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Abstract

A private information retrieval scheme enables a user to privately recover an item
from a public accessible database.

In this paper we present a private information retrieval scheme for k repli-
cated databases. The scheme is information-theoretically secure against coalitions of
databases of size t < k — 1. It improves the communication complexity of the scheme
described in [12] for coalitions of size & <t <k — 1.

1 Introduction

User’s privacy issue has received a lot of attention in recent years. Many efforts have been
produced to cover different aspects of user’s interaction with private and public entities
or organizations. An important aspect concerns with recovering information from public
available databases. Indeed, a curious or dishonest database operator can follow the user’s
queries to infer which item of information he is interested in. A practical and significant
scenario can be, for example, a medical information database. The concept of private
information retrieval scheme, (PIR scheme, for short) was introduced in [7]. Such a scheme
enables a user to retrieve an item of information from a database maintaining, at the same
time, privacy with respect to the database operator. The authors of [7] showed that, if
a single database is available in the system, unconditional privacy can be achieved only
sending to the user the entire database. Of course, this solution is unacceptable from a
communication complexity point of view. Surprisingly, they showed that allowing copies of
the database, it is possible to do better. Therefore, they considered the following distributed
environment: the network holds & copies of the database. A user, to keep secret the
item he is interested in, sends different queries to the & databases. Then, he retrieves his
item of information by computing a simple function of the received answers. Each query



assures that the database operator does not gain any information on the item recovered
by the user. Assuming that the database stores n bits, and the user needs a single bit,
they presented a construction for 2 databases with communication complexity O(n%), a
construction for a constant number £ of databases with communication complexity O(n%),
and a construction for %log n databases with communication complexity polylogarithmic in
n. The first construction uses concepts of Coding Theory, while the second and the third
ones use polynomial interpolation techniques.

Ambainis [1], proposed a PIR scheme for k copies of the database with communication
complexity O(n'/#*=1) improving the result of [7].

Two interesting extensions of the PIR model have been presented in [16] and [11]. The
first addresses the problem of privately read and write into the database, while the second
one considers a symmetric privacy condition, i.e., the database’s privacy must be protected,
too.

Chor and Gilboa [5], began studying PIR schemes in the computational setting, requir-
ing the privacy condition to be satisfied against a curious database operator polynomially
bounded. They gave a PIR scheme for 2 databases with communication complexity O(n®),
for any ¢ > 0.

Kushilevitz and Ostrovsky [13], proved that communication complexity can be subpoly-
nomial in n even if the databases is not replicated. More precisely, using the Quadratic
Residuosity Assumption, they presented a PIR scheme computationally private, with a
single database, achieving communication complexity O(n*), for any € > 0.

Recently, Cachin et al., in [4], introducing a new cryptographic assumption, have shown
that in the computational setting, can be constructed a single database PIR scheme with
communication complexity polylogarithmic in the length of the database.

An interesting approach to private information retrieval has been proposed by Di
Crescenzo at al. [8]. They have shown how communication complexity of the PIR problem
can be improved using some additional service-providers selling “commodities” to the users
that will be used to privately retrieve information from the database. Their results hold
for both the information-theoretic and the computational setting. Other papers focussing
on private information retrieval schemes are [2, 3, 9, 10, 14, 15]. A major drawback of all
above mentioned PIR, schemes is the assumption that the user knows the physical address
of the sought item. This problem has been efficiently solved in [6].

Information-theoretic privacy with a single database requires communicating the whole
database. While, with database replication it is possible to reduce communication complex-
ity. Notice that all the schemes information-theoretically private with replicated database
proposed in the literature assume absence of communication between the databases. This
assumption is unsuitable and difficult to achieve in the “real” world.

In [7], it has been proposed a scheme information-theoretic private even if a coalition of
t databases can communicate and collude to break the scheme. Recently, Ishai and Kushile-
vitz [12], improved the known upper bounds on Information Theoretic PIR Schemes. More
precisely, they showed a 1-private PIR scheme with the same asymptotic communication
complexity of the scheme proposed in [1] but with a smaller constant factor. Then, for



t-private schemes, they proposed a generalization of the 1-private construction which im-
proves the communication complexity of the schemes presented in [7].

Our result: In this paper we assume that coalitions of databases can collude to infer what
item of information the user is interested in. We present a PIR scheme for k£ database
copies unconditionally private against any coalition of size up to kK — 1 with communication
complexity 2 - k - nz. Since the best scheme that can be constructed using the technique
presented in [12] with & database and coalitions of size % <t <k — 1 has communication

complexity equal to 4 - k - n%, our scheme achieves an enhancement of a factor 2. The
scheme we propose is elegant and simple. Notice that, communication complexity is the
main performance evaluation parameter for private information retrieval schemes, and even
slight improvements can be of some interest from a practical point of view.

2 Notation and Model

In this section we define private information retrieval schemes.

Let {0,1}" be the set of binary strings of length n. Denote with [n] 2 {1,...,n}. The
database is a string X = 2,...,2, € {0,1}", replicated k times across the network. Each
string is hold by a server; let DBy, ..., DBy be the k servers storing the database. The user
holds a private input i € [n], which represents the index of the bit the user is interested in,
and a private source of randomness. In [6] the authors present a simple and modular way
to privately access data by keywords. The solution they propose combine any conventional
search structure with any underlying PIR scheme. Moreover, in [6] it has been presented a
general transformation from PIR scheme to retrieval by keywords schemes.

A private information retrieval scheme can be seen as a game: The user, to recover bit
z; from the databases in a secure way, generates k queries for servers DBy, ..., DB} using
his private source r of random bits and the index 7. The servers compute answers, based on
the received queries and the content of the database, and send these answers to the user.
Finally, the user, by means of some computation involving the servers’ answers, the index ¢,
and the random bits, is able to recover the bit z; he is interested in. Moreover, any subset
of the servers DBy, ..., DBy, of size t < k — 1, putting together the user’s queries, does not
gain any information on the index 1.

The queries, the answers, and the bit recovering operation can be represented by math-
ematical functions; while, the privacy condition can be modelled with a probabilistic re-
quirement.

Let £,,¢,, and /£, be integers representing the lengths of, respectively, random strings
generated by the private source of the user, query strings sent to the database servers, and
answer strings received by the users from the servers.

Definition 2.1 Let X = zy...2, € {0,1}" be a database of n bits, and let t and k be
integers such that 1 < t < k — 1. A t-private k-database Private Information Retrieval
Scheme consists of the following 2k + 1 functions



- k query functions, Q1,...,Qp : [n] x {0,1}/7 +— {0, 1}!4;
- k answer functions, Ay, ..., Ay :{0,1}" x {0,1}¢ — {0,1}'e;

- a reconstruction function, R : [n] x {0,1}" x ({0, 1}*)* — {0,1};
satisfying the two following conditions

Correctness: For every z € {0,1}", i € [n], and r € {0, 1}~

R(i, 7, A1(z,Q1(¢,7)), ..., Ax(z, Qr(3,7))) = ;.

Privacy: For everyi,j € [n], s1,...,8 € [k], with1 <t <k —1 and (q1,...,q:) € ({0, 1}fa)t,

PT[(QM(Z')T))' . 'aQst(iar)) = (qla . ~-,Qt)] = PT[(QS1(j)r))' . ')Qst(j’ T)) = (qla s ';qf)]a

where the probability is taken over uniformly chosen r € {0,1}¢.

The correctness condition of the above definition requires that each user can recover the
bit in which he is interested. The (unconditional) privacy condition means that the joint
distribution of ¢ queries must be independent from the index 7. This is enough to guarantee
that a coalition of ¢ servers does not gain any information on the index ¢ from the received
queries.

3 Ouwur Protocol

In this section we describe a PIR scheme which is private against coalition of at most £ — 1
servers.

The main idea underlying the protocol is the following: viewing the database as a
sequence of consecutive blocks, the user asks each server to xor-ing bit a bit, a certain
number of them, and to receive back the resulting block. From the server point of view,
this request looks like a totally random request, independent from any index of the database.
On the other hand, the queries are constructed in such a way that, by xor-ing bit a bit all
the blocks the servers send to the user, it comes up a single block of the database, which is
exactly the block containing the bit the user is interested in. Recovering the bit from this
block becomes straightforward.

Let us set up our notation. For any 5,5’ C [/], we denote with S ® S’ the set
S@S ' ={ee[fl:ec (SUSH\(SNS)}.

When S = {e} for any e € [{], to simplify the notation we denote with S®@e the set S®{e},
that is

] Su{eyifegs
S®e—{ S\{e}ifeeS.



As we have pointed out, the database X = zy...2, € {0,1}" is replicated k times
across the network, and it is stored by the servers DBy, ..., DB;. Assume that X is divided
into £ blocks of length b = [7], i.e., X = B1By... B, where Bj = x(;_1)p41 ... 2 for each
j=1,...,L. If necessary, the last block can be padded with zeroes to have length b.

The protocol works as follows:

To recover bit z;, the user I executes the following steps:

i

1. Compute m = []
2. For j=1,...,k— 1, randomly choose S; C [(]
3. Generate the sequence

(a) @1 = 5.

(b) Q;=8;®@S;_1,forj=2,... k-1

(€) Qr = Sk—1 @ m.

4. For j =1,...,k, compute the characteristic sequence Ig, of £ bits, i.e.,
for each e € [{], Ig,[e] = 1iff e € Q;.

5. For j =1,...,k, send the query Ig, to the server DB;.

The steps executed by server DB;, for j =1,...,k, are the following:

1. Compute the answer

R; = @ B.,

e:[QJ [e]:'l
where the symbol () denotes the bitwise xor operation.

2. Send the block R; to the user i.

Finally, the user i performs the following operations to recover the desired bit z;:



1. Compute the block
k
B:wﬁ...xé:@R
j=1

2. Compute s < i — (m —1)b

3. Recover z; « ',

CORRECTNESS. In the following we will prove that the above protocol satisfies the Cor-
rectness property of Definition 2.1. The reason is that when the user computes the xor of
the & server replies R;, he gets the block B = B,,,, which contains the bit z; he is interested
in. To see that this condition is guaranteed we prove the following lemma.

Lemma 3.1 Let [{] = {1,...,0} be a set of { elements, and let m € [{]. Forj=1,...,k, let
S; C [f] be a subset of elements randomly chosen in [(]. The sequence of subsets Q1. .., Qk,
where Q1 = 51, Q; = 5; @ Sj_1, for j=2,...,k =1, and Qp = Sip—1 @ m, is such that m

is the only element which appears an odd number of times in the sequence QQq,...,Qk.

Proof. Let U be a multiset ! defined as follows
k k-1
=JQi=5uqJIUSUSi-)\(S;NSj-1)] ¢ U(Sk—1 @m).
7=1 j=2

Since (S; U S;-1) \ (S; N S;-1) can be written as (S; \ (S; N.Sj=1)) U (S;=1 \ (S; N S;-1)),

the above equality becomes

CJQJ = Sluku1 S\ (S;NS5_1) U[SJ 1\ (S5 08501 (Sk-1 @ m)
= {{US u USJ 1] [UQ S;NS;_1)u Q(Sjmsj_l)}}u
(Sk—1 ®@m). ’ "
= Se1U(Ski@m {[Us UUS} [UzSﬂSJ 1)U Dz(sjmsj_l)”.

'In a multiset the same element can appear more than once.



It is easy to see that each element # m appears in the sequence @1, ..., Q an even num-
ber of times, while m appears an odd number since the @ operator “flips” its membership

in Qr = Sg—1 ® m. |

As we said before, the correctness of our protocol directly follows from Lemma 3.1.
Indeed, the structure of the queries assures that, when the user & computes the xor of the
replies R;, he obtains exactly the block B = B,, which contains the bit z;. The last step
of the protocol enables him to recover x; from B by a simple computation.

Privacy. Our protocol is secure against coalitions of databases of size t < k — 1. Privacy
condition requires that each group of ¢ queries is independent from the index ¢, which
determines the bit in which the user is interested in. Indeed, let Qq,...,Q% be the set of
queries generated by the user i to retrieve the bit z;, and let @Q; ,...,Q;,_, be a generic
subset of these queries. For each j € [n], there exists a query (7 such that the sequence
Qiry- 0y Qin_ys ()’ enables the recovering of xj. The query ()’ can be constructed as follows:
Let U be a multiset defined as U = U*=!Q;.. For all e € U, let m. = |{is : e € Q;.}| (m. is
the multiplicity of e in the multiset U). If m; = 1 mod 2 we set @’ = {e € [n]\ {j}: me =
1 mod 2} otherwise, we set Q7 = {e € [n]\ {j} : me = 1 mod 2} U {j}. By the structure
of the queries, generated during the execution of the protocol, it results that the set @7 is
unique.

Hence, for any coalition of databases holding k — 1 queries, the indices j € [n] are uniformly
distributed.

CoMPLEXITY. Notice that the user ¢ sends k queries of £ bits to the servers DBy, ..., DBg;
while, he receives k blocks each of b = [%] bits. Hence, the communication complexity is
equal to
(k l+k-b)=Fk-((+ [%1).
It is easy to see that, for a fixed n, the function f(€) = £+[%], defined for £ € [1,2,...,n],

reaches its minimum for £ = [/n]. Therefore, choosing ¢ = [\/n], the communication
complexity of our protocol becomes 2 -k - [\/n], which is O(n'/?).

The above analysis can be synthesized in the following theorem

Theorem 3.2 let k and t be integers such that 1 < t < k — 1. There exist t-private

k-database private information retrieval schemes with communication complexity equal to

2/ 1.

COMPARISON. Let us compare the communication complexity of our scheme with the
communication complexity of the scheme proposed in [12]. The protocol therein described
works essentially as follows: the database is seen as a vector z in a data space X whose
elements have size n = £, The user represents the index 7 as a d-tuple (iy,...,44) and, for
h =1,...,d, shares the canonical {-vectors e, among the k servers using a ¢-private linear



secret sharing scheme. Each server performs a local computation on its shares, resulting in
a collection of vectors belonging to the data space X, and returns to U the inner product of
the database « with each of these vectors. Finally, the user reconstructs z; by taking a fixed
linear combination (depending on 7) of the answers. Theorem 2 of [12] establishes that such
a protocol, secure against coalitions of ¢ databases, has communication complexity equal to

k—1
k( ) )d-nl/d+k-d-n1/d,

where d is an integer such that the length of the database can be written as n = (¢, for
some integer £. On the other hand, Corollary 2 of [12] implies that, given k databases, d
must be equal to 2 for a (k — 1)-private scheme. In this case, the overall communication
complexity of the scheme is

CC =4 ky/n.

The authors of [12] showed that a better communication complexity can be obtained
only increasing the number of available copies of the database. More precisely, Claim 5
of [12] states that to achieve communication complexity O(n'/3), it must be k > 2 - t.
Therefore, given k servers, for any security threshold ¢ such that % <t < k-1, the best
scheme that can be constructed using the technique described in [12] is the (k — 1)-private
scheme with communication complexity equal to 4 - ky/n. Hence, for each g <t< k-1,
our scheme is more efficient than the one in [12] for a factor 2.

Fort < %, the technique described in [12] yields schemes with communication complexity
asymptotically better than 2k - /n.
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