A Novel Approach to
Proactive Password Checking

Carlo Blundo!, Paolo D’Arco?, Alfredo De Santis®, and Clemente Galdi?

! Dipartimento di Informatica ed Applicazioni
Universita di Salerno, 84081, Baronissi (SA), ITALY
{carblu,ads}0dia.unisa.it
2 Department of Combinatorics and Optimization
University of Waterloo, Waterloo, Ontario, N2I. 3G1, Canada
pdarco@cacr.math.uwaterloo.ca
Computer Technology Institute and
Dept. of Computer Engineering and Informatics
University of Patras, 26500, Rio, Greece
clegal@ceid.upatras.gr

Abstract. In this paper we propose a novel approach to strength password-
based access control strategies. We describe a proactive password checker
which uses a perceptron to decide whether a user’s password is easy-to-
guess. The checker is simple and efficient, and it works since easy and
hard-to-guess passwords seem to be linearly separable. Experimental re-
sults show that the error rates in many cases are close to zero, memory
requirements can be quantified in few bytes, and the answers to classifi-
cation queries are almost immediate. This research opens new directions
to investigate on the applicability of neural network techniques to data
security environments.

Keywords: Data Security, Access Control, Proactive Password Checking, Per-
ceptron, Neural Network.

1 Introduction

Authentication and identification protocols to check users’ accesses to partially
shared or private resources are deep problems for computer scientists involved in
studies on data security. Several methods have been proposed in the recent years
but, among these, password-based access control strategies are still frequently
used for their simplicity.

A user, who wants to identify himself to a system, engages an interactive
identification protocol: First, the user types in his login name; then, the system
asks for the password, a secret word which proves the real identity of the user.
The system stores in a database a reference string encrypted using the password
as a key. So, when the user types in his password, the system re-encrypts the
reference string and compares it with the stored one. If they match, the access
is allowed; otherwise, it is refused. The scheme is supposed to be secure if the
user keeps secret his password.

Security of Password-based Systems. lllegal logging onto a machine often hap-
pens by mean of users’ passwords. This is possible not only when the user ac-
cidentally discloses his password but even when it is easy-to-guess [8]. Indeed,
if an hacker can obtain in some way the file containing the reference string en-
crypted with the users’ passwords, used by the system to allow and refuse the
access, then he can try off-line to encrypt the reference string with all the words
of a dictionary until a match is found. This attack is called ezhaustive search.
Excellent softwares to accomplish this task have been developed in the recent
years, and are available on-line (see, for example, [9]).

Therefore, to increase the security level of a password-based system, we have
to find a method to reduce the efficacy of the exhaustive search attacks. This
goal can be achieved if users are not allowed to choose easy-to-guess passwords.

Previous works. The problem of using hard-to-guess passwords has been studied
in several papers. So far, four techniques [3,4] have been proposed to eliminate
easy-to-guess passwords, and the more promising seems to be the Proactive Pass-
word Checking approach.

A proactive password checker conceptually is a simple program. It holds
a list of easy-to-guess passwords that must be rejected. When the user wants
to change his password, it checks for membership in the list. If the password is
found, the substitution is refused and a short justification is given; otherwise, the
substitution is allowed. The philosophy these programs are based on is that the
user has the possibility to select a password but the system enables the change
only if it i1s a “non trivial” one. However, a straightforward implementation of
such a program is not suitable since the list can be very long and the time to
check membership can be high.

Various proactive password checkers that aim to reduce the time and space
requirements of this trivial approach have been proposed [10,11,5]. All these
models are an improvement upon the basic scheme. An interesting approach to
design a proactive password checker is the one applied in [1], and subsequently
improved in [6], where the problem of password classification is viewed as a Ma-
chine Learning Problem. The system, in a training phase, using dictionaries of
examples of easy and hard-to-guess passwords,; acquires the knowledge to dis-
tinguish between them. This knowledge is represented by a decision tree that
is used afterwards by the checker to accept or refuse a password change. The
experimental results reported in [1,6] show a meaningful enhancement on the
error rates with respect to the previous solutions.

In this paper we introduce a new idea to proactive password checking: We use
a perceptron to distinguish easy-to-guess passwords from hard ones. During the
training phase, the perceptron learns the differences between “casy” and “hard”
by means of examples. Then, the perceptron is used in the testing phase to
decide on the membership of a password to one of the two classes. The technique
is promising since the checker shows small error rates, and requires very low
memory storage (in our prototype, only 40 bytes!). It is interesting to point
out that basically the perceptron codes some rules to classify passwords. Other
checker which implements a direct approach (i.e., a code checking with a series of

if-then-else statements a bunch of rules) requires non negligible time and memory
requirements. We obtain better performances evaluating a simple weighted sum
and using only 40 bytes. Hence, this approach is suitable for implementations
even on devices with very poor hardware facilities (i.e.,smart cards).

Easy and Hard-to-Guess. We have informally referred to easy and hard-to-guess
passwords. We define easy-to-guess as a condition of membership in some “easy
to exhaustively search” dictionary, and hard by negation of easy. Notice that
these notions are computational in nature. Hence, a password is easy if it is
“guessable” in reasonable time, while it is hard if the guessing requires unavail-
able resources of time and space. Usually, a hard-to-guess password looks like a
random string on the reference alphabet.

2 Mathematical Framework

The above notions can be modeled in a mathematical setting. In this section
we briefly describe the problem of choosing a password p from a set P. More
precisely, along the same line of [3], we characterize the selection of easy-to-guess
passwords from P in terms of certain probability distributions.

Let P be the set of all admissible passwords, let p be an element chosen from
P, and let s be the function used to select the password p from P. Then, denote
by p' a guess for the password p and assume that it takes a constant amount of
time T"=t(p') to determine whether this guess is a correct one.

We can model the choice of p in P with a random variable S, taking values
in P. These values are assumed according to a probability distribution Ps upon
elements of P that is induced by the selection function s. Moreover, the time to
guess p can be represented with a random variable Fp., which takes values in
Rt according to Ps.

If S is uniformly distributed on P, i.e., P¢=U, and no prior knowledge of the
authentication function (the function used by the operating system to check the
equality of a guess with the true password) is available then, as pointed out in
[3], to guess the selected password p, we have to try on average @ passwords
from P, and the expected running time is

E(FU):zz:T:T|Z . (1)

i=1

In this model, there i1s a correspondence between the set .S of the selection
functions and the set Dp, the set of all probability distributions on the set P.
Indeed, we can characterize the bad selection functions s to choose p in P, with
those probability distributions Pg such that

E(Fp.) < kE(Fy). (2)

The parameter k € [0, 1] defines a lower bound to the acceptability of a given
selection function, represented by the distribution Pg. If p is chosen according to
a probability distribution Pg that satisfies (2), we say that p is easily guessable.

A family of bad selection functions is represented by language dictionaries,
where the dictionary can be seen as the image-set of a selection function s.
The words in the dictionary are a small subset of all the strings that can be
constructed with the symbols of a given alphabet. According to our model, the
distribution induced by natural languages are skewed on P, since they assign
non zero values only to a small subset of elements, therefore E(Fp,) is much
smaller then E(Fy). Hence, it is sufficient to try a number of password smaller
than @ to guess the chosen p.

To assure the security of the system against illegal accesses we have to require
that the selection function does not localize a small subset of P. This means that
we have to find a method to discard those probability distributions Ps on P such
that E(Fp.) is too much small. If E(Fy) is very large and we can force Ps to
look like U, then the goal is obtained.

A proactive password checker can be viewed as a tool to guarantee that a
password p 1s chosen from P according to a suitable distribution, i.e., a distribu-
tion that looks like the uniform one. It works like a sieve on the set Dp. Actually,
the proactive checker does not distinguish the different distributions but simply
distinguishes among good distributions, close to the uniform one, and bad ones,
close to the distributions induced by natural languages.

This is a general analysis of the password choosing problem. In order to
derive practical results we need to carefully specify the password space P. In
our setting this set is the set of all strings of length less than or equal to 8,
composed by “printable” ASCIT characters. This set is reported in Section 5.

3 Pattern Recognition

Pattern recognition concerns with objects categorization [2]. It is a solid area of
studies in Artificial Intelligence. The objects of a given universe can belong to
different classes, according to their own characteristics. The recognition problem
consists in associating each object to a class.

A pattern recognition system can be seen as a two-stage device: A feature
extractor and a classifier. It takes as input an object and outputs the classifica-
tion.

A feature is a measurement taken on the input object that has to be classified.
The values of the measurements are usually real numbers and are arranged
in a vector called feature vector. The set of possible feature vectors is called
feature space. The feature extractor of a pattern recognition system simply takes
measurements on the object and passes the feature vector to the classifier. The
classificator applies a given criterion to establish in which class the object does
belong to.

Discriminant functions are the basis for most of the majority of pattern recog-
nition techniques. A discriminant function is a function that maps the feature

vector onto the classification space, and usually defines a boundary among the
classes. If the discriminant function is a linear function, 1.e., it defines a bound-
ary in the classification space that looks like an hyperplane, the classifier is said
linear. Of course, a linear classifier can be used if the classes themselves can
be separated by means of a straight line. When this happens, we say that the
problem is linearly separable.

As we will see later, the system we are looking for is a pattern recognition
system which takes as input words, extracts some features from them, and then
outputs a decision on their membership to the easy-to-guess class or the hard
one. To classify, our device uses a perceptron which realizes a linear classifier.

Neural Computing: The Perceptron Neural computing is an alternative way to
do computation. Against the traditional approach of computer science, a neural
machine learns solving problems by trials and errors. In a training phase the
machine sees a sequence of examples with the corresponding solutions and adapts
its internal parameters to match the correct behaviour. When the training phase
stops, the machine is ready to solve new and unseen instances of the problem.
The approach is quite interesting since the machine holds simply the software
to manage the training process. The knowledge to solve the specific problem is
acquired during the learning phase and is stored in the modified values of the
internal parameters. Therefore, the machine is in some sense self-programmable.
A formal neuron is a model which tries to capture some aspects of the be-
haviour of the cerebral neuron. A first model was proposed in 1943 by McCulloch
and Pitts. It was a simple unit, thresholding a weighted sum of its input to get
an output. Frank Rosenblatt, in 1962, in his book Principles of Neurodinamics
introduced the name Perceptron.
The learning rule of the Perceptron consists of the following steps

- Set the weights and the threshold randomly

- Present an input

- Calculate the actual output by taking the threshold value of the weighted
sum of the inputs

- Alter the weights to reinforce correct decisions and discourage incorrect ones

This type of learning is called hebbian in honour to Donald Hebb, who proposed
in 1949 a similar rule starting from his studies on real neural systems.

It is well known (and not difficult to see) that the Perceptron implements a
linear classifier. Indeed, the weighted sum defines an hyperplane in the Cartesian
space. If the weighted sum of an input is greater than the threshold, then the
pattern belongs to the class on one side of the hyperplane, otherwise it is an
element of the class on the other one.

Intuitively, our problem is linear separable, i.e., easy-to-guess passwords and
hard ones present characteristics which permit the separation of the two classes
by means of a straight line. Under this hypothesis, we have designed the kernel
of the proactive password checker. The results obtained seem to confirm this
intuition.

4 The Checker

The proactive password checker presented in this paper is based on a perceptron.
The training process uses two dictionaries, a dictionary of hard-to-guess words
and a dictionary of easy ones. From each word, chosen at random in one of
these dictionaries, we extract some features and use the perceptron to classify.
The learning rule used to train the perceptron is the Widrow-Hoff delta rule [2],
a specific implementation of the general learning algorithm described before.

Thus, in order to classify the passwords, we have to identify some features
that are relevant for the classification. One of the first features that should be
considered is the length of the password. Actually, it is commonly believed that,
the longer is the password, the harder is to guess. However, the length is not
sufficient (and sometimes is a wrong criterium) to correctly classify hard-to-guess
passwords and easy ones.

Following the intuition, and by trials and errors, we have identified four fea-
tures for the classification called: Classes, #Strong Characters, Digrams, Upper-
Lower Distribution. More precisely:

- CLASSES: It is reasonable to consider the set of ASCII characters divided into
classes of different strength. Commonly, passwords are composed by letters,
this means that all the (upper and lower case) letters must have low values.
In a second class, we can put the digits ’0°,...,?9. This is because it is
not frequent to find a digit in a password, but it is not so unusual, too. In the
last class, called the class of strong characters, we can put every character
that does not belong to the first two classes. To mark the distance among
these classes we have assigned to the class of letters a value equal to 0.2, to
the class of digits a value equal to 0.4 and to the last class 0.6. The overall
value of a password is computed by summing up the value associated to each
character in the password. Notice that, since the feature is a sum, the longer
is the passwords the higher is the value.

- #STRONG CHARACTERS: The second feature is the number of strong char-
acters contained in the password.

- UpPPER-LOWER DISTRIBUTION: The value of this feature is calculated by
the following formula: |UPP — LOW/|/let, where UPP is the number of
upper case letters, LOW is the number of lower case letters and fet is the
number of letters in the password. The presence of this feature is due to the
observation that passwords that contain both upper and lower case letters
are lightly stronger that passwords composed by lower (upper) case letters
only.

- Digrams: This feature looks at the types of digrams present into the pass-
word. More precisely, we say that a digram is an alternance if the two charac-
ters of the digram belong to different classes. The checker scans the password,
analyzes all the digrams from the left to the right, and assigns values to each
of them. The more alternances the password has, the higher is the value.

5 Description of the Experiments

Many operating systems limit the length of the password. For example, Unix-
like operating systems work with passwords of length at most 8 characters. At
the same time, many others do not accept passwords with length less than 6
characters. For this reason, we have used, in the training and testing phases of
our experiments, dictionaries of hard-to-guess passwords by generating random
words with length ranging between 6 and 8 characters. Similarly, passwords
contained in the easy-to-guess dictionaries, collected from several sources, have
been truncated to the first eight characters.

The Dictionaries. We have used eight dictionaries, strong.0, strong.1, strong.2,
weak, noise.0.1, noise.0.2, noise. 1.1 and noise.2.2, for the training phase, and
nine dictionaries test.strong. 0, test.strong. 1, test.strong.2, test.weak.0, test.weak. 1,
test.noise.0.1, test.noise.0.2, test.noise.1.1 and test.noise.1.2, for the testing
phase. We briefly describe each of them. The dictionaries strong.0, strong.l
strong.2 are dictionaries of random words. They are composed by pooling to-
gether 30000 words of length 6, 30000 words of length 7 and 30000 words of
length 8.

The difference among them is the generation rule used. The strong.0 dictio-
nary has been generated by randomly choosing the characters of each word in
the following set:

ABCDEFGHIJKLMNOPQRSTUVWXYZO012345
abcdefghijklmnopgqrstuvwxyz:;<=>7
oL rrr s lEe () xy -0 /7

m
- o0
y O

The random selection has been done using the random() C-function. This func-
tion implements a non-linear pseudorandom generator that is assured to have a
long period.

Recall that, we have said before that a character is strong if it belongs to the
following set:

s <=>72e]~ _ > {1Xr"#8dheC)*x+,-./"

3

The dictionaries strong. 1 and strong.2 have been constructed using the same
rule as the one used to construct strong.0 with additional constraints. More
precisely, each word in strong.1 has at least one strong character or at least two
characters must be digits. Similarly, each word in strong.2 contains at least two
strong characters or three digits. Intuitively, the “strength” of these dictionaries
increases from strong.0 to strong.2.

About the dictionaries of easy-to-guess passwords, the first one, weak, is com-
posed by words having length from 1 to 18, recovered from several sources and
books, truncated to the first 8 characters. All the passwords in this dictionary
are composed by lower case letters. The dictionary nose.0.z, for @ = 1,2, is

constructed from the dictionary weak by substituting z randomly selected char-
acters with strong ones. The dictionary noise.l.z, for # = 1,2, is constructed
from the dictionary noise.0.z by substituting half of the lower case letters with
the corresponding upper case ones.

For the testing phase we have used dictionaries presenting the same charac-
teristics of the training dictionaries. This similarity is reflected in the name that
is the same up to the prefix test (i.e., test.strong.0, and so on). The only dif-
ference is that we have tested two weak dictionaries, test.weak.0 and test.weak. 1
where the first one as the same characteristics of weak, while test.weak.1 is con-
structed from test.weak.0 by substituting half of the lower case letters with the
corresponding upper case ones.

The Intuition Behind the Frperiments. The training phase is a critical step:
Based on the easy and hard-to-guess examples presented, the perceptron learns
different notions of easy and hard. Hence, if the training set is not accurately
chosen, the perceptron can give poor performances. The first experiment we have
run is to train the perceptron with a “very easy” dictionary of easy examples,
and a “very hard” dictionary of hard ones. Unfortunately, the results obtained
in testing phase are not exciting applying this strategy. The main problem with
this approach is that there is a big “distance” between the dictionaries. So, many
noisy passwords are classified as hard-to-guess.

To avoid this phenomenon, we have used dictionaries whose distance 1s small
enough to obtain a more refined notion of “easy” and “hard” but, at the same
time, big enough to ensure that the perceptron learns these distinct notions.

The Ezperiments. We have trained the perceptron using all the possible combi-
nations between the strong dictionaries and the weak ones described in Section 5,
firing the number of examples in each training.

Since this number is smaller than the number of words in the dictionaries,
the training has been randomized. More precisely, the training procedure, in each
step, randomly chooses either the hard or the easy dictionary, and then randomly
selects a word in the selected dictionary. After each training, we have tested all
the testing dictionaries. Since the training is randomized, we have repeated the
overall process 100 times, to ensure that the results obtained were consistent and
not due to a “lucky” random sequence of examples. In Table 1 of the Appendix
we report the average number of modifications of the perceptron’s parameters
(i.e., weights) occurred during the training phase before the convergence to a
stable configuration.

Results reported in Table 1 clearly states that if the distance between the
dictionaries used during the training phase is large, the process converges almost
immediately. On the other hand, if the distance between these dictionaries is
really small, the same process takes a while (and, maybe, does not converge).

For space limits, we report the results only for the experiments associated
to the training executed using strong.1 and strong.2 as strong dictionaries. In
Table 2 in the Appendix we report the expected error and the variance obtained
on each testing dictionary.

It is immediate to see that if the pair of dictionaries approaches to the space
of strong passwords, i.e., moving from (strong.1, weak), to (strong.2, noise.0.1),
the error obtained on easy testing dictionaries decreases since the perceptron
learns a stronger notion of “easy”. At the same time, the error obtained on the
dictionaries of hard-to-guess words increases since the perceptron also learns a
stronger notion of “hard”.

Platform. The experiments presented have been run on a 450 Mhz Pentium
IIT machine running a Linux kernel 2.2.10 with 256 MBytes of RAM, and a 9
GBytes SCSI hard disk. On this machine, the software has checked more that
56,000 passwords/sec. Our tests show that this approach is significantly faster
than all the previous proposed ones.

6 Conclusions and Open Problems

This paper gives more questions than answers. Following an intuition, and pro-
ceeding during the experimental phase by trials and errors, we have shown that
the hard-to-guess password set (i.e., words sampled according to a uniform-like
distribution on the set of printable ASCII characters) seems to be linearly sep-
arable from the easy-to-guess set (i.e., set of “structured words” chosen, for
example, according to the distribution of a natural language).

Several problems arise from this study. Strictly related to the topic of this
paper, the following issues could be of interest: From an experimental point of
view, it would be nice to investigate other features for the perceptron, in order
to obtain better performances during the classification task. The features we
have used seem to be reasonable but a more accurate choice can produce a more
refined classification. Along the same line, other strategies (dictionaries) for the
training phase can give an improvement as well. On the other hand, from a
theoretical point of view, it would be nice to prove in a formal model that easy-
to-guess and hard-to-guess passwords are really linearly separable. This intuition,
at the basis of the present work, seems to be corroborate by the experimental
results.

Finally, we put forward the question of the applicability of neural networks
to data security problems. Further investigation on the relation among these two
fields could be done by researchers belonging to both fields.

References

1. F. Bergadano, B. Crispo, and G. Ruffo, High Dictionary Compression for Proactive
Password Checking, ACM Transactions on Information and System Security, Vol.
1, No. 1, pp. 3-25, November 1998.

2. R. Beale and T. Jackson, Neural Computing: An Introduction, IOP Publish-
ing Ltd, Institute of Physics, 1990.

3. M. Bishop, Proactive Password Checking, in Proceedings of 4th Workshop on Com-
puter Security Incident Handling, 1992.

10.
11.

M. Bishop, Improving System Security via Proactive Password Checking, Comput-
ers and Security, Vol. 14, No. 3, pp. 233-249, 1995.

B. Bloom, Space/Time Trade-offs in Hash Coding with Allowable Errors, Commu-
nications of ACM, July 1970.

. C. Blundo, P. D’Arco, A. De Santis, and C. Galdi, Hyppocrates: A new Proac-

tive Password Checker, Proocedings of 1SC01, Springer-Verlag, LNCS, Vol. 2200,
Malaga, October 1-3, 2001.

C. Davies, and R. Ganesan, Bapasswd: A new proactive password checker. In Pro-
ceedings of the 16th National Conference on Computer Security (Baltimore, MD,
Sept. 20-23).

D. Klein, Foiling the Cracker: A Survey of, and Improvements to, Password Secu-
rity. Proceedings of the Fifth Data Communications Symposium, September 1977.
A. Muffett, Crack 5.0, USENET News.

J. B. Nagle, An obvious password detector. USENET News.

E. Spafford, OPUS: Preventing Weak Password Choicesin Computers and Security,
No. 3, 1992.

Appendix

Strong Dictionaries

strong.0 strong.1 strong.2
weak 102|weak 7|weak 2
noise.0.1| 699|noise.0.1| 385|noise.0.1 10
noise.0.2|2113|noise.0.2{1653 |noise.0.21286
noise.1.1|3882|noise.1.1{3637 |noise.1.1| 10
noise.2.2|7495 |noise.2.2|6980 noise.1.2{7150
Table 1. Average Number of Weight Modification over 20,000 Examples

strong.1
weak

strong.1
noise.0.1

strong.2
weak

strong.2
noise.0.1

Testing Dict.

Var.
(%)

Error

(%)

Error

(%)

Var.
(%)

Var.
(%)

Error

(%)

Var.
(%)

Error

(%)

test.weak.0

0.02] 0.01

0.00

0.00

0.01] 0.01

0.00{ 0.00

test.weak.1

5.36(18.09

0.02

0.00

0.01] 0.01

0.00| 0.01

test.noise.0.1

95.62| 0.77

0.33

2.19

53.81|41.88

0.02| 0.00

test.noise.0.2

99.49| 0.13

79.99

0.50

91.25| 8.69

79.92| 0.00

test.noise.1.1

96.32| 1.09

96.00

0.00

45.28]40.80

27.59|38.74

test.noise.1.2

99.59| 0.12

99.56

0.00

89.70| 8.51

85.91| 813

test.strong.0

4.91| 0.76

7.68

0.40

16.85| 7.84

20.94| 6.84

test.strong.1

0.00| 0.01

1.70

0.30

11.72| 8.42

16.07| 7.38

test.strong.2

0.00{ 0.00

0.00

0.00

0.00{ 0.00

0.00{ 0.00

Table 2. Testing Behaviour

