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Abstract

In this paper we propose a new proactive password checker, a program which prevents
the choice of easy-to-guess passwords. The checker uses a decision tree, constructed ap-
plying the Minimum Description Length Principle and a Pessimistic Pruning Technique.
Experimental results show a substantial improvement in performance of this checker
compared to previous proposals. Moreover, the whole software package we provide has a
user-friendly interface, enabling the system administrator to configure an ad hoc password
proactive checker, in order to satisfy certain policy requirements.
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1 Introduction

The rapid growth on the Internet of software applications with high security requirements
has increased the need of authentication tools and identification protocols for checking the
access to shared resources. Among these ones, the old password approach is still the more
frequently used for its simplicity.

When a user wants to identify himself to a system, during an interactive checking iden-
tification protocol, he types on a keyboard a secret word, the password, as an answer to an
identification query. The system usually stores in a database some information encrypted
using the password as a key. When it receives the password, it re-computes the encrypted
information and compares this with the stored one. If they match, the access is granted;
otherwise it is refused. This mechanism is for example used in Unix-like operating systems
[21].

Of course, the scheme is secure if the user keeps secret his own password. However,
it is not enough. In the following sections we will try to explain why the secrecy of the
password does not guarantee access security looking back at previous works on this subject
and describing our solution.



1.1 Password Choice: The Issue of Security

Network security can be attempted in various ways. The violations can be done by physi-
cal users as well as by malicious softwares. Unauthorized accesses or illegal uses of system
resources, virus, worms, and Trojan horses are all examples of this multi-aspects issue. A
detailed survey of these different topics can be found in [21].

In this paper, we want to focus our attention on access control. Here, unauthorized users,
called hackers or crackers, try to log on a machine. Once logged in, these intruders can
behave in several ways. Anderson has done a categorization of the intruders based on the
behaviour once logged in. For details, see [1].

The main way used by the hackers to log on a machine is by mean of a user’s password.
This is possible not only when the user accidentally discloses his password but even when it
is “easy” to guess. Indeed, the users frequently choose passwords that are pronounceable and
simply to remember. Experimental results, reported in [12], show that many users choose
short passwords or trivial ones, and passwords that belongs to well know dictionaries. Thus,
an hacker, having a copy of the file containing the encrypted information used by the system
during the login process, can try off-line to “guess” one of the passwords in order to match an
item of the file. Indeed, if such a match is found, the guessed password enables him to gain
access to the system. Since the set of passwords that the users effectively choose is small,
it can be exhaustively checked in a reasonable time. Excellent softwares to accomplish this
task have been developed in the recent years and are available on-line [13].

Moreover, the problem of choosing good passwords is not restricted to access control of
network systems. Passwords are often used to protect private information. Simple examples
can be the use of a password to protect cryptographic keys, stored on the local disk of the
user or password-authenticated key agreement schemes [8, 11].

A more complex example can be the use of a password in systems like Kerberos described
in [15]. Even in these cases it is needed to use good passwords.

Therefore, to increase the security level of a password based system, we have to find «a
method to reduce the efficacy of the ezhaustive search attacks. This goal can be achieved if
users are not allowed to choose easy-to-guess passwords. Indeed, if the password can be any
element of a given set of big size, then an exhaustive search cannot be afforded in a reasonable
time.

We want to stress that it is not always true that longer passwords are stronger than
shorter ones with respect to this kind of attacks. It is sufficient to recall that the number
of possible passwords composed by exactly eight characters randomly chosen among (upper
and lower case) letters is 52® ~ 5.3 x 10'*. Moreover, and unfortunately, the users do not
randomly choose their passwords but, as stated above, they try to choose pronounceable or
easy to remember ones. This further reduces the search space for exhaustive search attacks.
On the other hand, if we force the user to choose the password using the characters reported
in Table 2, the number of possible length seven is 947 ~ 6.4 x 103, while the number of
length eight passwords over the same alphabet is 94% ~ 6.0 x 10'°.

1.2 Previous Work

The problem of using good passwords has been studied in several papers. [4, 5, 6, 3] has
deeply analyzed this problem. He has given a series of hints about password subsets and



easily transformations on words of a dictionary, usually applied by the users to generate a
password, that should be avoided since they are easy to guess.
So far, four techniques have been proposed to eliminate easy-to-guess passwords:

e User education. Users can be told the importance of using hard-to-guess passwords and
can be supported with guidelines for selecting good ones. However, this approach has
given poor results since the user can avoid to follow these hints and can continue to use
easy-to-guess passwords.

o (Computer-generated passwords. With this approach the user has no choice and the
password is assured to be a random element from a big set. The drawback is that such
a password could be difficult to remember. Hence, the user could write it on a paper
and the consequences can be unpredictable.

e Reactive password checking. Periodically checks are done by the system administrator to
find guessable passwords. These checks are performed with password cracker programs.
All accounts of users which have been cracked are suspended until they change their
passwords. Of course, these checks are resources consuming and do not avoid the
possibility that between two consecutive checks some users could utilize easy-to-guess
passwords. An attack in this period of time can be successful.

e Proactive password checking. A proactive password checker is a program that interacts
with the user when he tries to change his own password. The proposed password is
checked and the change is allowed only if it is hard-to-guess. Moreover, if it is an easy-
to-guess password the checker provides some hints to the selection that can be helpful
for the user. The philosophy on which these programs are based on, is that the user
has the possibility of selecting a password but the system enables the selection only of
non trivial ones. This approach is the most promising and is the one that we are going
to pursue in the next sections.

To simplify our discussion, we say that a password is a weak or bad one if it is easy-to-guess;
otherwise, we say that it is a strong or good one.

A proactive password checker conceptually is a simple program. It holds a list of weak
passwords that must be rejected. When the user wants to change his password, it checks for
membership in the list. If the password is found the substitution is not enabled and a short
justification is given; otherwise, the substitution is allowed.

However, a straightforward implementation of such a program is not suitable for two
reasons: the list of weak words can be very long and, hence, must be stored in the secondary
memory. Then, the time to check membership can be high. Since the check works in an
interactive fashion, a long wait of the user cannot be accepted.

Various proactive password checkers that aim to reduce the time and space requirements
of the trivial approach have been proposed.

A first model is described in [14]. In a set up phase, the checker constructs a table of
trigrams, scanning the words of a “weak” list/dictionary. When invoked for test membership
on a given password, it checks its trigrams. If at least two trigrams of the password do not
belong in the table, the password is accepted; otherwise, it is refused. With this system all
the passwords in the dictionary are rejected.



In [10], a similar system has been proposed. The dictionary of weak words is used to
realize a second order Markov chain. The behaviour of this system can be simply understood
if we visualize the chain with an automata. Indeed, each state corresponds to a digram
and each outgoing arc is labelled with a letter. Moreover, at each transition is associated a
probability, computed using the frequency of that trigram in the dictionary of weak words.
The checker, starting from the initial state, when invoked on a password, realizes a sequence
of transitions determined by its trigrams. During this transition stage it computes the overall
probability of the password. If this probability is greater then a fixed threshold, the password
is rejected. Otherwise, it is accepted. In this case, the membership test is simply a measure of
likehood with the words described by the Markov chain. This model reduces space and time
requirements, since the size of the automata is small and the time for checking a password
depends solely on its length. However, it accepts a small number of dictionary words as well
as refuses some words which do not belong to the dictionary.

Another interesting model comes from [20], who realized a proactive password checker
using the Bloom’s filters described in [7]. A Bloom filter of order k is a set of k independent
hash functions. Each of them maps a password to an integer between 0,..., N — 1. Given a
dictionary of weak passwords, the checker can be constructed setting up a boolean matriz with
N rows and k columns. Kach row corresponds to an integer while each column corresponds
to an hash function. All the entries of the matrix at the beginning are zero. Then, they are
filled in as follows: for each word in the dictionary, the & hash functions are evaluated and the
entry (4, 7) is set to 1 if the j-th hash function gives i as output. Once the checker is invoked
for test membership, the hash functions are evaluated. If all the corresponding entries are
set to 1, the password is rejected, otherwise it is accepted. With this model all the passwords
of the dictionary are discarded, while a password which does not belong to the dictionary is
rejected if all the hash functions output integer values such that the corresponding entries of
the boolean matrix are equal to one.

The drawback of this scheme is that the boolean matrix can have a “dramatic” memory
requirement and, hence, cannot be stored in the main memory. However, the scheme is an
incremental one. If we want to add another password to the filter at a later time, we have
simply to evaluate the k£ hash functions and set the corresponding entries of the matrix.

All these models are an improvement against the straightforward scheme. However, as
showed in [2], they have a low predictive power when tested on new dictionaries. Indeed, a
desirable feature of a proactive password checker is the ability of correctly classifying pass-
words which do not belong to the initial set. We would like a low false negative error rate,
i.e., a small number of weak passwords classified as strong ones, and a low false positive error
rate, i.e., a small number of strong passwords classified as weak ones.

To this aim, an interesting approach to design a proactive password checker seems to be
the one applied in [2]. Here, the problem of password classification is viewed as a Machine
Learning Problem. The system, in a training phase, using dictionaries of examples of weak
and strong passwords, acquires the knowledge to distinguish weak passwords from strong ones.
This knowledge is represented by a decision tree. During the checking phase, the tree is used
for classification. The experimental results reported in [2] show a meaningful enhancement
on the error rates compared to the previous solutions.

Since the approach seems promising, we have followed the same direction. We have tried
to increase the power of such a checker exploring another key idea of machine learning in the
construction of the decision tree: the Minimum Description Length Principle (MDLP). This



principle essentially establishes that the best theory to describe a data set is the one that
minimizes the sum of the length of the theory and of the length of the data when coded using
the theory. Based on the promising results presented in [18], concerning with the inference of
decision trees using the MDLP, we have realized a prototype implementation and have done
many tests to measure the performance of this new checker. The results obtained confirm
the validity of this choice.

A “folklore” note. We have chosen the name HYPPOCRATES for two reasons: first because
it recalls the famous doctor of the ancient times'. Then, because the name HYPPOCRATES
appears into the logo of our University to remember the Schola Medica Salernitana, one
of the first European “Academic” Institutions, supposed to be among the ancestors of the
modern Universities.

Organization of the paper. In Section 2 we introduce the concept of classification
with decision tree, briefly overview some pruning techniques which can increase the predictive
power of the tree in classification tasks, and give a short description of the proactive password
checker realized in [2]. In Section 3 we recall the principles on which we have realized
HYPPOCRATES, our proactive password checker. Finally, in Section 4, we report experimental
results and comparisons with previous proposals.

2 Classification with Decision Trees

In this section we describe the decision tree technique for classification used in the setting
of proactive password checking in [2]. Moreover, we briefly outline some common pruning
techniques applied to increase the predictive power of decision trees.

2.1 Decision Trees

A decision tree can be thought of as a mean to make decision. The root of the tree represents
the starting point of the decision process while each leaf corresponds to a decision instance.
To each internal node of the tree is associated an attribute that can be evaluated on an element
that is undergoing the classification process, and which can assume many values. The values
of the attribute are associated with the arcs outcoming from each node. A decision on a given
element consists in a path from the root to a leaf determined by the values assumed by the
attributes associated to each node along the path. More precisely, if the attribute associated
to the current node can assume k different values, and the element we are considering assumes
the i-th one, then the decision process will continue from the i-th child of the current node.

Since the problem we want to solve is classification of passwords, our aim is to realize a
decision tree which can be used to establish if a password is a weak or a strong one. Hence,
each leaf of the tree must correspond to a weak class of words or to a strong one. The example
reported in Figure 1 clarifies our discussion.

There are several methods to construct a decision tree. One of the most interesting
is to consider the construction as a Machine Learning Problem. With this approach, we
construct the tree by means of a training process in which a set of examples of weak and
strong passwords is used to set up the tree. It is necessary to establish the set of attributes

! Actually, our system does not look after the ills of a bad password choice, it tries to do prevention avoiding
bad choices and giving helpful hints to the users for good ones.
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Figure 1: Example of a decision tree for password checking

that must be evaluated in each node of the tree and a criterion to associate the attributes
to the nodes. These are critical steps in the training phase. Indeed, the choice of examples,
the choice of the set of attributes, and the criterion used for attribute selection at each node
determine the performance of the tree (i.e., its size and its predictive power) when applied
in classification tasks.

The learning process of a decision tree can be described as follows: initially the root
contains all the examples of the training set. Then, the training procedure tries to select an
attribute for the root to partition the set of examples in subsets, according to an attribute
selection strategy that optimizes a certain complexity measure. When this attribute is found,
the partition is done and each “new” subset of examples is associate to a root’s child. The
procedure is applied recursively on the children. The partition process on a node halts when
it contains only elements of a given class or when there are no attributes to use for subsequent
partitions. This means that, when the training process is complete, some leaves can store
elements from different classes. The class of such a leaf is determined as the class of the
greatest number of elements of the same type. Usually, in classification tasks which require
an ezact classification of the training set, this problem is bypassed using a file of exceptions
in which can be stored all the misclassified elements.

2.2 Pruning Techniques

Once the training phase has been completed, the decision tree can be used by the proactive
password checker to establish if a password chosen by the user is weak or strong. If the
password we are going to check belongs to the training set, then its classification is surely
correct?. However, if the password does not belong to the training set, its decision process
proceeds along a path defined by the values assumed by the attributes on the password in each
node. The hope is that the tree has stored meaningful features of the training set so that it is
able to correctly classify a new password which shows characteristics similar to the examples
seen during the training phase. In other words, our hope is that the decision tree has a good

2 Assuming that, if the password is misclassified by the decision tree, then it belongs to the file of exceptions.



predictive power as well. However, notice that the decision tree can be strongly dependent
from the training set. This means that we have a refined classification of the examples but a
poor performance on unseen elements. To avoid this behaviour, we can simplify the structure
of the tree using a pruning technique. The idea is that if we cut a subtree and replace it with
a leaf, our tree can show a small error on elements of the training set, (i.e., misclassification)
but it can gain predictive power on unseen dictionaries of words.

Many different techniques are known in literature to prune a decision tree. Among these,
three are frequently used: Cost-Complezity Pruning [9], Reduced Error Pruning [16], and
Pessimistic Pruning [16]. Let us give a quick look at all of them.

Cost-Complexity Pruning. It works in two phases: in the first phase a sequence of
trees Ty, 11, ..., 1) is generated. T, coincides with the starting tree while each tree 7,4, is
obtained from 1; by a substitution of one or more subtrees with leaves. The process continues
until 1% is reduced to a single leaf. More precisely, let 1" be a decision tree used to classify
each of the NV objects of the training set, and let F be the number of misclassified objects.
If L(T) is the number of leaves of T', we define the measure cost-complezity of T as

2l

N aL(T)

for some value of the parameter . Suppose that we substitute a subtree S of T" with the best
leaf, i.e., the most representative of the classes contained in S. This new tree will misclassify
M more objects of the training set but it has L(S) — 1 leaves less than 7'. Notice that the
cost-complexity of this new tree is exactly the same of T if a = W

In the first phase, the pruning procedure, to generate 7;11 from 7T;, examines each subtree
of T; that is not a leaf, looking for the best value of . When this value is found, the subtree
is substituted with its best leaf.

In the second phase the cost-complexity measure is not considered. The procedure tries
to choose one of the trees Ty, T, . .., T} testing their performance on a test set different from
the training set. If the test set has N’ objects and the minimum observed error on the tree

T; is F', then the procedure computes the standard error given by

E'(N’ _ E')

stderr(E') = A

and chooses the tree T; with minimum size such that its error is less than E’ + stderr(FE’).

This pruning technique has some problems: it is not clear where are the benefits of using
cost-complexity against other standard measures and, why this measure is used in the first
phase but is discarded in the second one. Moreover, the technique requires a test set different
from the training set.

Reduced Error Pruning. This technique is simpler than the previous one. It still uses
a test set, different from the training set, to evaluate the performance of the tree. It works as
follows: let T be the tree generated during the training phase. For each subtree S of T the
procedure counts the number of errors on the test set obtained if the subtree is substituted
with its best leaf. If this number is less than the one of the starting tree and the considered
subtree does not contains a subtree with the same property, then S can be replaced with the
leaf.



Notice that even this procedure generates a sequence of trees. However, in this case the
final tree is more refined of the starting one on the test set and is the smallest tree with that
accuracy.

The problem of this technique consists, again, in the use of a separate test set. Moreover,
isolate classes do not present in the test set can be cat. Hence, the tree can loose important
information.

Pessimistic Pruning. To understand the logic of this technique notice that, during the
training phase, an internal node of the tree contains well classified objects and misclassified
ones. For example, suppose that in a node with K objects, J are misclassified and the
remaining K — J are well classified. The objects of this node are therefore partitioned in a
subsequent step of the procedure. In the pruning phase, starting from a decision tree, we
have to substitute a subtree with one leaf. We could decide to cut a subtree if the ratio %
is below a certain threshold. However, this is not a good strategy since this ratio does not
give information about the overall structure of the tree. Therefore, we need a more complex
approach.

Let S be a subtree of 7" which contains L(S) leaves and let £ = " J and N = }_ K
be, respectively, the number of misclassified objects and the total number of objects of the
leaves in the whole tree, respectively. T'he pessimistic pruning approach supposes that S will
produce a bad Cl&SSlﬁcatlon of ¥+ M elements in a set of N ones that do not belong to
the training set. Denote by F’ the number of misclassifications obtained if S is replaced with
one of its best leaves. The pessimistic pruning technique replaces S if ' + ]5 is less than
(E+ L(s )) + stderr(F + Ls ))

To clarlfy the above procedure, suppose that we have two classes, and assume that S is
a subtree with the following characteristics: N = 4000, L(S) = 6, and E = 0. Moreover,
the objects which belong to the first class are 3998 while there are only two objects in the
second class. This means that there is at least a leaf that classifies the elements of the second
class and the other leaves that classify the 3998 elements of the first one. Now, the % essed
error on N cases, not present in the training set, is K + ( ) — 3.0 with stderr(F + =

3%3997 __
4000

equal to two and, hence,

= 1.73. If S is replaced with a leaf of the first class the error on the tralnlng set is

L L\
F'+1/2=241/2=25< (E—I— %) + stderr <E+ %) =3.0+1.73
Therefore, according to the above rule, the pruning of S can be done.

2.3 Proactive Password Checking with a Decision Tree

[2], first suggested the use of decision trees in the design of a proactive password checker.
The decision tree stores information about the weakness or the hardness of the passwords
used as examples in the training process. It can be viewed as a high compress representation
of the dictionary of examples, where compression is obtained since prefixes common to many
words need to be stored only once.

The criterion chosen by [2] to set up the decision tree was to maximize an information-
theoretic measure called the gain. The idea is the following. Suppose that we have a set of
attributes A. We have to select an element a € A for each node of the tree. Suppose that the



training set is composed of p strong examples and n weak examples, and let t = p+n. When
the selection procedure starts, all the elements of the training set are associated to the root
of the tree. The information represented by the partition of the ¢ examples is defined as:

I(p,n) = =(p/t)Log(p/t) — (n/t)Log(n/t).

Although, if « is the selected attribute, we define

S

I(a) = (ti/t) 1 (pi, ni),

=1

where s are the possible values that ¢ can assume, and p; (resp., n;) out of the p (resp., n)
are strong (resp., weak) examples having the i-th value for attribute a, and ¢; = p; + n;.
The gain of the attribute a is then defined as I(p,n) — I(a) . Therefore, for each node, this
procedure partitions the examples according to the attribute that maximizes the gain.

Notice that [2], in their checker, use a well know system for learning decision trees,
called C'4.5 [17], which implements the above criteria. This system optimizes the constructed
tree, to enhance predictive power on data sets different from the training set, with a pruning
operation. This optimization is realized applying the Pessimistic Pruning Technique described
in the previous paragraph. Once the decision tree has been constructed, the checker is simply
implemented. Indeed, it is a program that, when invoked, does a set of preliminary checks
on some basic features of the password (e.g. length,...) and, then, uses the decision tree to
decide class-membership.

3 HyPPOCRATES: The Decision Tree

So far we have explained how to use decision tree techniques for password classification,
and we have pointed out that it is necessary to choose a criterion for attribute selection to
construct a decision tree. Moreover, since the constructed decision tree strictly depends on
the training dictionaries, we have also described some pruning techniques “to simplify” its
structure in order to enhance the predictive power. In this section we describe the choice we
have done in the design of our system. First of all, we recall the minimum description length
principle.

3.1 Minimum Description Length Principle

The Minimum Description Length Principle has been introduced by [19]. Conceptually, it
says that the best theory to describe a data set is the one that minimizes the sum of two
elements:

e the size of the theory
e the length of the data when coded using the theory

In our setting this principle essentially means that the shortest tree (i.e.,the one who
minimizes the description-length) is the best in order to well classify the training set and to
minimize the error on unseen sets of examples.

3n this paper all the logarithms are to the base 2.



An intuitive justification of this principle, applied to the decision trees environment, can
be achieved if we consider the problem of constructing a decision tree as a communication
problem in which we want to minimize the communication cost?. To this aim, we consider a
scenario in which there are two users, A and B. They partially share a table, like the one
presented in Table 1, with several columns. In the first column there are the words (weak and
strong). The subsequent columns are indexed by some attributes of the words and are filled
in with the corresponding values of the attribute for each word. The last column contains
the classification of the words and it is stored only by A. The problem that A has to solve is
to send this last column to B with the minimum number of bits.

words attry | ... | ... | attr, | class
password | val; | ... | ... | val; W
proactive | valg | ... | ... | val W
x1[IT? S
checker val, | ... | ... | val, W

Table 1: Table stored by A and partially shared with B

Suppose that this column has the following form:
W, W,S,5, 5 WS W,S,5,5,5,5 W

where W corresponds to weak and can be encoded with a bit equal to 0 and S corresponds
to strong and can be coded with a bit equal to 1. If we send directly this encoding of the
column, then we need to transmit 14 bits. In general, we can apply the following transmission
strategy: suppose that the sequence we have to send has length n. If the sequence has & bits
equal to 1, we can send the value & and an index that establishes which of the possible (Z)
k-weight sequences corresponds to the given sequence. The total number of required bits is
quantified by the function

L(n,k,b) = Log(b+ 1) + Log (Z)

In this formula b is a fixed constant greater than k, big enough to ensure that Log(b+ 1)
bits can represent® the value of k.

In the above example, with b = 15, since n = 14, and k¥ = 9 it holds that (14,9, 15) =
14.874. Hence, in this case this coding technique is not cheaper than the trivial transmission.
However, we can do better. Notice that we can have an enhancement in our transmission
problem using the common table. For example, suppose that with respect to a given attribute,

*For more details on the material of this section, the reader is referred to [18].

5For a binary classification problem b can be fixed to "TH Indeed, as we will see later, each string is the
representation of a subset of the objects that must be classified belonging to the partition generated by a given
attribute. Now, associating to the subset a default class, we can see the 1 of the string as the ezceptions with
respect to the default class. Since we can choose the default class, we can always code the exceptions with a
string whose weight is less than "TH In general, when an upper bound on the number of one of the string

cannot be predicted a priori, 1t is fixed to n.

10



which takes two values, the classified words can be split into two sets: W, W, S, S, W, S, W,
and S, W, S,5,5,5,5. If we apply the previous strategy to the two sequences, then we have
that the total transmission cost is equal to

L(7,3,3) + L(7,1,3) = 11.937

which is an improvement compared to the trivial transmission approach. The key point in
this example is that if we partition the starting set according to a given attribute, the overall
transmission complexity can be reduced.

The function L(n,k,b) can be approximated applying the Stirling function. More pre-
cisely, we have that

n

L(n,k,b)=nH <E> +

4Log(n)  Log(k) Log(n—Fk)  Log(2n)
2 2 2 2

— Log(b) + O(1/n),

where H(p) = —pLog(p) — (1 — p)Log(1 — p) is the binary entropy function.

Notice that the communication problem is just an artifice to explain the meaning of
the principle. Indeed, the best communication strategy for the communication problem
corresponds to the best strategy to set up a decision tree for the given set of data according
to the MDLP principle, where the complexity of the description is measured by L(-, -, -).

Our attribute selection procedure in the training phase works as follows: starting from the
root, which at the beginning holds all the examples, the procedure tries to select the attribute
inducing a partition on the data set which minimizes the function L(-,-,-), our complexity
measure. The procedure is then applied recursively on the children of the root, and so on.
It halts when there is no need for further partitions, because either the objects of the node
belong to the same class or all the attributes have been selected.

We have chosen the minimum description length principle in the design of our system
because it seems that this measure is more refined than the gain, and because it considers
the global cost of the representation of the tree. This cost is ignored by the gain method.
Experimental results presented by [18] suggested the suitability of this approach, and the
performance of our prototype seem to corroborate these early intuitions.

3.2 Attributes used for Classification

As stated in the above subsections, we need to define the attributes that will be used during
the training and testing phases. We report below the attributes we have used in our system.
Some of them, namely C, D, G, are similar to the attributes used in [2]. Some attributes,
A, B,C, and D, are evaluated on a single character of the password that is undergoing the
classification, the attribute E considers pair of characters, and the last two attributes, F’,
and G, are evaluated on the whole password. More precisely:

e A: Returns a value in {0,1,2} when the character belongs to one of the following sets:
{vowels + consonants}, {digits}, {other}.

e B: Returns a value in {0,1,2,3} when the character belongs to one of the following sets:
{vowels}, {consonants} {digits}, {other}.

e C: Returns a value in {0,1,2,3} when the character belongs to one of the following sets:
{VOWQIS}, {n’m71"lﬂcﬂg7k7x’j’q7h}’ {t?d7b7p7f7v7y7w’s’z}7 {digits}’ {Otller}'
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e D: Returns a value in {0,1,2,3,4,5,6} when the character belongs to one of the following
SetS: {VOWQIS}, {n7m7]‘71}7 {C7g7k7X7j7q7h}7 {t7d7b7p}7 {f7v7y7w7s7z}7 {digits}7 {Other}'

e E: This attribute considers pair of characters. Returns a value in {0,1,2,3,4,5,6} when
the pair of characters belong to one of the following sets (here we use the notation
v=vowel, c=consonant, d=digit, o=other, n=null): {vn, cn, dn, on}, {vv, vc, cv, cc},

{vd, dv}, {vo, ov}, {cd, dc}, {co, oc}, {dd, do, od, oo}.
e [} (with i =6,7,8): Returns 0 if the words is shorter then i characters, 1 otherwise.

o G; (with ¢ = 1,...,8): Returns 1 if the words contains at least i non-alphanumeric
characters, 0 otherwise.

Notice that we need to decide which classification criterion must be applied when testing
an attribute on a position p on a password whose length is less than p. We have identified
two possible strategies: classify the character as a vowel, i.e. as belonging to the class with
lowest “power”, or classify it as belonging to a “special class”, i.e., not belonging to any of
the previously defined classes. The experiments have shown that the first solution is more
suitable since we obtain higher compression ratios and lower error rates.

4 Tests and Comparisons

In this section we report the results of the experiments we have run to test the performance
of our system. We start by describing the results obtained using, during the training and
the testing phase, only the first eight characters of the words/passwords belonging to the
dictionaries. In this case, we assume that the system establishes an upper bound on the
length of the password the users can choose. We also report the experiments we have done
implementing dynamic attributes, i.e., allowing the system administrator to decide how many
characters of the passwords the checker has to use.

4.1 Testing the Predictive Power

To check the predictive power achieved by the trees constructed by HYPPOCRATES, we have
run several training phases, followed by testing operations on dictionaries not used during
the construction of the trees. Since we are interested in testing the predicting power of the
tree, we do not use the dictionaries of exceptions generated by the training phase. Notice,
however, that the check on the dictionaries of exceptions simply decreases the errors in case
there are misclassified words that are common to the weak® dictionaries, used for the training,
and weak dictionaries, used during the testing phase.

4.2 The Dictionaries

The dictionaries we have used for the training and the testing phases are the following: we
have used for the training set a big dictionary of weak passwords, we call Total.clean,
consisting of 1,668,118 different words taken from various languages, e.g., English, Italian,

5Notice that, we store in the file of exceptions only weak passwords classified as strong ones, since we
consider this kind of error more dangerous than misclassify a strong password as a weak one.
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Spanish, French, and some thematic dictionaries, e.g., computer, science, sport, cinema. The
size of this weak dictionary approaches to 17 Mbytes.

We have used two different types of strong dictionaries. The first type, we simply call
Strong, is composed by words that have been randomly generated using the characters
reported in Table 2.

A B C D F G H I J KL M N O
P Q R S T UV W X Y Z a b ¢ d
e f g h 1 j k |1 m n o p q I S
t » v w x vy =z 0 1 2 3 4 5 6 7
8 9
Strong Characters

Lo s s % & () F 4+, - .
=>4y 1 07 a5 <> 1
\ %

Table 2: The Charset

The second one, we call Very.Strong, is composed by randomly generated words, with
at least two strong characters (see Table 2 for the list of strong characters). We discuss
the size of these dictionaries in the next sections. We have also used noise dictionaries
generated by inserting or substituting one randomly chosen letter in the weak password
with a strong character. We report the results of the test ran over four weak testing dic-
tionaries, we call Dic.1, Dic.2, Dic.3, Dic.4. These dictionaries contain almost 30,000
different words each, taken from four books. From these dictionaries we have constructed
noisy testing dictionaries Dic.i.1, Dic.i.2, Dic.i.3, Dic.i.4 and Dic.s.1, Dic.s.2,
Dic.s.3, Dic.s.4 by inserting, respectively substituting, one character with a strong one.

The strong testing dictionaries, Dic.Strong, Dic.Vstrong have been constructed using
the same criterion described above for the Strong and Very.Strong dictionaries used during
the training phase.

4.3 Fixed Length Attributes

In this subsection we describe the experiments done using the first eight characters of the
password for the classification process. The choice of this length is due to the fact that Unix
operating systems allow passwords at most eight characters long.

4.3.1 Optimizing the Compression Ratio

The first experiment we have run is directed to study the dependence of the compression
ratios, which will be defined below, and the error rates with respect to the size of the strong
dictionary. As we have seen in the previous sections, we need a dictionary of weak passwords
and a dictionary of good ones, and the size of the training set is the sum of the size of both
these dictionaries.

It is likely to think that the smaller is the training set, the smaller is the tree (trained
and pruned) that classifies the training set. On the other hand, the smaller is the training
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set, the higher is the error occurring when the tree is used to classify passwords that do not
belong to the training set.

Recall that from the point of view of password security, it is important that the checker
does not accept weak passwords, while rejecting a strong password simply translates into a
request for the user to type a new password in. Thus, since we want to reduce the training
set, we cannot reduce the size of the weak dictionary, as all these passwords will be correctly
classified as weak by the checker, but we should simply reduce the size of the strong dictionary.

Based on this idea, we have ran several experiments using Total.clean as weak dictionary
and a randomly generated strong dictionary whose size ranges between the 5% and the 100%
of the size of the weak dictionary. The results of these experiments confirm that if the size
of the strong dictionary increases then also the size of the decision tree increases. We have
used as strong training dictionaries both Strong and Very.Strong. All the experimental
results show that using the second dictionary leads to higher compression ratios and lower
error rates.

In Table 3 we report the compression ratios obtained using this approach to construct
the training set for the experiments described in Section 4.3.3.

Exp. | Strong C1 PC1 C2 PC2
no. | dic. %
3.1 5 | 1.060616% | 0.030250% | 1.066092% | 0.248871%
3.2 10 | 1.500487% | 0.033102% | 1.517905% | 0.571697%
3.3 20 | 2.094764% | 0.049583% | 2.138685% | 1.077475%
3.4 30 | 2.520016% | 0.053936% | 2.590119% | 1.364063%
3.5 40 | 2.871475% | 0.059337% | 2.963804% | 1.781389%
3.6 50 | 3.166717% | 0.057475% | 3.282923% | 2.212565%
3.7 60 | 3.413457% | 0.058452% | 3.549247% | 2.417352%
3.8 70 | 3.642529% | 0.058918% | 3.795033% | 2.745247%
3.9 80 | 3.820715% | 0.062247% | 3.995641% | 2.975094%
3.10 90 | 4.020887% | 0.064423% | 4.209734% | 3.227532%
3.11 100 | 4.206417% | 0.063667% | 4.410313% | 3.541192%

Table 3: Compression Ratios

In this table, the coefficients C'1 (resp., PC'1), are computed as the ratio between the size
of the trained (resp., pruned) tree and the size of the weak dictionary, while the coefficients
C2, (resp., PC?2) are computed as the ratio between the size of the trained (resp., pruned) tree
and the sum of the sizes of the weak dictionary and the dictionary of exceptions. This means
that the lower is the value of the coefficient, the higher is the compression ratio achieved by
the experiment.

Surprisingly, the error rate obtained in these experiments show that if the size of the strong
dictionary decreases, the error obtained on the weak and noise testing dictionaries decreases,
too. This means that we can obtain lower error by using smaller trees. On the other hand,
the error rate decreases for the strong testing dictionaries if the size of the strong dictionary
used for the training increases. However, while the error rate on the weak dictionaries is
acceptable, the error on the noise and strong dictionaries is often greater than 10%, that is,
of course, unacceptable.
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4.3.2 Decreasing the Error on Noise Dictionaries

One of the basic problem with the training strategy presented in Section 4.3.1 is that the
error rate obtained on the noise dictionaries is too high. In order to decrease this error,
we have ran some experiments in which we substitute the weak dictionary in the training
phase, with a noisy one. More precisely, we construct two dictionaries Total.clean.ins and
Total.clean.sub, obtained from Total.clean by inserting, resp., substituting, a strong
character in a random position within each password of the dictionary. The results of these
experiments show that the error rate obtained on noise dictionaries is close to zero.

However these kind of trainings have three side effects: first, the size of the trees obtained
is greater than before. The reason for this is that the “distance” between the strong and
the weak training dictionaries is “smaller” and, thus, more attributes are needed to correctly
classify the training set. Second, the error rate on the weak and strong dictionaries is too high.
Third, if the tree has been constructed using a noise dictionary obtained by inserting (resp.,
substituting) a strong character, this tree has lower error on testing dictionaries constructed
using the same type of noise, i.e., insertion (resp., substitution), but has higher error on
testing dictionaries obtained by substituting (resp., inserting) strong characters.

4.3.3 Decreasing Error by Mixing

The main problems with the experiments presented in Section 4.3.2 are the high error rate on
strong and weak dictionaries and the dependence of the error on different noisy dictionaries.
To solve these problems, we have constructed a new dictionary Total.clean.all obtained
from Total.clean as follows: each word in the original dictionary has the same probability
to be put in the new dictionary unchanged, with a strong character substituted, with a strong
character inserted in a random position. As we will see in the next section, this strategy leads
to good compression ratios and low error rates.

4.4 Comparing Hyppocrates with Other Checkers

We have compared the performance of Hyppocrates, using the results obtained by training
the decision tree using the dictionary described in Section 4.3.3, with respect to two pass-
word checkers, Crack and ProCheck presented, respectively in [13] and [2]. We have used
Total.clean to “train” Crack, as it leads to lower error rate, and we have used the best
compression ratios reported in [2]. In Table 4 we report the compression ratios for each
password checker.

The first column of the table contains the checker used for the testing, the second column
contains the size of the training dictionary, the third column contains the size of the data
structure representing the training dictionaries. The columns labelled C1,C2, PC1 and PC?2
contain the compression ratios defined above. In the last column of this table we report
the time required for the training phase. We notice this column is incomplete because the
time required for the training of ProCheck are not reported in the paper. Moreover this last
checker cannot be trained. It is provided with both a trained and a pruned tree.

In Tables 5, 6, 7, 8, we report the error rates obtained by classifying the testing dictio-
naries described in Section 4.2. The weak training dictionary used for these experiments is
the Total.clean.all. On the other hand, the strong training dictionary used for each ex-
periment is a Very.Strong type whose size ranges from 5% to 100%, as reported in Table 3.
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Checker training Data C1 | Exception C2 | time

dic.(byte) (byte) (byte) (sec)
3.2 Trained | 17183224 | 257832 | 1.50049% 2993 | 1.51790% | 5774
3.6 Trained | 17183224 | 544144 | 3.16672% 19968 | 3.28292% | 8878
ProCheck 1305234 32121 | 2.46094% 6548 | 2.96261% ?
Crack 16626766 | 7867297 | 47.31706% 0| 47.31706% | 121
Checker training Data PC1 | Exception PC2 | time

dic.(byte) (byte) (sec)
3.2 Pruned | 17183224 5688 | 0.03310% 92548 | 0.57170% | 5825
3.6 Pruned | 17183224 9876 | 0.05747% 370314 | 2.21256% | 8949

Table 4: Comparisons with Other Password Checkers.

From the results it is immediate that Hyppocrates achieves better compression ratios and
lower error rates compared to the other checkers. Recall that, in [2], the authors compared
ProCheck with many other password checkers, showing that their system was significantly
better than the other considered checkers.

In Table 5 we report the results of the tests using Dic.Strong and Dic.VStrong as testing
dictionaries. Recall that the size of the strong dictionary used for the training is 10% (resp.,
50%) of the size of the training weak dictionary in experiment 3.2 (resp., 3.6). We stress again
that the bigger is the strong training dictionary, the lower is the error rate on testing strong
dictionaries. Moreover, the reason for which the error rates obtained on testing Dic.Strong
are higher than the ones obtained on Dic.VStrong is that we used Very.Strong for the
training phase, and thus the ”concept of good password” learned by the tree is stronger of
the one proposed by this testing dictionary. Notice that the error rates on Dic.Strong in
both the experiments 3.2 and 3.6 using the trained tree for the testing phase are almost
the same. This means that almost 14% of the words in this dictionary have, with high
probability, a single strong character or no strong character at all. Recall that this is possible
since words in Dic.Strong are constructed by randomly choosing characters from the whole
charset reported in Table 2. However, the results obtained by both the experiments show that
using appropriate parameters for the training phase, the error rate obtained on the strong
dictionaries can be much lower of the results obtained by the other checkers.

Checker Error (%)

Dic.Strong | Dic.VStrong
3.2 Trained | 13.8097 % 7.5911 %
3.2 Pruned | 25.4671 % 15.5040 %
3.6 Trained | 13.5496 % 3.1139 %
3.6 Pruned | 14.2640 % 4.4056 %
ProCheck 21.7712 % 20.1322 %
Crack 13.6357 % 13.6671 %

Table 5: Testing Strong Dictionaries

In Table 6 we report the results of the tests using the weak dictionaries Dic.1, Dic.2,
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Dic.3 and Dic.4. First of all we notice that the error rates obtained by HYPPOCRATES
in all the experiments are lower, most of the time one order of magnitude lower, than the
ones obtained by ProCheck. It is also clear from the results reported that the lower is the
size of the strong training dictionary, the lower is the error rate obtained on weak testing
dictionaries. It is clear from the data reported in the table that decreasing the size of the
strong dictionaries during the training phase results in lower error rates.

These results also show that Crack has a limited predictive power. Indeed, the error rates
with this “checker” are really high.

Checker Error (%)

Dic.1 Dic.2 Dic.3 Dic.4
3.2 Trained | 0.0586% | 0.0056% | 0.1759% | 0.3387%
3.2 Pruned 0.0586% | 0.0000% | 0.1971% | 0.2909%
3.6 Trained | 0.1298% | 0.0641% | 0.4367% | 0.5254%
3.6 Pruned 0.1340% | 0.0362% | 0.3427% | 0.5210%
ProCheck 1.5410% | 0.9250% | 2.5202% | 1.4805%
Crack 15.0042% | 19.5954% | 17.1898% | 17.2325%

Table 6: Testing Weak Dictionaries

In Table 7, we report the results on the test ran using the dictionaries Dic.i.1, Dic.i.2,
Dic.i.3 and Dic.i.4, while in Table 8 the testing dictionaries are Dic.s.1, Dic.s.2,
Dic.s.3 and Dic.s.4. Recall that Dic.i.j (resp. Dic.s.j) is obtained by Dic.j by insert-
ing (resp., substituting) a strong character in a randomly chosen position in the password.
We do not comment the performance of Crack in this case since it is clear that the error rates
are not acceptable for this kind of testing dictionaries.

Also in this case, the results obtained confirm that decreasing the size of the strong dictio-
naries during the training phase results in lower error rates.

Although for the class of noisy dictionaries, the performance of HYPPOCRATES and ProCheck
are comparable, we notice that a careful choice of the parameters for the training phase always
leads our checker to have better performance, i.e., lower error rates, compared to ProCheck.

Checker Error (%)

Dic.i.1 Dic.i.2 Dic.i.3 Dic.i.4
3.2 Trained | 1.3735% | 1.3541% | 2.0107% | 2.5269%
3.2 Pruned 1.3735% | 0.9362% | 1.2677% | 2.1058%
3.6 Trained | 2.7136% | 2.5800% | 3.5817% | 4.4547%
3.6 Pruned 3.0193% 2.8642% | 3.7000% | 5.0191%
ProCheck 2.1315% 1.2427% | 2.9084% | 2.2925%
Crack 40.5193% | 47.1511% | 44.9004% | 43.5698%

Table 7: Testing Noise Dictionaries (Insertion)

We point out the apparently strange behaviour of the performance of the trained trees,
compared to the pruned trees in the experiments reported. During the testing phase of weak
dictionaries, the error rates on pruned trees are lower, as expected, than the ones obtained
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Checker Error (%)

Dic.s.1 Dic.s.2 Dic.s.3 Dic.s.4
3.2 Trained 1.5704% 1.3736% | 2.3170% | 2.5052%
3.2 Pruned 1.1307% | 1.0978% | 1.5952% | 2.1883%
3.6 Trained 3.1826% 2.8085% | 3.9002% | 4.4764%
3.6 Pruned 3.1868% 2.7862% | 3.7455% | 4.7239%
ProCheck 3.7898% 2.6859% | 4.8282% | 3.7774%
Crack 47.6424% | 51.1047% | 48.2577% | 47.7727%

Table 8: Testing Noise Dictionaries (Substitution)

by using the trained trees. The situation is reversed when testing the strong dictionaries:
in other words, the error rates associated with the pruned trees are higher than the ones
associated with the trained trees. The situation is more complicated when testing the noisy
dictionaries. The error rates given by trained and pruned trees are roughly the same.

This behaviour can be explained as follows. The pruning operation induces an error on
the classification of the training set, but it is supposed to enhance the predictive power of the
tree. However, when the size of the strong dictionary in the training set is small (i.e. 10%
of the weak dictionary, experiment 3.2), the classification error on the testing set, induced
by the pruning operation, is amplified, since the tree has had a small set of examples for
learnig the concept of ”strong”. This is clear in the results reported in Table 5, where the
gap between the error rates of the pruned and trained trees decreases as the size of the strong
training dictionary increases.

On the other hand, since the size of the weak training dictionary is the same for all the
experiments, for the testing phase on weak dictionaries, the error rates of the pruned tree is
always lower that the one for the trained trees.

Considering the results obtained in the experiments just described, we believe that using
a small strong training dictionary (compared to the weak one) has both the advantage of
generating a small tree and to lead to lower error rates for weak and noisy passwords. The
main drawback of this approach is that the error rates on strong dictionaries will be high
but, we think, acceptable, in order to guarantee the security of the system.

4.5 Dynamic Length Attributes

Many systems allow passwords with more than eight characters. Our package enables to
select the maximum number of characters of the password to be used for the classification
process. In this subsection we discuss this issue.

4.5.1 Choosing the Optimal Length

The possibility of choosing an arbitrary number of characters, implies that we need to decide
which is the optimal one for a given training set. In other words, we need to decide how many
characters the checker must consider during the training and the testing phase. Intuitively,
this length should depend on the average length of the passwords in the training set. Indeed,
if we use few characters, the decision tree should not have enough information to correctly
classify the training set. On the other hand, it should be useless to check the i-th character
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in the password if 7 is much greater than the average length, since few passwords will be
classified by means of that character.

To argument this idea, we have run several experiments whose description follows: the
training set consists of the dictionary Total.clean.all described in Section 4.2, whose
average password length is 9.3. We have constructed strong dictionaries, with size ranging
from 10% to 100% of the size of the weak dictionary, with the same average password length.
We allow the system to use the first 6, 8, 12, 16 characters of the password for the classification.

The results of these experiments show that, if we look at experiments that use the same
number of characters for the classification, as the size of the strong dictionary increases,
the size of the decision tree increases too. Moreover, the error rate on weak and noise
dictionary increases, while, as before, the error rate on the strong dictionary decreases. It
is interesting to see that the lowest error rates are achieved when the number of characters
used for classification approaches to the average length of the passwords in the dictionary.

5 Conclusions

In this paper we have described a new realization of a proactive password checker. We have
explored the possibility of applying the Minimum Description Length Principle, a key idea
of Machine Learning, in the context of proactive password checker. The results reported in
the tests and comparisons section of our work indicate that the pursued approach is suitable.
HYPPOCRATES has been tested on a 450 MHz Pentium Il Linux box with 8Gb EIDE hard
disk. The code of the prototype implementation has been written using the ANSI C language
and the graphical interface has been realized for X-Windows system. We are working on
patches for the unix-like passwd command. A beta version of the software will be available
from our Web site (http://www.security.unisa.it/PPC).
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