shows that

H(Ky,.) > H(Ky,|Ar) (using (5) of Appendix A)
= XT:H(K;.LAAFKHT\{;IJ.}) (from (4) of Appendix A)
j=1
> ET:H(K;LJ.|I"FI‘Z7NY7G{T\{}”}_) (from equation (2))
j=1
= ET: H(Kp,;) > H(Ky,) (applying property 5 of Definition 3.1 and 6 of Appendix A).
j=1
Thus, the lemma holds. ]

Finally, the conference keys a coalition of users can retrieve are statistically independent.

Lemma 4.3 Let G = {Uj,,...,U;,} C G be a coalition of users, and let Hg = {h1,..., hos}. Then,
for each r =1,...,0g, it holds that

H(Kp, |[Kyo\{n,}) = H(Ks, ).

Proof. From property (5) of Appendix A, one has H(Kp, |[Kys\(n,}) < H(Kp,), for each r =
1,..., L. Moreover, noticing that from property (4) and (5) of Appendix A

H hy
HE Ky oy YR < 3 B YD) =0,
heHa\{h,}

and setting A = Kj,, B = Ky ,\{n,}, and C = YgG\{hr}, we can write

H(Kh, |[Kyo\{r,}) > H(Khr|YgG\{hr}) (from Lemma 4.1)

H(Kh,|YgG\{hr}FXFZ’N) (from (8) of Appendix A)
H(Kj;,) (from Property 4 of Definition 3.1),

V

where N ={1,...,n}, X = {i1,...,ik—1} C N,and Z = X N{1,...,k}. Hence, the g conference
keys that the users in GG can retrieve are independent. ]

4.2 Lower Bounds

Lower bounds on the amount of information each server has to store and send to a key-request
message, and on the number of random bits needed to set up the scheme can be established exploring
the relation existing between a DKDS and SSSs. Since from Appendix A follows that H(X) <
log | X|, for each random variable X assuming values on the set X, we enunciate the lower bounds
in terms of the size of the sets of our interest.

First, notice that, the 4-th and the 5-th conditions of the definition of a DKDS “contain” a SSS.
More precisely, in any DKDS

- for each Cy, € C, for each P € A, and for each U; € Cy, H(KHY}BJ) =0



- for each Cy € C, for each coalition G € G, and for each F ¢ A it holds that
H(KA | YANMIT LT, v) = H(K)

The first relation is exactly the reconstruction property of a SSS, say X1, for an access structure A’
isomorphic to A, and set of secrets K;. The isomorphism between the access structures A and A’
is given, for any fixed pair of values h € H, and j € {1,...,m}, by ¢ : 5; — Yh In other words,
the secret kj is shared by means of y{l], Syl g

The second relation contains the security condition of $1. Indeed, since the values 'j are function
of the private information a;, computed and stored by each server at the end of the initialization
phase, it is easy to check that

H(K;) = H(Kh|YgG\{h}I‘FF27N) (from property 5 of the definition)

H(Kp|AF) (since HK,|Tr) < H(Ky|AFr) and applying (8) of Appendix A )
HKY],) < H(K).

IAIA

Therefore, recalling that p(A) = sup p(X, A, S), and assuming that for any A € K it holds that
K, = K, the size in bits each answer a server sends to reply to a key request message, must satisfy
the inequality given by the following theorem.

Theorem 4.4 In any (A,C,G)-DKDS, for all j = 1,---,m and for each h € H, it holds that

Zr%a}fnlog| > )

Analogously, we can show a lower bound on the amount of information each server has to store.

To this aim, notice that each server basically holds a share of the sequence of keys the users can

ask for. According to the definition of a DKDS, the number of conference keys the scheme provides

is |C| but, as stated by Lemma 4.3, only £ of them must be independent, where £ is the maximum

number of conference keys that a coalition G can retrieve. In order to derive the lower bound, we

can assume that the scheme enables to compute only ¢ conference keys, where £ is the maximum

number of conference keys a coalition of users GG can retrieve. In this case, the secret the servers

share can be seen as an element belonging to the set T = Ky, for some G such that fg = /.
Applying Lemma 4.3 we can say that

H(T) = H(Ky,) ZH H(K).

Since Lemma 4.2 establishes that H(T|Ap) = 0if P € .A while H(T|Af) = H(T), when F ¢ A,
we recover another SSS, say Yo, with access structure A" isomorphic to A, and set of secrets T.
Consequently, the next theorem holds:

Theorem 4.5 In any (A,C,G)-DKDS, it holds that
log |T| >£log|K|.
p(A) — p(A)

The communication complexity of a (A4, C,G)-DKDS can be lower bounded as follows: notice
that relations 1 and 2 of a DKDS are again the properties characterizing a secret sharing scheme,
say X3. More precisely, for any subset F' C Py, it holds that

maxlog |4;| >

In this case § = {S1,...,S:} is the only subset in the access structure A of the SSS X3 (i.e., a (¢,1)
threshold structure), and the shared secret is exactly a;. Hence, the following holds:
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Theorem 4.6 In any (A,C,G)-DKDS, for j =1,...,t, it holds
log |T'j,:| > log | Al.

Moreover, since each server performing the initialization phase uses a private source of random
bits, we have:

Theorem 4.7 In any (A,C,G)-DKDS, it holds

t
log [T;| = log [Ty j| x -+ x log [T ;| = > log [T 1.
i=1

To set up a cryptographic protocol and in this case a Distributed Key Distribution Scheme, we
need random bits. This resource is usually referred to as the randomness of the scheme®.

The randomness of a scheme can be measured in different way. Knuth and Yao [28] proposed
the following approach: Let Alg be an algorithm that generates the probability distribution P =
{p1,...,pn}, using only independent and unbiased random bits. Denote by T'(Alg) the average
number of random bits used by Alg and let T(P) = miny,T(Alg). The value T(P) is a measure
of the average number of random bits needed to simulate the random source described by the
probability distribution P.

The randomness R of a Distributed Key Distribution Scheme can be lower bounded as stated
by the following theorem.

Theorem 4.8 In any (A,C,G)-DKDS the randomness satisfies
R >1xL€x Ropt

where t = |Pq|, £ is the mazimum number of conference keys that a coalition of adversaries can
retrieve, and Ropt is the minimum amount of randomness required to generate and share a secret
according to a secret sharing scheme Y with access structure A.

Indeed, applying a similar argument to the one we have applied before in order to derive the lower
bound on the size of the private information stored by each server, we can say that the scheme
enables to compute at least £ conference keys. Since Lemma 4.3 implies that these £ conference keys
are independent, the share held by each server can be seen as a sequence of £ independent sub-shares,
one for each conference key. Therefore, the randomness needed to set up the scheme is at least the
randomness needed to share independently £ keys among the servers, according to the given access
structure. The bound follows observing that each of the ¢ servers setting up the system performs an
independent sharing of £ values from which the keys are derived.

Hence, all the results and bounds on SSS concerning randomness and information rates related
to the study of specific access structures can be used to retrieve corresponding results and bounds

holding for (A4, C, G)-DKDSs.

5 Protocols: Designing DKDSs from LSSSs

In this section, we present a method to construct a (A, C,G)-DKDS given a general access structure
A on the set of servers. We start by recalling some preliminary concepts.

Let E, Fo, E1,..., E, be vector spaces of finite dimension over a finite field GF(q) and, for
t =0,...,n, let m; : F — FE; be surjective linear mappings defining a LSSS ¥ on § with access
structure A. For any authorized subset A = {S;,,...,S5:;.} € A, let xa be the linear mapping

1A detailed analysis of the randomness in distribution protocols can be found in [11].
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X4 : Fi, x--+x E;. — Fo enabling the reconstruction of the secret from the shares. Moreover, from
every m;, let 7f : E* — Ef be a mapping defined as 7f(uy,...,us) = (m(u1), ..., m(u)). It is not
difficult to see that the mappings 7¢ define a LSSS ¥ with secrets chosen in E§ on the same access
structure and with the same information rate of X.. In this case, the secret is reconstructed from the
shares by using the linear mappings y : Efl X s X Efr — E§ defined from y 4.

Then, let us consider, for h = 1,...,|C|, a sequence of linear forms ¢ : GF(q)* — GF(q), such
that any ¢ different forms ¢p,, ..., ¢n, are linearly independent. Notice that a form ¢p can be seen
as a vector in the dual space (GF(q)%)* and it is determined by its coordinates (Ap,1,..-,Ane),
where @p(v1,...,00) = Z?:l Ap,jv;. Therefore, if ¢ > |C|, such a family of linear forms can be
constructed by considering |C| different values z1,..., 2/¢| in the finite field GF(q) and by taking,
for any h = 1,...,|C|, the vector (Ap1,..., ne) = (1,24, 22,..., 25 '). These linear forms can be
used to define a linear key generator K. More precisely, conference keys are determined as follows:
for every conference Cj € C, a vector v € GF(q)* is chosen uniformly at random and &, = @p(v).
The former assumption of independence of any sequence of ¢ forms implies that any set of £ — 1
conference keys does not provide any information on the value of any other conference keys.

Finally, for any vector space U, the linear key generator K, which provides conference keys
belonging to the finite field GF(q), can be extended to a linear key generator KV, whose keys xp

are vectors in U. To this aim, the linear mappings ¥ : U* — U can be defined by ¢V (u1,...,u) =
Z;:l Ap,juj, where (/\h,l, . --,)\h,l) are the coordinates of the linear form ¢p. It is not difficult to

see that, as before, any £ different conference keys are independent.

At this point we have all the tools to set up, from any LSSS ¥ and any linear key generator K,
a (A,C,G)-DKDS. More precisely, given ¥ and K, we can construct $¢, the linear key generator
KP and, for any i = 0, 1,...,n, the linear key generator K' = KF+, defined by the linear mappings
oh = gof’. These choices imply that, for any i = 0, 1,...,n and C), € C, we have that ¢! orf = mopF.
Indeed, for any u = (ug,...,u) € E,

2
(ehomh)(w) = @h(mi(ur),...,mi(ur)) =D A jmiu;)
j=1

‘
T Z)‘h'ﬁjuj = (m o o) (u).
Jj=1

The above relation is the key point in order to understand the construction and, more precisely,
the key computation phase performed by the users. The full protocol can be described as follows:

INITIALIZATION PHASE
Let Pr = {51 sy S t} be the authorized subset of servers Pr € A performing the initialization phase.

- For every i = 1,...,t, the server S; chooses at random a vector r; € B¢ and, for every j=1,...,n,
sends to server S; the vector rf(ri) = EJI

- For j = 1,...,n, each server S; computes his private information summing up the shares it has
received from the servers in Pr. That is, server S; computes a; = ﬂ'f(?‘l)—F . -—|—7r§(rt) = ﬂf(u) c Ef,
where u=r1 +---+r; € EL

Therefore, after the initialization phase, each server S; has a vector a; = (a;1,...,ai) € Ef.
This vector is a share of a secret vector m5(u) = v = (v1,...,v) € E§ shared according to the LSSS

Y. The key corresponding to the conference C), € C is K, = (9 0 m5)(u) € Eo.
The Key Request Phase is carried out as follows:

12



KEY REQUEST PHASE

- A user in a conference C, who wants to obtain the conference key k5, sends a key-request message
for the conference key to an authorized subset of servers A = {S;,,...,5:,.} € A.

- Each server S; invoked by the user checks that the user belongs to Ch and sends to the user the
vector c,o};(aii) = ((p}l o ﬂf)(u) = (mo c,of)(u) € E;, which is a share of the conference key kn =
(% o wh)(u) = (mo 0 pF)(u) € Eo shared according to the L.SSS ¥.

Finally, recovering the conference key requires a simple computation.

KEY COMPUTATION PHASE

- Using the values recei_ved from the_ servers in A € A the user in C} recovers the secret key by
computing &n = xa(e! (aiy), ..., ey (ai,.)).

It is possible to check, by applying the properties of the linear secret sharing scheme X and the
linear key generator K, that the proposed scheme verifies conditions 1-4 of Definition 3.1. Moreover,
condition 5 is proved in Subsection 5.1.

Finally, we compare the parameters of our scheme with the bounds given in Section 4. Let

dlm EO

maxi<i<n dim Ei

be the information rate of the LSSS X. Let ¢ (a power of a prime) be the cardinality of the finite
field GF(q).

The amount of information that a server S; € S has to send to a user U; € (), in the key request
phase is log |Y}";| = log | E;| = log g diim E;. Observe that

) ndim E; log |K|
log [Y".| = log g dim E, = .
jmax_log [¥; ;] = logg dim Fo dim Fg p(T, A, 8)
Therefore, the bounds given by Theorems 4.4, 4.5, 4.6 and 4.7 are attained if ¥ has optimal infor-
mation rate, that is, if p(X, .4, S) = p(A).

Remark. The linearity property of the secret sharing scheme is not necessary to design a DKDS.
Actually, from any secret sharing scheme, realizing a given access structure, we can set up a DKDS
on the same access structure. The reader can easily convince himself noticing that in our protocol
each server sums up the shares obtained during the distribution phase, storing in this way a reduced
amount of information. This is one of the steps in which the linearity property of the scheme is
applied. If the secret sharing scheme is not linear, each server has to store all the shares received
from the servers performing the distribution. On the other hand, when a user asks for a conference
key, he receives several shares that must be processed in order to recover the conference key.

5.1 Security of the Scheme

In this subsection we prove that the above construction is secure, that is, we prove that condition 5
in Definition 3.1 is verified by the constructed scheme.

Let us consider a coalition F U G, where G € G is a set of corrupted users and F C S, F ¢ A
is a set of corrupted servers. According to Definition 3.1, the maximum amount of information
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the users in G can acquire honestly running the protocol is YSLG\{h}. Furthermore, the servers
in F ¢ A know I'r and, maybe, Tz n, where N = {1,...,n} and 7 is the set of those servers
in F' that belongs to the initialization subset as well. We have to prove that in this scenario,
H(Kh|YgG\{h}I‘FI‘Z7N) = H(Kj}). In order to do it, we will use Lemma 2.2; therefore, we need to

determine the linear maps g and ¢ corresponding, respectively, to the random variables K; and
Y?G'LG\{h}I‘FI‘Z’N. Recalling that Pr = {S1,...,5:}, let us suppose that the set F' ¢ A of dishonest
servers is F' = {S1,...,8:-1,95:,,.-.,5i,,}; then, the set Z is given by {S1,...,S5:—1}. For every
i=1,...,t let r; € E* be the vector chosen by server S; at random, and let r = (ry,...,7) € EY
be the information the servers in P; generates during the initialization phase. The servers in Z =
{81,...,8i-1} know rq,...,7,_1. These vectors can be written as r; = oy(r) for i = 1,...,t — 1,
where o0;(r) denotes the i-th projection of the vector r = (r1,...,r;). Moreover dishonest servers
Siys---,S;, not belonging to Py also know® the information received from the honest server S; in the
initialization phase, i.e. server S;. receives ﬁfj(rt) = 7rfj (o¢(r)) for j =+¢,...,m. On the other hand,
the information that users in G' can acquire is determined by ¢;(rq,...,r) = go? omb(r1 4+ ...+ 1)
for those j € H s\ {h}. Therefore, the kernel of the linear map ¢ associated to the random variable

YHMM LT, vis
t—1 m
ker p1 = ﬂ kero; | N ﬂ ker 7rfj N n ker ¢;
Jj=1 J=t je€Ha\{r}

Since every key kj is defined by k, = ¢p(r1,...,7) = ¢ o m§(r1 + -+ 7¢), the kernel of the
linear map g related to the random variable Ky, is

ker o = ker ¢p.

Hence, we have to show that

ker o + ker ¢ = E*.

Trivially ker ¢o + ker o1 C E*. The opposite inclusion E** C ker g + ker @1 can be shown as
follows: let y = (y1,...,y) be any vector in Ef. The independence of the mappings {¢;};cwq,
implies that

ker @) + ﬂ ker ga? = E}.
JEHG\{h}

Therefore, m§(y) = (mo(y1),---,mo(ye)) = (a1,--.,as) + (b,...,b;) where ¢;(ai,...,a;) = 0 for

any j € He \ {h} and ¢p(b1,...,b,) = 0. Since F ¢ A, from the properties of the LSSS, it holds
that, for any j = 1,..., ¢, there exists a z; € F such that mo(z;) = a; and m;(z;) = 0 for any S; € F.

Hence, setting w =y — 2z € Ef, where z = (21...,2), it is easy to check that ¢, (m5(y — 2)) =
on(b1y..., b)) =0. Let z = (2',..., 2%) be a vector in E**. We can prove that z € ker ¢o+ker ¢1. To
this aim, let us define y = =% + 22;11 z' € E*. From the aforementioned results, there exists a vector
z such that ép(7§(y — 2)) = 0, ﬂf(z) = 0 for every S; € F, and ¢;(z) = 0 for every j € Ha \ {h}.
Further, by defining vectors u = (z!,...,2'7 1y — z — 22;11 z') and v = (0,0,...,0,2) € EY, it
follows that & = u+v € E*. At this point, it is not difficult to show that u € ker g and v € ker ¢,
which closes the proof. Indeed, ¢o(v) = ¢2 o mf(zl, ..., 27 y— 2z — Z:;i )y =plomf(y—z) =0
and, on the other hand, o;(v) = 0 for every j =1,...,2 — 1. Moreover, 7rfj (o¢(v)) = wfj(z) = 0 for
every j =t,...,m and, finally, ¢;(v) = 30;-) omh(z) = 0 for every j € He \ {h}. Therefore, the result
holds.

5Notice that we do not take into account the information that servers S;, , ..., S;,, receive from servers in Z because

it can be deduced from r1,...,7r;_1 and these values are known by the members of the coalition.
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6 Some Examples

We present some examples to explain how can be really applied the construction given in the previous
section to set up a DKDS given an arbitrary access structure on the set of servers. Basically, we
need simply to re-phrase in the “language” of the LSSSs some well-known constructions of secret
sharing schemes for general access structures, such as the monotone circuit technique of Benaloh
and Leichter [4] and the Brickell vector space construction for ideal access structures. Then, the
design of a DKDS easily follows.

The Benaloh and Leichter monotone circuit technique for secret sharing schemes works as follows:
let .4 be an access structure on the set of servers § = {S4,...,5,}, and let Ag be the basis of A.
Moreover, let X1 + X2 + --- + X, be a disjunctive normal form boolean formula representing .4q.
Each subset in .Ag corresponds to a clause X; of the formula. For instance, a (2, 3) threshold access
structure on the set {57, S2, S5}, can be represented by 5155 + S2535 + S153. Moreover, let d; be
the number of minimal subsets in which server S; belongs to. The value d; quantifies the number

of shares S; is going to receive. For i = 1,...,n, let F; be a vector space of dimension d; over a
finite field GF(q), let Eg = GF(q) and let E be a vector space of dimension Y ;_, (| X;| — 1). Given
a secret k € Fo, a vector v € F denoted by v = (v],..., Ullel—l’ vl ..., v|2X2|_1, R S S, ULX,|—1)

is selected uniformly at random. The linear mappings m;’s are defined in such a way that the set of
|Xl|—1)

)

servers corresponding to the clause X; will hold the sharing v},..., vl.X’l_l, E—(v)+...+v
which allow to recover the secret k.

As a second example, let us suppose that the access structure A is ideal. Therefore, we can use
the Brickell vector space construction [12] that works as follows: let A be access structure, and let
U be a d dimensional vector space over a finite field GF(g). Suppose that there exists a function
¢ : & — U such that the vector (1,0,...,0) can be expressed as a linear combination of the vectors
in the set {¢(S;) : S; € B} if and only if B is an authorized subset, i.e. (1,0,...,0) € (¢(S;):S; €
B) & B € A. Then, in order to share a secret k € GF(q), the dealer chooses a random vector
v € U whose first component is k and computes {v-$(S;)}7_;. In other words, in this case the linear
mappings m; : U — GF(q) are defined by m;(v) = v - ¢(S;).

Using a well-studied access structure on a set of 4 servers, we show that the bounds are attained
every time we can construct an optimal linear secret sharing scheme realizing the given access
structure. To this aim, let us consider the access structure on a set & = {51, S, 53, S4} of 4 servers
whose minimal authorized subsets are .Ag = {{S1, S2}, {S2, S}, {S3, S4}}. This access structure is
well-known in the literature concerning secret sharing schemes [14]. Tt has been proved in [14] that
the information rate of any SSS for this access structure is at most 2/3. Besides, there exists a linear
secret sharing scheme X with information rate p = 2/3. Therefore, we can use this construction in
order to design a (A, C,G)-DKDS attaining the bounds in Section 4. Let us see how this construction
works: Let Fo, Fq, E4 be vector spaces over a finite field GF(q) of dimension 2, and let Fy and E3
be 3 dimensional vector spaces and E a vector space of dimension 6. Assume that k = (k1, k2) € Fo
is the secret. A pre-image v of the secret is given by the vector v = (a1, f1, 71, @2, B2, 72), where
a; + B; = k; for ¢ = 1,2. The linear mappings are defined in such a way that the servers receive,
respectively:

St (a1, + B2 —2)
52 (B1, a2, 72)
S3 (a1, v, f2)
Sa (a1 + 1 —y1, @2)

Finally, it is interesting to point out that the two constructions presented in [30], based on
bivariate polynomials and on monotone span programs, can be seen as instances of the algebraic
framework we have described before. In particular, the embedding of the second construction can
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be done due to the equivalence between monotone span programs and linear secret sharing schemes

[1]-

7 Conclusion and Open Problems

In this paper we have shown bounds and constructions for unconditionally secure DKDSs with a
general access structure on the set of servers. Such schemes enable to setup distributed KDCs which
solve many problems related to the presence across a network of a single on-line KDC. Two main
contributions can be found in this paper: the reduction technique applied to find the lower bounds,
and the linear algebraic framework which unifies many previous proposals.

Some interesting question arise from this study: first of all, we have considered a framework in
which each user has private connections with all the servers. From a real-life prospective, it would
be useful to study a model in which users have only some connections with geographically close
servers.

Another research direction is to study computationally secure distributed key distribution schemes
along the line of [30], where some constructions based on pseudo-random functions and the discrete
log problem have been proposed.

Finally, for the unconditional and computational frameworks, methods to enhance the construc-
tions with properties like verifiability of the servers’ behaviours, proactive security, and anonymity
of the conference keys recovered by the users with respect to the servers, are all desirable features
to work on.

References

[1] A. Beimel, Secure Schemes for Secret Sharing and Key Distribution, PhD Thesis - Department
of Computer Science, Technion, 1996.

[2] A. Beimel, A. Gal, and M. Paterson. Lower Bounds for Monotone Span Programs. Proc. 35th
TEEE Symp. on Foundations of Computer Science, pp. 674-681, 1995.

[3] M. Bellare and P. Rogaway. Provably Secure Session Key Distribution: The Three Party Case.
Proc. 27th Annual Symposium on the Theory of Computing, ACM, 1995.

[4] J. Benaloh and J. Leichter, Generalized Secret Sharing and Monotone Functions. Lecture Notes
in Comput. Sci., 403, 27-35, 1990.

[5] G.R. Blakley. Safeguarding Cryptographic Keys. Proceedings of AFTPS 1979 National Computer
Conference, Vol. 48, pp. 313-317, 1979.

[6] R. Blom. An Optimal Class of Symmetric Key Generation Systems. Advances in Cryptology -
Eurocrypt’84, Lecture Notes in Comput. Sci., vol. 209, pp. 335-338, 1984.

[7] C. Blundo, and P. D’Arco. Unconditionally Secure Distributed Key Distribution Schemes. sub-
mitted for publication.

[8] C. Blundo, A. De Santis, R. De Simone, U. Vaccaro. Tight Bounds on the Information Rate of
Secret Sharing Schemes. Design, Codes, and Cryptography, vol. 11, no. 1, pp. 1-25, 1997.

[9] C. Blundo, A. De Santis, A. Giorgio Gaggia, and U. Vaccaro. New Bounds on the Information
Rate of Secret Sharing Schemes. IEEE Trans. Inform. Theory, Vol. 41, pp. 549-554, 1995.

[10] C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro and M. Yung. Perfectly-Secure
Key Distribution for Dynamic Conferences. Information and Computation, vol. 146, no. 1, pp.

1-23, 1998.

16



[11] C. Blundo, A. De Santis, and U. Vaccaro. Randomness in Distribution Protocols. Information
and Computation, vol. 131, no. 2, pp. 111-139, 1996.

[12] E.F. Brickell. Some ideal secret sharing schemes. J. Combin. Math. and Combin. Comput., 9,
105-113, 1989.

[13] E.F. Brickell and D.R: Stinson. Some Improved Bounds on the Information Rate of Perfect
Secret Sharing Schemes. J. Cryptology, Vol. 5, pp. 153-166, 1992.

[14] R.M. Capocelli, A. De Santis, L. Gargano and U. Vaccaro. On the Size of the Shares in Secret
Sharing Schemes. Advances in cryptology - CRYPTO’91, Lecture Notes in Comput. Sci., 576,
101-113, 1992.

[15] L. Csimarz. The Size of a Share Must be Large. J. Cryptology, Vol. 10, pp. 223-231, 1997.

[16] M. van Dijk. On the Information Rate of Perfect Secret Sharing Schemes. Design, Codes, and
Cryptography, Vol. 6, pp. 143-169, 1995.

[17] P. D’Arco, On the Distribution of a Key Distribution Center (extended abstract), Proceedings
of ICTCS2001, Lecture Notes in Computer Science, vol. 2202, pp. 357-369, 2001.

[18] R. Canetti, J. Garey, G.Itkins, D. Micciaccio, M. Naor and B. Pinkas. Issues in Multicast
Security: A Taxonomy and Efficient Constructions. Proceedings of INFOCOM 99, vol. 2, pp.
708-716, 1999.

[19] W. Jackson, K.M. Martin, and C.M. O’Keefe. Mutually Trusted Authority-Free Secret Sharing
Schemes Journal of Cryptology, N.10, pp. 261-289, 1997.

[20] R. Canetti, T. Malkin and K. Nissim. Efficient Communication-Storage Tradeoffs for Multicast
Encryption. Advances in Cryptology - Eurocrypt’99, Lecture Notes in Comput. Sci., vol. 1592,
pp. 459-474, 1999.

[21] B. Chor, A. Fiat, and M. Naor. Tracing Traitors. Advances in Cryptology - Eurocrypt’94,
Lecture Notes in Comput. Sci., vol. 950 pp. 257-270, 1994.

[22] T.M. Cover and J.A. Thomas. Elements of Information Theory. John Wiley & Sons, 1991.

[23] A. Fiat and M. Naor. Broadcast Encryption. Advances in Cryptology - Crypto 92, Lecture
Notes in Comput. Sci., vol. 773, pp. 480-491, 1993.

[24] M. Tto, A. Saito and T, Nishizeki. Secret sharing scheme realizing any access structure. Proc.

TEEE Globecom’87, 99102, 1987.

[25] W. Jackson and K. Martin. Geometric Secret Sharing Schemes and Their Duals. Des. Codes
Cryptogr., 4, 83-95, 1994.

[26] M. Just, E. Kranakis, D. Krizanc, P. Van Oorschot. Key Distribution via True Broadcasting.
Proceedings of the 2nd ACM Conference on Computer and Communications Security, pp. 81-88,
1994.

[27] M. Karchmer, A. Wigderson. On span programs. Proc. of Structure in Complexity’93, 102-111,
1993.

[28] D.E. Knuth and A. Yao, The Complexity of Nonuniform Random Number Generation, Algo-
rithms and Complexity, Academic Press, pp. 357-428, 1976.

17



[29] T. Matsumoto and H. Imai. On the Key Predistribution System: A Practical Solution to the
Key Distribution Problem. Advances in Cryptology - Eurocrypt’87, Lecture Notes in Comput.
Science, vol. 239, pp. 185-193, 1987.

[30] M. Naor, B. Pinkas, and O. Reingold. Distributed Pseudo-random Functions and KDCs. Ad-
vances in Cryptology - Eurocrypt’99, Lecture Notes in Comput. Sci., vol. 1592, pp. 327-346,
1999.

[31] R. M. Needham and M. D. Schroeder. Using Encryption for Authentication in Large Networks
of Computers. Communications of ACM, vol. 21, pp. 993-999, 1978.

[32] B. C. Neuman and T. Tso. Kerberos: An Authentication Service for Computer Networks. IEEE
Transactions on Communications, vol. 32, pp. 33-38, 1994.

[33] C.Padré and G. Séez. Secret sharing schemes with bipartite access structure. IEEE Transactions
on Information Theory vol. 46, pp. 2596-2605, 2000.

[34] R. Poovendran, J.S.Baras. An Information Theoretic Approach for Design and Analysis of
Rooted-Tree Based Multicast Key Management Schemes. Advances in Cryptology - Crypto’99,
Lecture Notes in Comput. Sci., vol. 1666, pp. 624-638, 1999.

[35] A. Shamir. How to Share a Secret. Communications of ACM, vol. 22, n. 11, pp. 612-613, 1979.

[36] G.J. Simmons. How to (really) share a secret. Advances in Cryptology, CRYPTO 88, Lecture
Notes in Comput. Sci., 403, 390-448, 1990.

[37] G.J. Simmons, W. Jackson and K. Martin. The geometry of secret sharing schemes. Bull. of
the ICA, 1, 71-88, 1991.

[38] D.R. Stinson. Bibliography on Secret Sharing Schemes.
http://wuw.cacr.math.uwaterloo.ca/~dstinson/ssbib.html.

[39] D.R. Stinson. An explication of secret sharing schemes. Des. Codes Cryptogr., 2, 357-390, 1992.

[40] D.R. Stinson. Decomposition Constructions for Secret Sharing Schemes. IEEE Trans. Inform.
Theory, Vol. 40, pp. 118-125, 1994.

[41] D. R. Stinson. On Some Methods for Unconditional Secure Key Distribution and Broadcast
Encryption. Designs, Codes and Cryptography, vol. 12, pp. 215-243, 1997.

A Information Theory Elements

This appendix briefly recalls some elements of information theory (see [22] for details). Let X be a
random variable taking values on a set X according to a probability distribution {Px(2)};ex. The
entropy of X, denoted by H(X), is defined as

Z PX log PX )
zeX

where the logarithm is relative to the base 2. The entropy satisfies 0 < H(X) < log|X]|, where
H(X) = 0 if and only if there exists o € X such that Pr(X = zq) = 1; whereas, H(X) = log |X| if
and only if Pr(X = z) = 1/|X|, for all z € X. Given two random variables X and Y taking values
on sets X and Y, respectively, according to the joint probability distribution {Pxv (%, ¥)}sex,yey
on their Cartesian product, the conditional entropy H(X|Y) is defined as

HX[Y) ==Y > Py(y)Pxjv(«|y) log Pxjy (2[y).
yeY rzeX

18



It is easy to see that

with equality if and only if X is a function of Y. Given n + 1 random variables, X;...X,Y, the
entropy of X;...X,, given Y can be written as

H(Xy ... X, |Y) = HX1[Y) + H(Xo|X1Y) + -+ H(X, Xy ... X, 1Y), (4)
The mutual information between X and Y is given by
1(X:Y) = H(X) — H(X]Y).
Since, I(X;Y) = I(Y;X) and I(X;Y) > 0, it is easy to see that
H(X) > HX|Y), )

with equality if and only if X and Y are independent. Therefore, given n random variables,
X1...X,, it holds that

H(X;...X,) = iH(XAXl...Xi_l) < iH(Xi). (6)

Given three random variables, X, Y, and Z, the conditional mutual information between X and Y
given Z can be written as

I(X;Y|Z)=H(X|Z)- HX|ZY)=H(Y|Z) - H(Y|Z XI(Y;X|Z). (7
Since the conditional mutual information I(X;Y|Z) is always non-negative we get

H(X|Z) > H(X|Z Y). (8)
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