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A one-restricted key agreement scheme is a method by which initially a trusted
authority distributes private individual pieces of information to a set of users.
Later, each member of any group of users of a given size, referred to as a conference,
can compute a common key by exchanging messages over a broadcast channel all
users have access to. Such schemes can be used to establish only one common key.
In this paper we analyze r-restricted key agreement schemes. Such schemes allow
the computation of up to 7 common keys for 7 distinct conferences. For certain
values of the parameters the scheme that we propose distributes less information
than the trivial one obtained by considering 7 copies of a one-restricted scheme.
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1. INTRODUCTION

Key distribution is a central problem in cryptographic
systems, and is a major component of the security sub-
system of distributed systems, communication systems,
and data networks. From the point of view of the se-
curity, most networks can be thought of as broadcast
networks, in that anyone connected to the network will
have access to all the information that flows through it.
This leads to many problems related to the confiden-
tiality and authenticity of information transmitted.

When a subset of users in a network, referred to as
a conference, wishes to communicate privately, encryp-
tion algorithms can be used to provide security against
eavesdropping. If conventional (private-key) cryptog-
raphy is used, a common key must be shared by the
members of the conference. The question is how can
we set up an efficient protocol to give each conference
a key.

A key distribution scheme (KDS, for short) is a
method to distribute pieces of information among a
set of users in such a way that each group of them
can compute a common key for secure communication.
Usually, we have a DISTRIBUTION PHASE, in which a
Trusted Authority (TA, for short) distributes informa-
tion in a private way to each user, and a KEY COMPUTA-
TION PHASE, where a conference computes a common
key. The scheme is unconditionally secure if any dis-
joint coalition of adversaries does not gain information
about the conference key, even though it has access to
an infinite computational power. In the last years, var-
ious approaches have been proposed; in this paper we
restrict our attention to unconditional secure KDS.

The first method is the key predistribution scheme.
Secret information is given to each user by the Trusted

Authority in the DISTRIBUTION PHASE. Later, in the
KEy CoOMPUTATION PHASE, every member of a con-
ference G can reconstruct the common key k¢ from his
piece and the conference identity, while every disjoint
coalition F' of adversaries does not gain any informa-
tion on kg.

A basic key predistribution scheme consists of a
Trusted Authority, which gives privately, in the DisTRI-
BUTION PHASE, keys to users in such a way that each
potential group that need to communicate securely,
shares a common key. This scheme is unconditionally
secure against any disjoint coalition of adversaries and
requires no KEY COMPUTATION PHASE. The drawback
is that the number of keys each user must keep secret
can be prohibitively large.

Given the high complexity of such a distribution
mechanism, a natural step is to trade complexity for
security. We may still require that keys are uncondi-
tionally secure, but only with respect to coalitions of a
limited size. One such scheme was considered by Blom
[1] where, using MDS codes, an efficient scheme for con-
ferences G of size 2 and coalitions F' of size b is given
(other related schemes are presented in [2, 3]).

Subsequently, for conference G of size g and coalitions
of adversaries F' of size b, in [4], using entropy argu-
ments, the authors proved a lower bound on the cardi-
nality of the domain of pieces given to users and showed
that the bound is tight describing a scheme meeting it.
The scheme uses symmetric polynomials with ¢ vari-
ables and degree at most b in each variable (a brief
description of such a scheme is given in Appendix B).

A second approach allows interaction among the users
in a conference. In the KEY COMPUTATION PHASE
the members of a conference GG, using the secret infor-
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mation received in the DISTRIBUTION PHASE, interact
to agree on a key by exchanging encrypted messages
among themselves via a broadcast media. Any disjoint
coalition of adversaries F' that hears all communications
is unable to gain any information about it.

This approach, which we call key agreement scheme,
initiated in [4], was continued by Beimel and Chor [5, 6]
and it was aimed to reduce the size of information
each user must keep secret. In [5] the authors stud-
ied schemes for conference G of size g and coalitions of
adversaries F' of size b. They proved that the interac-
tion cannot help in reducing the size of the pieces of
information given to the users compared to the non in-
teractive model. Hence, in order to decrease the size
of the secret information, we have to relax the security
requirements. We can require that the key agreement
scheme be secure only a fized number of times, say 7,
defining T-restricted key agreement schemes. In such
schemes we limit to 7 the number of groups of users,
whose identity is not know beforehand, that can com-
pute a common key in an unconditional secure way. For
such schemes Beimel and Chor in [5, 6] realized a one-
restricted scheme, where the size of pieces given to users
is smaller than in unrestricted key agreement schemes.
Subsequently, using 7 copies of a one-restricted scheme,
they realize a scheme which is secure for 7 conferences.
Such an approach, even though it allows us to construct
a scheme in a straightforward manner, does not give rise
to a scheme which is optimal with respect to the size of
the information kept by each user. In the literature a
one-restricted scheme is also referred to as a one-time
scheme, because it can be used to compute only one
common key.

In [7] the authors presented a generalization of the
one-restricted scheme described by Beimel and Chor [5,
6] using tools from design theory.

Fiat and Naor [8] introduced a new key distribution
scheme referred to as Broadcast Encryption Scheme.
The Trusted Authority gives some predefined keys to
each user in the DISTRIBUTION PHASE. At some point,
the TA enables a privileged subset of users to recover
a common key by broadcasting a message, in the KEY
CoMPUTATION PHASE. Each user in the privileged set
can recover the common key using the broadcast mes-
sage and the prearranged keys he received from the TA
when the system has been set up. Further, any coali-
tion of at most b users disjoint from the privileged set
have no information on this common key. Broadcast
Encryption schemes were designed to allow a central
site to broadcast secure transmissions to an arbitrary
set of recipients. The common key recovered by the
privileged set will be used later to decrypt broadcast
messages. Broadcast encryption was further analyzed
in [9, 10, 11, 12, 13, 14, 15].

Other key distribution schemes are known in the lit-
erature. A survey of unconditional secure schemes can
be found in [16]; while, a general model for uncondi-
tional secure KDS can be found in [17].

1.1. The Results

We analyze a special type of T-restricted key agreement
scheme. In general the messages exchanged among the
members of a conference can depend on the previous
messages and there may be several rounds of communi-
cation. In the key agreement schemes we analyze, each
member of a conference independently chooses a ran-
dom value and, using its secret information, computes
an encrypted version of it. Then, this user sends this
encrypted version to all the other members of the con-
ference over the broadcast channel. The conference key
will be the concatenation of all these values randomly
chosen by the users in the conference.

We model the problem of r-restricted key agreement
schemes with an information theoretical framework. We
use the Shannon entropy mainly because this leads to a
simple, compact, and elegant description of the scheme
and because this approach takes into account all the
probability distributions on the keys. In Appendix A
we review the basic notions of entropy and mutual in-
formation.

Throughout this paper we assume that all the 7 con-
ferences that want to compute a common key are dis-
tinct (i.e., we do not allow the same conference to com-
pute more than once a common key). This situation is
close to the spirit of the non-interactive schemes. In-
deed, in such schemes all members of a conference use
the same key every time they want to establish a secure
communication. In this paper, we extend this feature
to key agreement scheme by assuming that, if the mem-
bers of a conference G want to communicate for the first
time, then they compute a common key kg by exchang-
ing messages over the broadcast channel. Subsequently,
they keep a copy of it in a secure manner, in such a way
that when they want to communicate again, they use
the previously computed common key kg. We provide
a 7-restricted key agreement scheme which distributes
less information than the trivial scheme obtained by
considering 7 copies of a one-restricted scheme. Such
a scheme requires that users hold a counter which is
incremented each time a conference key is generated.

Organization: In Section 2 we formally define key
predistribution schemes and 7-restricted key agreement
schemes using an information theoretical framework. In
Section 3 we prove some lemmas used to establish the
security of our protocol. In Section 4 we describe the
protocol realizing a T-restricted key agreement scheme.
Finally, in Section 5 we recall the main result of the

paper.

2. THE MODEL

In this section we describe both key predistribution and
key agreement schemes. We formalize such models us-
ing the entropy function (see Appendix A). Thus, the
security we analyze is unconditional. Our scenario con-
sists of a Trusted Authority TA and a set of users
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U ={1,...,n}. Weassume that the network is a broad-
cast channel, i.e., it is insecure and any information
transmitted by one user will be received by every user.

A key distribution scheme is a distribution protocol,
divided into two phases: A DisTRIBUTION PHASE and
a Key CompruraTioN PHase. In the DISTRIBUTION
Puask the TA gives privately some secret information
(sometimes referred to as predefined keys) to users in
U. In the KEy CompuTaTION PHASE some subset of
users G in U, referred to as a conference, computes a
common key using the secret information received by
the TA and the messages “seen” over the network dur-
ing such a phase. The TA, before providing users with
some private information, does not know which confer-
ence G will later recover a common key. In some cases,
e.g., non-interactive schemes, such messages can be con-
sidered as “empty” messages or constant ones.

In this paper by a boldface capital letter, say X, we
denote a random variable taking value on a set denoted
by the corresponding capital letter X according to some
probability distribution {Pr(z)}sex. The values such
a random variable can take are denoted by the corre-
sponding lower case letter.

For 1 < i < n, with U; we denote the set of all
possible secret values distributed to user 7 by the TA.
For any X C U, let Ux = U;, x -+ x U;;, where
X ={&1,...,4;} and iy < ... < i;. We assume that
the TA chooses uy € Uy according to the probability
distribution {Pr(uw) }uy,evy,, that in turn naturally in-
duces a probability distribution { Pr(ug)}ugevs on Ug,
for any set G C U. For any set G C U of size g, we de-
note by K¢ the set of all possible values of the key kg
for the conference G. The key distribution scheme and
the probability distribution on Ug induce a probability
distribution {Pr(kg)}reexs on K.

In a key predistribution scheme, each user 7 in a con-
ference G of size g is able to recover, during the Ky
COMPUTATION PHASE, without interaction with the
other users; the secret key kg. The user i computes
ke using the secret information he received from the
TA and the identities of the other users in G. Further,
no disjoint coalition F' of size at most b, is able to gain
any information about the secret key kg. A key predis-
tribution scheme is formally defined as follows.

DEeFINITION 2.1. Let & = {1,...,n} be a set of n
users and let g and b be two positive integers such that
g+b<n A (g,0) key predistribution scheme ((g,b)-
KPS, for short) is a distribution protocol satisfying:

1. Each user ¢ in any conference G of size g can
compute kq.

For all i € G C U, with |G| = g, it holds that
H(K¢g|U;) = 0.

2. No coalition F' of b users disjoint from the con-
ference GG has any information on k¢g.

For all conferences G of size g and all coalitions
F of size b such that G N F = ), it holds that
H(Kg|Up) = H(Kg).

Notice that H(Kg|U;) = 0 means that the information
held by user 7 unequivocally determines the value of the
common key associated to the conference G. Moreover,
H(K¢|Ur) = H(Kg), where F' NG = (§, means that
K¢ and Up are statistically independent (i.e., the in-
formation held by users in F' reveals no information on
the key of the conference G).

In a key agreement scheme, when users of a set G
of cardinality g wish to generate a conference key, dur-
ing the Ky CoMPUTATION PHASE, they communicate
among themselves through the network. All messages
sent by user ¢ are denoted by b; € B;; whereas, the mes-
sages exchanged by all the users in a conference G are
denoted by bg € B (i.e., for G = {i1,...,i,} we have
that B = B;, x -+ % Big). Since the messages are sent
over a network that is a broadcast channel, they can be
heard by all the users, including any coalition of adver-
saries. The scheme assures that each user of GG, using
the secret information and the broadcast message bg,
recovers the conference key, while any disjoint coalition
of adversaries is unable to gain any information on k¢.
A key agreement scheme 1s formally defined as follows.

DEeFINITION 2.2. Let & = {1,...,n} be a set of n
users and let g and b be two positive integers such that
g+b<n. A (g,b) key agreement scheme ((g,b)-KAS,
for short) is a distribution protocol satisfying:

1. Without knowing the broadcast b, no subset of
users has any information on kg even given all the
secret Information Uy .

For all conferences G C U of size g, it holds that
H(K¢|Uy) = H(Kg).

2. Each user ¢ in any conference G of size g, knowing
the broadcast b¢g, can compute k¢.

For all i € G C U, with |G| = g, and for the
broadcast bg, it holds that H(Kq|U;Bg) = 0.

3. No coalition F' of size b disjoint from a conference
G of size g has any information on k¢, even know-
ing the broadcasts of all possible conferences.

For all conferences G C U of size g and all coali-
tions F of size b such that G N F = @, and
for any broadcast B = Ug. g|=¢bc, it holds that
H(Kg|UrB) = H(Kg).

Notice that H(Kg|Uy) = H(Kg) means that Kg
and Uy are statistically independent (i.e., the infor-
mation held by all users in U reveals no informa-
tion on the key conference kg of the conference G).
Moreover, H(Kg|U;Bg) = 0 means that the infor-
mation u; and the broadcast messages bg, exchanged
by all users in (G, unequivocally determine the value
of the common key kg of the conference G. Finally,
H(K¢|UrB) = H(Kg) means that K¢ is statistically
independent from Up and B (i.e., the information held
by F and the messages exchanged by all conferences
of size g do not reveal any information about the key
conference kg).
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A t-restricted key agreement scheme is a key agree-
ment scheme in which any coalition of adversaries F' of
size b disjoint from G, knowing the messages exchanged
by any 7 conferences during the KEy CoOMPUTATION
PHASE does not gain any information on the key kg. A
T-restricted key agreement scheme is formally defined
as follows.

DEFINITION 2.3. Tet & = {1,...,n} be a set of n
users and let g and b be two positive integers such that
g+0b<n. A r-restricted (g,b) key agreement scheme
(r-restricted (g,b)-KAS, for short) is a distribution pro-
tocol satisfying:

1. Without knowing the broadcast b¢, no subset of
users has any information on kg even given all the
secret information Uy, .

For all conferences G C U of size g, it holds that
H(K¢|Uy) = HKg).

2. Each user ¢ in any conference G of size g, knowing
the broadcast bg, can compute kq.

For all i € G C U, with |G| = g, and for the
broadcast bg, it holds that H(K«|U;Bg) = 0.

3. After seeing the communication of at most 7 dis-
tinct conferences, no coalition F' of b users has any
information on the key of one of these conferences
(disjoint from F).

For any 7 distinct conferences Gi,...,G,, with
|Gi|=gfori=1,...,7, for any bg,, ..., bg,, and
any F C U of size b such that F N G; = 0, it holds
that H(KGi UFBG1; ey BG,.) = H(KG,)

Notice that H(Kg,|UrBg, ...Bg,) = H(Kg,) means
that K¢, is statistically independent from Up and
Bg,,...,Bg, (i.e., the information held by F' and the
messages exchanged by any 7 conferences of size g do
not reveal any information about the key conference

ka,).

3. TECHNICAL LEMMAS

In this section we present some technical lemmas which
will be useful to prove that our r-restricted (g,b) key
agreement scheme is secure.

Lemma 3.1. Let A/B,C, and D be four random
variables. If H(A|B) = 0, then the following two state-
ments holds

1. H(C|BD) = H(C|ABD)
2. H(C|AD) > H(C|BD).

Proof. The hypothesis H(A|B) = 0 and equations (15)
and (10) of Appendix A imply that

0= H(A|B) > H(A|BD) > H(A|BCD) > 0.

Hence, H(A|BD) = H(A|BCD) = 0. According to
(14) of Appendix A, we have

I(C; A|BD) = H(C|BD) — H(C|ABD)

and
I(A;C[BD) = H(A|BD) — H(A|BCD) = 0.

Since, I(C;A|BD) = I(A;C|BD), it follows that
H(C|BD) = H(C|ABD). Therefore, Statement 1 is
satisfied. From (15) of Appendix A and Statement 1
we get

H(C|AD) > H(C|ABD) = H(C|BD),
which proves Statement 2. O

In [7] it was proved that in any (I,g + b — [)-KPS,
with £ < g, the users in any coalition F' of size b have
no information on the key associated with the /-subsets
of G C U, where |G| = ¢ and FNG = 0. This is

formalized in the next lemma.

LEMMA 3.2. Let U be a set of n users and let G, F C
U be two subsets of g and b users respectively, such
that G N F = §. Finally, let Y7,...,Y, be distinct I-
subsets of GG, where a = (g> and £ < g. Then, in any

£
(I,g 4+ b—1)-KPS we have

H(Ky, ... Ky,|Up) = > H(Ky,).
i=1

The above lemma is generalized as follows.

LEMMA 3.3. Let U be a set of n users. Let ¢ and p
be two integers such that £ < ¢t < gand 1 < p < b,
and let o be an integer such that o < (z) TG, FCU
are two disjoint subsets of ¢ and p users, respectively,
and Yy,...,Y, are distinct [-subsets of GG then, in any
(I,9 + b —1)-KPS we have

H(Ky, ... Ky,|Up) =Y H(Ky,).
i=1

Proof. Let X, B CU be two subsets of U of cardinality
g and b, respectively, such that G C X, F C B, and
XNB=0. Let a = () and let Y1,...,Y, be distinct
l-subsets of X. Then, from (11) and (12) of Appendix

A, we get

Z H(Ky,) > H(Ky,...Ky,|Up)
i=1

v

H(Ky, ...Ky,|Up)
(from (15) of Appendix A as F' C B)

= Z H(Ky,) (from Lemma 3.2 ).

i=1

Hence, H(Ky, ... Ky, |Ur) = i, H(Ky,). Setting
X] = I(y1 ...Kyﬂ, Xz = I(ya_+1 ...Kya, and Y = UF
in equation (11) of Appendix A, one gets that
H(Ky, ...Ky,|Ur) = HKy, ...Ky,|UF)
+H(Ky,,, ... Ky, Ky, ... Ky, Up).
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Since, from (11) and (12) of Appendix A, one has

H(Ky, ...Ky,|Up) <> H(Ky,), and
i=1
H(Ky,,, .. Ky,|Ky, ... Ky,Up) < > H(Ky,),
i=o+1
then, H(Ky, ...Ky, |Up) = >.7_, H(Ky,). Therefore,
the lemma holds. O

The next lemma will be required in the analysis of the
security of our schemes.

LEMMA 3.4. Let U be a set of n users and let
X1,X9 C U be two distinct g-subsets. Let ¥ C U be
a subset of size b and let p € X5 \ X;. Moreover, let
a and (3 be integers such that a < (J) and 3 < (‘Z:i),
where 2 < ¢ < g. If Y1,...,Y, are distinct [-subsets
of Xy and Zi,...,Zp are distinct I-subsets of X5 each
containing p, then, in any (I,g+b—1+1)-KPS we have
the following:

i) H(Ky, ... Ky,|Kz, .. Kz,Up) =Y H(Ky,),
i=1

if FNX,=0.

B
ii) H(Kz, ... Kz,|Ky, .. Ky,Ur) = > H(Kz,),
i=1
if FNXy = @.
Proof. We have that
H(Ky, ... Kyz,|U,) = 0. (1)

Indeed, from (11) and (15) of Appendix A, we get

H(Kz, ... Kz,|Up) < > H(Kz|Zio1...Z1Uy)

K3

1]
—

B

< H(Kz|Up)

o -
R
—

The last equality follows from Property 1 of Definition
2.1 since p € Z;. Notice that, from (13) of Appendix A,
we get

Y H(Ky,) > H(Ky, .. .Ky,)
i=1
> f{(I{y1 .. .I(yalfiz1 .. .KZﬁUF)
(from (12) of Appendix A)
> f{(I{y1 ...Ky, |UpUF)

(from 2 of Lemma 3.1 and (1))
= > H(Ky,).
i=1

The last equality follows from Lemma 3.3. Indeed, we
are considering a (,g + b — [+ 1)-KPS and |X;| = g,

|[FU{p} < b+1, and (FU{p}) N X1 = B. There-
fore, H(Ky, ... Ky, |Kz, ... Kz, Ur) = Y20, H(Ky,).
Thus, statement ¢) is satisfied.

Let X{ = X; \ F. To prove statement i7) we consider
two cases.

Case 1. Assume that |X{| < ¢— 1. Then, FNY; # 0,
for any 1 < j < a and it holds that,

H(Ky, ... Ky, |[Ur) =0. 2)
Indeed, from (11) and (15) of Appendix A, we get

H(Ky,..Ky,|Up) < > H(Ky,|Ky,..Ky, ,Ur)
j=1

> H(Ky,|[Ur)

j=1
= 0.

IN

The last equality is satisfied since H(Ky,;|Ur) = 0,
for j = 1,...,a. In fact, if & € F NY}, then, from
Property 1 of Definition 2.1, we have H(Ky,|Ug) = 0.
Applying inequality (12) of Appendix A, we obtain that
H(Ky,;|Ur) = 0. From (2) and Statement 1 of Lemma
3.1, we have
H(Kz, ...Kz,|Ky, ... Ky, Up) =

H(Kz, ...Kz,|UF).
From Lemma 3.3 one gets that

I‘I(I(Z1 .. ~KZﬁ|UF) = ZH(KZi))

i=1

since we are considering a (1,5 + ¢ —{ 4+ 1)-KPS and,
by hypothesis, we have that |Xs| =g, |F| < b+ 1, and
X5 N F = (. Therefore,

H(Kz, ...Kz,|Ky, .. Ky, Up) =Y H(Kz,),
i=1
and Statement éi) is satisfied.
Let |X{| > ¢ and let ¢ be an integer
If Y{,..., Y] are distinct I-

Case 2.
|11
such that o < ( 7 )

subsets of X{ such that {Y{,..., Y }C{Y7,..., Yy}, and
Yoy, Y =AY, Ya )\ YT, .., Y}, then one
gets that

H(Kz, ...Kz,|Ky, ... Ky, Up) =
H(Kz, ...Kyz,|Ky: ... Ky;Up). (3)

Indeed, since Y/ N I # B, for j = o+ 1,...,q,
proceeding as in Case 1, one can easily see that
H(Kygu+1 ...Kyu|Up) = 0. Therefore, applying State-
ment 2 of Lemma 3.1 we get (3). From Statement ¢) we
have that,

>

A H(Ky;...Ky/|Kz, ... Kz,Ur)

= i H(KYII). (4)
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since we can always see the [-subsets Y{,..., Y. of X]
as [-subsets of a g-superset of X1, say X3, distinct from
X5 and such that XN F = @ (we can add g —|X{| users
not in F to X{). Moreover, since we are considering a
({,b+g—1+1)-KPS, from Lemma 3.3 one can see that

>

BZ H(Ky, .. .Ky;/|Up)=> H(Ky/). (5)
i=1

Set X = Kz, ...Kzﬁ, Y = Kyll ...Kyc;, and Z = Up.
From (14) of Appendix A and from equations (4) and
(5), we have that

H(Kz, ...Kz,|Ky:...Ky,Ur)
=H(Kyz, ...Ky,[Up)+A—B
= H(Kz, ...Kz,|Up).

Finally, since the sets Xs and F satisfy |Xa2| = g,
|F] <b+1,and XoNF =0, and we are considering a
({,b4+ g — I+ 1)-KPS then, from Lemma 3.3, it follows
that H(Kz, ... Kz,|Ur) = Zle H(Kz,). Therefore,
H(Kz,...Kz,|Ky; ... Ky, Ur) = .7, H(Ky/), and
the lemma holds. O

The above lemma states that if a coalition F' of adver-
saries knows the keys used by the [-subsets of X5 then it
has no information about the keys used by the I-subsets
of X1 if F and X are disjoint. On the other hand, if a
coalition F' of adversaries knows the keys used by the I-
subsets of X then it has no information about the keys
used by the l-subsets of X5 if F and X5 are disjoint.

4. A r-RESTRICTED KEY AGREEMENT
SCHEME

In this section we describe a protocol to realize a 7-
restricted key agreement scheme that can be used by 7
distinct conferences to set up a common key. For cer-
tain values of the parameters, the scheme we propose
distributes less information than the trivial scheme ob-
tained by considering 7 independent copies of a one-
restricted scheme.

We need some definitions and results from design the-
ory. A design is a pair (V,B), where V is a set of n el-
ements (called points) and B is a set of subsets of V of
a fixed size k, where k > 2, (called blocks). A parallel
class of (V, B) consists of n/k blocks from B which par-
tition the set V. The design (V, B) is said to resolvable
if the set of blocks, B, can be partitioned into parallel
classes. If B consists of all k-subsets of V, then (V) B)
is called the complete k-uniform hypergraph on V.

We will use the following theorem of Baranyai, a proof
of which can be found in [18, Theorem 36.1].

THEOREM 4.1. The complete k-uniform hypergraph
on n points is resolvable if n = 0 mod k.

In the scheme we propose there is no effective in-
teraction among the users. Every member ¢ of a con-
ference G independently chooses a random value m(?)

and uses its secret information to compute an encrypted
version of m(") which is broadcast. Then, the key
of G = {i1,...,45}, with &4 < -+ < 44, will be
ko= (ml), ... mld),

Notice that in the following the sets elements are be-
ing listed sequentially in increasing order.

The protocol provided in [7], which is a one-time key
agreement scheme, is a building block of our scheme.
Therefore, we recall it.

A Protocol for one-restricted key agreement
scheme: TLet & = {1,...,n} be a set of n users and
let G C U be a conference of size g. Suppose that £ > 2
is an integer such that g = 1 mod (£—1) and that k£ > 1
is an integer. The set-up phase consists of the Trusted
Authority distributing secret information correspond-
ing to a (£, b+ g —£)-KPS described in Appendix B, im-
plemented over (Zpk)l, with p prime. For an f-subset
of users A, we denote by k4 the key associated with A.
We will think of k4 as being made up of £ independent
keys over Z,x, which we denote by ka1,...,ka . Each
user h of a conference GG performs the following steps:

1. Chooses a random value m(®) = (mh,... omk) €

(Z,x)", where r = (%:g)

2. Partitions the complete (£—1)-uniform hypergraph
on G\ {h} into r parallel classes C1, ..., Cy,, which
all consist of x = (g — 1)/(£ — 1) blocks that we
denote with B[fj, forl1<i<randl1<j<y.

3. For each block B{’:j denote with B(7,j, h) the set
Bﬁj U{h} = {z1,..., 24}, and let aﬁj denote the
index such that Toh = h.

4. Encrypts each m! using the x keys kB( by

g h
i,7,h),0 .
Jh) el

defining
bij = k(i jmar, +mi mod pF,

for1<i<rand 1<j<y.
5. Broadcast the vector
B = (b, bbb,
The secret key is the value kg = (m(") ..., m(9)) which

can be decrypted by anyone in GG from the g]obalv broad-
cast bg = (b(U, b9y

The next simple example illustrates the steps of this
protocol.

ExXAMPLE 4.1. Suppose that ¢ = 5 and £ = 3. Note
that 5 = 1 mod 2. Suppose that the conference set is G
= {1,2,3,4,5}. For each user i € (G, we partition the
2-subsets of G\{i} into r = 3 disjoint parallel classes.
Below, we describe only the ones related to user 4.

014:{{])2};{3’5}}a ng{{]aS}a{.za’B}}a
Cy = {{1,5},{2,3}}.

Consider the computations performed by user 4. First,
user 4 picks three random values (i.e., his part of the
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key), say mf, mi, mi € Z,x. Next, he computes the
relevant o values. These are as follows:

4 _ 4 . 4 _
aj =3, aj,=2, ay; =3,

4 _ 47 4
0‘2,2—2a 043,1—2a 043,2—3~

This determines the values broadcast by user 4:

b4 = (m7 + k{1243 3, mi + ki3 45,2, ms + ki1 343 3,

mi + ki3 45,2, my + ki1 a5y,2, my + ko 3.43,3)-
A

The security of the above protocol derives from the
observation that any coalition F' of b users such that
F NG = 0, has no information about the key after the
observation of the broadcast, even if they pool all their
secret information. Indeed, as proved in Lemma 3.3 of
[7], the (%) keys used by the conference appear to any
disjoint coalition to be independent random elements of
Zpx. Since each of these keys is used exactly once (the
definition of the indices aﬁ- ensures that every ka4 ; is
used to encrypt exactly one m; ;’s), they function as a
series of one-time pads.

Now we have all the necessary tools for the descrip-
tion of the protocol for a 7-restricted key agreement
scheme.

Protocol for r-restricted key agreement scheme:
Let 4 = {1,...,n} be a set of n users and let
Gy, ...,G; CU be T distinct conferences of size g. Sup-
pose that £ > 21is an integer such that ¢ = 1 mod (£—1).

DisTRIBUTION PHASE

e The Trusted Authority distributes secret informa-
tion corresponding to the KPS described in Ap-
pendix B. More precisely, the TA uses 7 — 1 copies
ofa (6,b+g— £+ 1)-KPS, say Aq,...,A;_1, im-
plemented over (7, ) ST (Zpk,_1 )¢, respectively,
and a (£,b+ g —£)-KPS, say A;, implemented over
(Zpk,-_)z, with p prime and k; < kq, for 2 <i < 7.

Key CoMPUTATION PHASE

e  When users in a conference (G; want to compute a
common key, they perform the steps from 1 to 5 of
the protocol for the one-restricted key agreement
scheme Ay, For Gy = {i1,...,4,5}, i1 < ... < ig,
the final key kg, will be (m(il), Cely m(ig)_).

e  When users in a conference Gy, with 2 < ¢ < 1,
want to compute a common key they perform the
steps from 1 to 5 of the protocol for the one-
restricted key agreement scheme A;. Since, for
2 <t < 7, we have that Gy \ Gi—1 # 0, then
let hy € Gt \ Gi—1 be the user with “minimum”
identity. Using the scheme A;_1 implemented over
(Zpkt_1 )¢, user hy performs the following steps

1. For r = (g:;), he chooses a random value

m(ht) = (m}ft,. cey m,’?t) € (Zplki—l)r'

2. Partitions the complete (¢ — 1)-uniform hy-
pergraph on G; \ {h:} into r parallel classes
Ci,...,Cr, which consist all of y = %
blocks that we denote with BZ}, forl<i<r
and 1 <j<y.

3. Encrypts each mg” using the x keys kg j n,),
where B(i,j, ht) = Bzhé U {h:}, by defining

hy _
bt =k

Lhki_1
B(i,5,ht) )

+ mf‘ mod p
for1<i<rand 1 <j<y.
4. Broadcast the vector

U = (b, b B,

1,x0 VU P X

For Gy = {j1,...,jg}, with J1 << jgand hy €
G\ Gi-1, the key kg, is (m(h), . ..,m(Jg),m(hf))

Our scheme requires that users hold a counter which is
incremented each time a conference key is generated.

To familiarize with the concepts used in the general
construction we give an example of a 2-restricted key
agreement scheme.

EXAMPLE 4.2. Let T =2, n > 7,9 =5, and £ = 3.
Suppose that the conferences G; = {1,3,4,5,6} and
Gy ={1,2,3,4,7} want to set-up a common key.
DisTRIBUTION PHASE:

The Trusted Authority distributes secret information
corresponding to the KPS described in Appendix B. He
uses a copy of a (3,64 3)-KPS, say Ay, implemented
over (Zpkl)?’, and a copy of a (3,6 + 2)-KPS, say As,
implemented over (Zpk2)3, with p prime and ks < k1.
Key CoMPUTATION PHASE:

When users in the conference G1 want to compute a
common key, they perform the steps from 1 to 5 of the
protocol for the one restricted key agreement scheme
using the scheme A; implemented over (Zpkl)B. More
precisely, each user ¢ € GGy, partitions the 2-subsets of
G1\{i} into r = 3 disjoint parallel classes. For example,
user 1 computes the following classes.

Ct = {{3,4},{5,6}}, Cy = {{3,5},{4,6}},
C‘% = {{3a6}a{4)5}}

Consider the computations performed by user 1. First,
user 1 picks three random values (i.e., his part of the
key), say m], m}, m} € Z,,. Next, he computes the

relevant o values. These are as follows:
1 1 1
4 = 1, y 9 = 1, Q51 = L

1 177 1
0‘2,2—]a 0‘3,1—]a 0‘3,2—]~

This determines the values broadcast by user 1.
b(l) el (m% + k{17374}71’ m% + k{17576}71’ m% + k{17375}71’
m% + k{17476}71’ mé + k{17376}71’ mé + k{17475}71)'

The key k¢, will be (m(l) ,mB) m® ) m(G)), where

m() = (mzla mé, mé)
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When users in the conference G5 want to compute a
common key, they perform the steps from 1 to 5 of the
protocol for the one restricted key agreement scheme us-
ing the scheme As implemented over (Zx, )3. Precisely,
each user i € G5, partitions the 2-subsets of G5\{i} into
r = 3 disjoint parallel classes. For example, user 3 com-
putes the following classes.

C?:{{laz}){4a7}}a Cg:{{])4}a{2a7}}a
ng {{1a7}a{2a4}}

Then user 3 picks three random values (i.e., his part of

the key), say m$, m3, m3 € Z,k,. Next, he computes

the relevant o values. These are as follows:

3 3 _ 3 :
05,1 =3, 0‘%2 =1, 0‘%,1 =2,
a272:2, a3 =2, az,=2

This determines the values broadcast by user 3.

b3 = (mi + ki12.3),3) m} + ki3 .4,7)1, mi + k{13432,

mi + k{23 7},2, mj + ki137y,2, mj + ki 3.43,2)-

Moreover, the user 2 € G5 \ G; (having minimum iden-
tity) performs the following computation using the in-
formation distributed with the scheme A;. Partitions
the 2-subsets of G2\{2} into » = 3 disjoint parallel

classes.
Ct = {{1,3},{4,7}}, 3 ={{1,4},{3,7}},
O3 = {{1,7},{3,4}}.

Then, user 2 picks three random values, say m?, m2,
m2 € Zyax, . Next, he computes the new broadcast

(%) = (] + k1,231, mi + ko, ms + ki1,2,41,

M3 + ki2,3.7), M3 + k12,73, M3 + k{2,3.4))-

Notice that the above modular additions are done in
Zpary . In fact, since only user 2 issues a broadcast, then
we allow him to use all 3 entries of the key he shares
with any subset of 2 users in G'3. The key kg, will be
(m™ m2) mB) @ m() m2),

A

4.1. The Security of the Scheme

In this section we show that the protocol proposed in
Section 4 indeed realizes a T-restricted KAS, that is, it
satisfies Definition 2.3.

Each conference key is the concatenation of random
values chosen by the users during the Key CompuTa-
TION PHASE. Hence, the key is independent from the
a-priori information held by the users and, for any con-
ference G, we have that H(K¢g | U) = H(Kg). Thus,
Condition 1 of Definition 2.3 is satisfied.

It i1s easy to see that each user in a conference can
compute a common key. In fact, each user in a confer-
ence (G broadcasts his part of the key in such a way that

all other users in G are able to decrypt the broadcast
value. Hence, H(Kg|U;Bg) = 0, for each conference
G and each user 7 in G. Thus, Condition 2 of Defini-
tion 2.3 is satisfied.

To prove that our scheme is secure, we have to show

that if FNG; =0

H(Kg,

Bg,,...,Be,.Ur) = H(Kg,) (6)

We will give a sketch of a proof that equation (6) holds
for any conference G;, with 1 < i < 7. The cases ¢ = 1
and i = 7 can be deduced from the following analysis in
a straightforward way. The users in the conference G,
for 1 < i < 7, use the schemes A; and A;_;. Moreover,
the scheme A;_q (resp., A;) is also used by the users
in G;_1 (rvesp., Giy1). Notice that the common key
ka,;, computed by the conference G;, can be thought
of as ké:ké:_l, where ké: (resp., ké:_l) is the part
of kg, computed using the scheme A; (resp., A;_q).
In a similar way, bg, can be thought of as bé:bé:_l,

where bé: (resp., bé:'l) is the part of the broadcast b¢,
computed using the scheme A; (resp., A;_1).

Since the schemes Aq,...;A, are independent, the
users in F' could derive some information on k¢, only
from the broadcast messages bq,, bé::i, and bé:+1'
Therefore, to prove that equation (6) holds, it is enough
to show that the following equality is satisfied.

H(Ke|Bg,”,Ba:Bg,,, Ur) = H(Ka,).

Intuitively, since the schemes A; and A;_; are con-
structed independently, then in order to prove that the
above equality holds it is sufficient to show that the
following two equalities are satisfied.

H(Ké;|Bé‘iBé;+lUF) = H(Kg!) and

H(Kg, " B 'Bg, Ur) = H(Kg™").
We will prove that H(Ké‘i |Bé:Bé:+1 Up) = H(Ké‘i),
the other equality can be proved in a similar way.

It is intuitively clear that a coalition F' of users dis-
joint from the privileged set G; has no information
about ké: after the observation of the broadcast, even
if they pool all their secret information. This is be-
cause of the property, which we proved in Lemma 3.4,
that the (‘Z) keys of the scheme A; used to distribute

ké:, as well as the (g:l) keys of the scheme A; used by
the user with “minimum” identity in Giy1 \ G; to dis-
tribute ké:ﬂ, appear to F to be independent random
elements of Z,x, . Each of these keys is used to encrypt
one element of Z,x,, and thus these keys function as
a series of one-time pads. A formal proof of the secu-
rity of the scheme can be obtained by a straightforward
modification of the one given in [6]. Hence, Condition 3
of Definition 2.3 is satisfied. Thus, our protocol realizes
a 7-restricted key agreement scheme.
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4.2. The Information Distributed

In this section we consider the amount of information
given to any user in our 7-restricted key agreement
scheme. We show that for certain values of the parame-
ters the scheme we propose distributes less information
than the trivial one obtained by considering 7 indepen-
dent copies of a one-time scheme.

In our scheme, the key computed by the users in GGy is
a random element of (7, )?"; while, for 2 <t < 7, the
key computed by the users in G} is a random element
of (Zpk. )" x (Zpkt_1 ). Since the key computed by all
the conferences has to be taken from domains of the
same size, then, it must be that p?™%1 = p9rke . plrki-1
for 2 <t < 7. Hence,

gk1 = gkt + Cky_1, for2<t <. (7

In the following we prove that, for any integers g and
£ such that 2 < £ < g, there always exist positive inte-
gers ky, ..., k; satisfying the above equation. The next
lemma holds.

LEMMA 4.2, Let g and £ be two positive integers such
that 2 < /£ <g. Let I =1 and I; = g*~" — £1;_q, for
2<t <. 1If gky = gky + Lki—1, for 2 <t < 7, then it
holds that ky = ky - -, for 1 < ¢ < 7.

t—1
g )

Proof. We prove this lemma by induction on ¢. If t = 1
we have that k1 = I - k1 = k1. Now, suppose that the
lemma is true for some ¢ < 7. Then, we prove it for
t+ 1. From (7) we have that gk1 = gkiy1 + £k;. Using

the inductive hypothesis, we get gk:y1 = k1(g9—¢ g{il) =
gf_ll (gt —L1I). Since I3 = gt — L1, then it follows that

kip1 =k - I’g*{l. Thus, the lemma holds. O

From the above lemma it is easy to see that, for any
integers g and £ such that 2 < £ < g, there always exist
positive integers k1, ..., k, satisfying the equation (7).
For example, if we set k1 = ¢g”~', then it follows that
ke =g"" 'L, fort=2,...,T.

In our scheme, since the key is a random element of
(7,1 )9, then the entropy of the key is

_ g—2 .
H(K)—gk1<£_2> log p;

whereas, for each user i, we have that

+b
H(U;) = E(k1+-~-+k7_1)<‘g_1>logp+
g+b—1
EkT< 01 >logp.

The efficiency of the constructions can be measured by
considering the amount of secret information stored by
each user compared to the information content of the
key. In our scheme, we have that

Ok 4+ ko) 050k, (03271

HEK) gk (923 gk (929)

whereas, in the protocol for one-restricted key agree-
ment scheme we have that

H(U,) (307
AK) ~ g(]) ®)

since the information is distributed according to the

(I,b+ g —1)-KPS of Appendix B.

Now we compare the information distributed by the
TA in our protocol with the information distributed in
the trivial protocol realized by considering 7 indepen-
dent copies of a one-restricted key agreement scheme.
The following lemma holds.

LEmMA 4.3. Let 7 be an integer greater than 1 and
let ¢ and £ be two positive integers such that 2 < ¢ <g.
If gk = gky 4+ Lki—q, for 2 < t < 7, then there exist
integers ki, ..., k; such that,

(it ko) () R CFF) _CFT)
ka @ k() T @D

if and only if £ — (b+1)¢ — g < 0.

9)

Proof. Our proof is by induction on 7. If 7 = 2 it is easy
to see that, setting k1 = g and ks = g — £, equation (7)
holds and

@) mEPD] e
| | -

(i22) k(D)

is satisfied if and only if

) < wea(rH7)

The above inequality holds if and only if g(b+g¢) < (9+
£)(g+b—0+1). A simple algebra shows that the previous
inequality is satisfied if and only if #2 — (b+1)¢—g < 0.
Now, suppose that inequality (9) is satisfied for some
7 > 2. Then, we prove that such an inequality holds for
7+ 1. Denote with

A(7) 2 (kv + - -+ kr2) (gég) + k_‘r (942%;1)7 and
ki () k(2
A (g+b—1)
B(r) = 7 =1

()
From Lemma 4.2, setting k: = k1
we have that

(k14 -+ k1) (Zill)) k- (grif) =

gtlil for1 <t <,

k1 (972) R (022)
I Lo\ @) o ()
O+g+”ﬁb“0($9+f*<tﬁ'

Since for any pair of positive integers r and s, with
r < s—1, we have that (}) = (°7;) + (3;1) then, it

s
r r—1
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10 C. BLunpo, P. D’Arco, A. GIorGI0O (GAGGIA

follows that

I o\ ) L (3
1 - e =]
( MR 9"2> (922) T (422)
L L\ @) L (1)
T+ 2 4. 4 - .
( g 9> (42 " (40

Applying the inductive hypothesis, we have that

L ) (@) (33
<1+?+"'+9"1> ) o ()
Gy

-

if and only if ¢2 — (b + 1)¢ — g < 0. Hence, it follows

that

1 (giiy) I 41 (gﬁTl)

— v T — —— <

g 1> ) 9 (D)

) e () b ()

[ I () B (e B

if and only if £2 — (b+ 1)¢ — g < 0. From Lemma 4.2,
we have that /.41 = g” — £1,. Therefore, it results that

() o (57) _
>< >+ )
(1), 1 () ()
S U e Uy R Uy

if and only if 2 —

I
<]_|__2_|_..._|_
g

T

I
<1+_2+...+
g

(b+1)f—g < 0. It is immediate to

see that,
I» L\ G5 L (30
14 2 4., =A 1
( T +9"1) I Uy M
(g+b—1)
and (7 + 1) =1 B(t +1).

(=2)
Hence, to prove that A(7 +1) < B(7+ 1), it is enough
to show that

n (5 L)
A ) B L (o B

Elementary algebra shows that the above inequality
holds if and only if ¢ — (b + 1)/ — g < 0. Thus, the
lemma holds. O

From the previous lemma, one can easily see that,
for certain values of the parameters, our r-restricted
KAS distributes less information to the users than the
trivial scheme obtained by considering 7 copies of a one
restricted KAS. Indeed, as shown in Lemma 4.3, our
scheme is better if and only if £2—(b+1)¢—g < 0. There
always exist values for which the previous inequality
holds. In fact, this inequality is satisfied if and only if

9< 1< [b+1+\/(b;1)—2+4g

our scheme is better than the trivial one, if and only if
2 < ¢ < min{g,b+1}, provided that g = 1 mod (£—1).

. From which, one gets that

5. CONCLUSIONS

In this paper we have analyzed 7-restricted key agree-
ment schemes. Such schemes allow the computation
of 7 common keys for 7 distinct conferences. We have
presented a protocol which utilizes T suztable key pre-
distribution schemes as building blocks to realize a 7-
restricted key agreement scheme. For certain values of
the parameters, the scheme that we have presented dis-
tributes less information than the trivial one obtained
by considering 7 copies of a one-restricted key agree-
ment scheme.
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A. INFORMATION THEORY CONCEPTS

In this appendix we review the information theoretic
concepts used in our definitions and proofs. For a com-
plete treatment of the subject the reader is advised to
consult [19].

Given a random variable X taking values on a set X
according to the probability distribution {Pr(z)}sex,
we define the entropy of X, denoted by H(X), as

ZPT

reX

z) log Pr(z)

(all logarithms in this paper are to the base 2). The
entropy satisfies 0 < H(X) < log|X|, where H(X) =0
if and only if there exists zo € X such that Pr(X =
xg) = 1; whereas, H(X) = log|X|if and only if Pr(X =
z)=1/|X]|, for all z € X.

The conditional entropy H(X|Y), of two random
variables X and Y taking values on sets X and Y, re-
spectively, according to the joint probability distribu-
tion {Pr(z,y)}rex yev, is defined as

H(X|Y) = Z ZPr YPr(z|y) log Pr(z|y).

yeY zeX

From the definition of conditional entropy it is easy to
see that
H(X|Y) > 0. (10)

Given n + 1 random variables, X4,...,X,,Y, the en-
tropy of X;...X,, given Y can be written as

H(Xy ... X,|Y) = H(X4|Y) + HX X, Y) + - -

b H(Xn Xy Xl Y). (11)

The mutual information between X and Y is defined
by

I(X;Y) = H(X) - HX|Y)
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and satisfies the following properties:
I(X;Y)=1(Y;X) and I(X;Y) >0,
from which one gets
H(X) > H(X]Y), (12)

with equality if and only if X and Y are independent.
Therefore, given n random variables, Xy,...,X,, it

holds that

H(Xy,...,X,) =

iH@m“w&JgiH@)ﬂm

Given three random variables, X, Y, and Z, the con-
ditional mutual information between X and Y given Z
can be written as

I(X;Y|Z) = H(X|Z)-H(X|ZY)
= H(Y|Z)- H(Y|Z X)
I(Y;X|Z). (14)

Since the conditional mutual information I(X;Y|Z) is
always non-negative we get

H(X|Z) > H(X|ZY). (15)

B. A KEY PREDISTRIBUTION SCHEME

In this section we describe the (g,b)-KPS given in [4].
Let Y = {1,...,n} be a set of n users and G C U a
conference of size g. Let p be a prime such that p >
n (the number of users). The TA chooses n distinct
random numbers s; € Z,,, and gives s; to user i (1 < i <
n). These values s; do not need to be secret and can be
thought as the “identity” of user 1. Thus, for example,
it is sufficient to take s; = ¢ for 1 < ¢ < n. Next,
the TA constructs a random symmetric polynomial in g
variables with coefficients from Z,, in which the degree
of any variable is at most b:

b b
flee, ... xg) = Z Z Aiy, i, 1yt

i,=0 ig=0

The fact that f is symmetric is equivalent to saying
that a;, i, = ar@,), . =i, for all permutations 7 of
{9}

Then, for 1 < i < n, the TA computes a polynomial
gi in the g — 1 variables xs, ..., 24 by setting &1 = s; in
f(z1,...,24). The coefficients of g; comprise the secret
information which is given to user i. The key associated
with the g-subset G = {iy,...i,} is

ke = f(si,,...,si,) mod p.

Each user i; € GG can compute
-+, 8i,) mod p.

kG = gij(sil, ..

cySij_1 Sijqns

It can be shown that no subset of b users disjoint
from G can compute any information about kg (see
[4]). Also, it is not hard to see that H(Kg) = logp, for
all G of size g, and

+b—-1
H(U;) = (gg—l >logp

for 1 <i<n.
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