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Abstract

A Key Distribution Center (KDC) of a network is a server enabling private communications
within groups of users. The center provides the secret keys for encrypting and decrypting the
messages. A Distributed Key Distribution Center (DKDC) is a set of servers that jointly realizes
a Key Distribution Center. In this paper we introduce a ramp model for unconditionally secure
Distributed Key Distribution Centers. In the ramp approach, the required resources (randomness,
information storage, messages to be exchanged,...) can be reduced at the cost of a security
degradation which depends on the size of the coalition of users who tries to break the scheme.
We show lower bounds on the amount of information needed to setup and manage such a DKDC
and describe a simple protocol meeting the bounds.

keyword: Key Distribution, Protocols, Distributed Systems.

1 Introduction

Key Distribution is an intriguing and deeply studied problem in Cryptography. A huge amount of
literature can be found on this subject. Moreover, the most remarkable cryptographic idea of the
last century, public key algorithms, was motivated by the necessity of solving this issue.

Roughly speaking, the problem can be described as follows: a group of users of a network, to
privately communicate, could decide to use symmetric encryption algorithms, for example DES, RC6,
or RIJNDAEL. These algorithms are fast and supposed to be secure. But to apply this strategy, they
need a common key with which to encrypt and to decrypt the messages they will send to each other.
On the other hand, the solution offered by public key cryptography is fascinating and it permits
getting over the preliminary question of the common key: each user can generate a pair of keys, a
public one and a private one. The first one can be used by any other user across the network to send



encrypted messages to the owner of that key. The private key enables only the legitimate receiver
to decrypt the encrypted messages. The security of the communication relies on the “computational
in-feasibility” of recovering the private key from the public one. No preliminary common key must
be hold by the communicating parties.

Currently, asymmetric algorithms are far away from symmetric ones in terms of computational
efficiency, and this “efficiency-distance” grows up enormously if the group of users, usually referred to
as a conference, has a big size: each user, to send a message to all the other members of the conference,
needs to encrypt the message many times with different public keys. Thus, the computational effort
required to the user can be dramatically heavy.

Moreover, notice that, once all users in a conference have a common key to be used in a symmetric
encryption algorithm, a user has to encrypt a message just once to send it to all other users of the
conference. Hence, the overall communication complexity is quite better than with the public key
approach!. These few reasons help to figure out why it is still necessary to find good solutions for
the key distribution problem.

In traditional models of networks, a frequently used approach is the Key Distribution Center,
a server of the network responsible of the distribution and management of the secret keys. The
idea is the following. Each user shares a common key with the center. When he wants to privately
communicate with other users, he sends a request for a conference key. The center checks for
membership of the user in that conference and distributes in encrypted form the conference key to
each member of the group. Needham and Schroeder [18] began this approach that is implemented
most notably in the Kerberos System [19] and formally defined and studied in [7], where it is referred
to as the three party case.

The scheme implemented by the Key Distribution Center to give each conference a key is referred
to as a Key Distribution Scheme (KDS, for short). The scheme is said to be unconditionally secure
if its security is independent from the computational resources of the adversaries.

Different kinds of Key Distribution Schemes have been considered: Key Pre-Distribution Schemes
(KPSs, for short), Key Agreement Schemes (KASs, for short) and Broadcast Encryption Schemes
(BESs, for short) among others. The notions of KPS and KAS are very close to each other [2, 16, 5].
BESs are designed to enable secure broadcast transmissions and have been introduced in [13]. The
broadcast encryption idea has grown in various directions: traitor tracing [10], anonymous broadcast
transmission [14], re-keying protocols for secure multi-cast communications [8, 9, 20].

Several unconditionally secure key distribution schemes have been proposed so far [22]. However,
it is not difficult to see that all the previous designs of unconditionally secure key distribution schemes
consider a centralized environment. Models and protocols assume the presence of a single server that
accomplishes the key distribution task.

The unpleasant situation which often arises with a Key Distribution Center is that the center
knows all the conference keys. Therefore, it must be trusted. Moreover, the Key Distribution Center
could become a performance bottleneck and a point of failure for the system [17]. In effect, all users
have to communicate with it every time they wish to obtain a conference key. Besides, a crash of
the server stalls the whole system.

As has been pointed out in [17], in a multi-cast communication environment with support for
virtual meetings involving thousands of clients, and data streams transmission to a large group of

! An improvement on the “trivial” use of public key algorithms can be the hybrid approach: a user chooses at random
a key and sends it, in encrypted form (public key), to all the other members of the conference, before starting the
communication using a symmetric algorithm. However, this solution is still not efficient and it is possible to do better.



recipients, the availability and security issues of a centralized environment become even more relevant
and difficult to solve than with unicast communication.

Well known and applied solutions to the availability and reliability issues are replication of the
Key Distribution Center in several points of the network and partition of the network in several
domains with dedicated Key Distribution Centers, responsible of the key management for only a
fixed local area. However, these solutions are partial and expensive solutions [17].

A robust and efficient solution can be a Distributed Key Distribution Center [17] (DKDC, for
short). A Distributed Key Distribution Center is a set of n servers of a network that jointly realizes
the same function of a Key Distribution Center. In this setting, each user shares private channels
with all the servers. When a user needs to participate to a conference, he sends a key-request message
to a subset at his choice of the n servers. The contacted servers answer with some private information
enabling the user to compute the conference key. With a DKDC the concentration of secrets and
the slow down factor which arise in a network with a single Key Distribution Center are eliminated.
A single server by itself does not know the secret keys, since they are shared between the n servers.
Moreover, each user can send a key-request in parallel to different servers. Hence, there is no loss
in time to compute a conference key compared to a centralized environment. Besides, the users can
obtain the keys they need even if they are unable to contact some of the servers.

This approach to key distribution has been proposed and developed in [17]. In [3, 12], the notion
of Distributed Key Distribution Center has been studied under an information theoretic point of view.
Besides, the authors have proved that the protocol described in [17], which uses bivariate polynomials,
is optimal with respect to the resources required to set up and to manage the distributed center.

In this paper we extend the model presented in [3, 12]. Given the high complexity of the distribu-
tion mechanism therein described, we investigate the ramp approach, introduced in [1] in the context
of secret sharing schemes. Basically, it allows to reduce the required resources (randomness, informa-
tion storage, messages to be exchanged, ...) at the cost of a security degradation which depends on
the size of the coalition of users who tries to break the scheme. More precisely, we want to consider
a ramp structure for the DKDC, characterized by two thresholds #; and ¢y, where coalitions of users
of size t, with ¢ < t1,t; <t < t9,t > ty, are able, colluding with at most & — 1 servers, respectively,
to gain no information on a new conference key, some information, or the whole key. Basically, the
ramp approach enables to gain a factor tzitl in terms of memory storage, communication complexity
and randomness, compared to the one-threshold case, by “splitting” the whole key in smaller pieces
that can be recovered separately. The drawback is that coalitions of users, whose size is in between
the two thresholds, from the values they have received from some servers in order to compute some

keys, can gain partial information about new ones. In some situations this trade-off resources vs
security can be suitable.

Organization of the paper. In Section 2, we introduce the model. Then, in Section 3, we give
some technical lemmas needed in the rest of the paper. In Section 4 we show properties and lower
bounds holding on the model. Finally, in Section 5, we describe a protocol which meets the bounds.

2 The Model

Let U = {U1,...,Un} be a set of m users, and let Sy,...,S, be the n servers of the network.
Each user has private connections with all the servers (i.e., only the parties at both ends of the
connection can read/write messages). A distributed key distribution scheme is divided in three



phases: An initialization phase, which involves only the servers; a key request phase, in which users
ask for keys to servers; and a key computation phase, in which users retrieve keys from the messages
received from the servers contacted during the key request phase. We assume that the initialization
phase is done by k servers say, without loss of generality, Sy,...,S;. Each of these servers, using
a private source of randomness r;, generates some information that it privately distributes to the
others. More precisely, for : = 1,..., k, server S; generates and sends to S;, the value v; ;, where
j =1,...,n. At the end of the initialization phase, each server S; stores some secret information
a; = f(v14,-..,7k,;), which can be computed from the information he has received. Assume that a
group of users C}, C U, referred to as a conference, wants to communicate privately. Each user U;
in Ch, requiring a key for the conference Cp, (we denote such a key with ), contacts k servers at
least. Then, server S;, contacted by user Uj, checks? for membership of U; in Cp; if so, the server
S; computes a value yﬁj = F(a;, j, h), which is a function of the private information a;, j, and the
index h of the requested key. Otherwise, the server sets y{fj =1, a special value which does convey
no information on the conference key. Finally, the server sends the value ykj to U;. The users in C},
compute the conference key as a function of the information received by the contacted servers, i.e.,
each user U; in C} computes kp = G(yﬁ oo .,yi7j), where 41, ..., are the indices of the servers
he has contacted and G is a publicly known function.

A Distributed Key Distribution Center must satisfy the following properties:

e When the initialization phase terminates, each server S; has to be able to compute his private
information «;.

e The private information a; of the server S; must be retrieved only if the server has received all
the k initializing values from servers Sy, ..., Sk.

e Each user in a conference C, C U must be able to uniquely compute the conference key, after
interacting with at least k servers of his choice.

e A conference key must be secure against attacks performed by coalitions of servers, coalitions
of users, and hybrid coalitions (servers and users).

We are interested in formalizing, within an information theoretic framework, the notion of a ramp
Distributed Key Distribution Scheme. To this aim, we need to setup our notation.

e Let C be the family of all possible conferences on U/ that need to communicate privately.
Suppose that these conferences are indexed by elements of H C {0,1,2,...}.

e For any coalition G = {Uj,...,U;,} C U of users, denote by Cq the set of the conferences
containing some user in G, and by Hqg the set of the corresponding indices. In other words,

CG:{ChEC:ChﬂG#Q)},and'HG:{h:ChECG}.

o Let I'; ; be the set of values v;; that, for « = 1,...,k, can be sent by server S; to server
Sjyfor 7 =1,...,n,and let T'; =Ty ; X I'y; X -+« X 'y ; be the set of values that S;, for
j=1,...,n, can receive during the initialization phase. Analogously, for Y = {j1,..., s}, let
I'y =T x -+ xTj,. Equally, for X = {iy,...,4,}, we consider I'x ; =T, ;i x -+ XTI, ;, and
FX,Y = Fiujl X X Fir,j1 X X Fi1,js X X Fir,js-

2We do not consider the underline authentication mechanism involved in a key request phase.



o Let K}, be the set of possible values of the key kj corresponding to the conference C) € C and
let A; be the set of possible values a; that the server S; can compute during the initialization
phase. As before, for each set X = {hy,...,h}, let Kx = Kp, X -+ x K, and, for each set
Y = {il, .. .,is}, let Ay = Ail XX *41'3-

o Let Ylf‘J be the set of possible values yffj that can be sent by the server S; when it receives a
key-request message from user U; for the conference Cj, and, for each set X = {iy,...,i,}, let

h h h . _ h _ vh h
Yy, =Y ;x--xY;" . Then, foreachset G ={Uj,...Uj,}let Yg = Y7, x - XY X...X

Yrﬁ]& X oo X Yrﬁjga be the set of values the n servers can send to the users belonging to G for
conference C',. Finally, let Yé( be the set of values that can be sent by the n servers to the users

of G for computing keys for conferences in X = {hy,...,h,} C Hg, i.e., Y = Yé” XX Y(};"’.

We will denote in boldface the random variables I'; ;,T';, .. .,YZ;{G\{h}
LTy, .,Yg{G\{h} according to the probability distributions Pr

assuming values on the sets
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Generalizing the definition given in [3, 12] for a Distributed Key Distribution Scheme, we define
a ramp Distributed Key Distribution Scheme as follows?:

Definition 2.1 A ramp (k,ty,ty,n,C)-Distributed Key Distribution Scheme (for short, ramp
(k,t1,t2,n,C)-DKDS) is a protocol which enables each user of Cp, € C to compute a common key
Kp interacting with at least k of the n servers of the network. More precisely, the following properties
are satisfied:

1. After the initialization phase, each server reconstructs his private information. Formally, for
each 2 =1,...,n, it holds that
H(A,|T;) =0.

2. Each of the k servers is needed to compute a;. Formally, for each X C {1,...,k} such that
X #{1,...,k},and 7 € {1,...,n} it holds that

H(A;|Tx,;)=H(A,).

3. Each server can answer to the key requests. Formally, for each conference C) € C, for each
U; € Cy, and for each ¢ = 1,...,n, it holds that

h —

4. Fach user in Cy, € C can compute a common key kp after contacting at least k servers.
Formally, for each conference Cj € C, for each subset of r > k indices X = {iy,...,4,} C
{1,...,n}, and for each user U; € C}, it holds that

H(KuY% ;) =0.

3The reader unfamiliar with the entropy function is referred to Appendix A for the definition and some basic
properties



5. Each conference key is completely secure against coalitions G of users of size |G| < t; and at
most k — 1 servers; on the other hand, it leaks some information if t; < |G| < t3. Formally,

for each conference C} € C, for each coalition of users G = {Uj;,...,Uj,}, and for each subset
X =A{i1,...,ik—1} C{1,...,n} it holds that

Ho\{h} _ H(Ky), 1G] <
H(KL|Y5; M TxTyN) = { tf;'ff' CH(Ky), ift; <|G| <ty

where Z =X NA{l,...,k} and N = {1,...,n}.

Notice that, Property 5 formalizes the security of the scheme. The worst case scenario to be aware
of consists of coalitions of users G (the information they can acquire during the run of the protocol
is represented by YgG\{h}) and k — 1 corrupt servers knowing I';, ...T;,_ and 'z n (the random
variable T'z n takes into account the possibility that among the corrupt servers there are some,
involved in the initialization phase, which send out information to other servers). The condition
assures that coalitions of users of size |G| < t;, do not gain any information on a new key, while
coalitions of users of size |G|, where ¢; < |G| < t3, are able to recover some partial information on a
new key. We point out that the above condition considers even the possibility that G N Cp # 0. In
this case, if a user who belongs to C}, does not interact with a subset of k& servers, the information
obtained by G from previous executions of the protocol does not help to gain any information on a
new key (in the terms of the ramp definition).

In the following, without loss of generality, we assume that for different h, b’ € H, H(Kp) = H(Kp),
that is, we suppose that all conference keys kj have the same size.

3 Some Technical Results

Definition 2.1 implies some important results. We need some technical lemmas in order to prove
them.

The following simple lemma shows that, given three random variables A, B, and C, if B is a
function of C, then B gives less information on A than C.

Lemma 3.1 Let A, B, and C be three random variables such that H(B|C) = 0. Then, H(A|B) >
H(A|C).

Proof. Notice that (7) and (13) of Appendix A imply
0 < H(B|AC) < H(B|C) = 0.

Since from the symmetry property of the mutual information (property (12) of Appendix A) we have
that

I(A,B|C) = H(A|C)- H(A|BC)
I(B,A|C) = H(B|C)- H(B|AC) =0,

then, H(A|C) = H(A|BC). On the other hand, from (13) of Appendix A, it results H(A|B) >
H(A|BC). Therefore, H(A|B) > H(A|C), which proves the lemma. |



For any four random variables A, B, C, and D, if H(B|C) = 0, then, along the line of the proof of
Lemma 3.1, we can show that
H(A|BD) > H(A|CD) = 0. (1)

It is easy to see that, for any group G of users the set of conference keys {Kp : C € Cq} is
univocally determined by the information that the n servers send to users in G when invoked for
those conference keys. This is formally stated by next lemma.

Lemma 3.2 Let G = {Uj,,...,Uj,} be a group of users, and for each r = 1,...,Hg, let S, =
{s1...,8} CHg. Then, it holds that H(K5T|Yg") =0.

Proof. For r =1,...,Hg, notice that,

0 < H(Ks,|YZ) (from (7) of Appendix A)
< ZH(K5j|Y5Gj) (from (8) and (13) of Appendix A)
7=1
< Z H(Ksj|Y§g’t) (from (13) of Appendix A where t € C;, NG and X = {iy,...,1})
7=1
= 0 (from Property 4 of Definition 2.1).
Hence, the lemma holds. [

The following two lemmas are useful to show lower bounds on the size of the information that
each of the initializing server Sy,...,S; has to send to the other servers during the initialization
phase and on the randomness (to be defined later) needed to setup a ramp (k,t1, 2, n,C)-DKDS.

For every s = 1,2,...,ty — t1, define gs =t + s — 1 (observe that gy = #; and g,—¢, = t5 — 1).
Let 01,43, ..., 0, be integers representing the maximum of the cardinalities of Hg for all G of size,
respectively, g1, g2, -, gt,—1, (i.e., li = maxg,g|=y, |He|). Finally, we consider £ = Yoty

Lemma 3.3 Let X; ={1,...,k}\{i}, fori=1,....k and let AC {1,...,n}\{j}, forj=1,..,n,
be a set of size at most k — 1. Then, in any ramp (k,t1,ty,n,C)-DKDS it holds that

H(K
H(L; j|TaTlx, ;) > L &)
to — 4

Proof. Let us consider a sequence of subsets of users
GiCGyC - CGyy, CU

such that G, has cardinality g,. We take H; = Hq, and, for any s = 2,...,t; — t;, we set Hy =
Ha, \ Ha,_ -

Let B C {1,2,...,n}\ (AU {j}) be a set of size |B| = k — 1 — | 4|. Setting T'") = I'4T'y, . T'p,
re = I‘(I)I‘,;,j, and $ = Hg,, , , we will prove that

H(K)

ty —

H(KgTM) > ¢. and H(Ks|T®) =0, (2)



If we suppose that the equalities in (2) are satisfied, then from relation (13) of Appendix A, it holds
that »
H(T,;|T4Tx ;) > H(T;,;|T").

Besides, relation (12) of Appendix A implies that

HT,T0) = H(KST) - H(KST®) 4 B (T, KsT)
H(K)
to — 11
H(K)
ty —t

> (. + H(T; ;|KsT™M) (from (2))

> L

(from (7) of Appendix A)

Hence, the lemma holds.
We are left with proving that equalities (2) are satisfied. Let Ky = Ky,. First, we notice that,
from (8) in Appendix A,
ty—t

H(KsTW) = HEK K - K )TD) = Y HK )| Kq) ... Ky TW) (3)
s=1

On the other hand, from (13) in Appendix A and from Lemma 3.2, we have that, for any h € H,,
Hea \{h
H(Ky [ Y5 =0,

Then, setting A = Kp, B = Ky, \(n}, C = Ygf”\{h}, and D = T and applying inequality (1),
we obtain o \h
H (Kp| Ko\ D) 2 H (K[ Y57 0 0). 4)

Therefore,

H(K Ky .. . KenTW) > 3 H(KuKy, \qTY) (from (8) in Appendix A)

heH .
> 3 HEYESMIT) (from (4))
heH
t - 5 . .
> 27|G|H(K) (from Property 5 of Definition 2.1)
h tg —
E%S
tg —t1 —s+1
L9 1
where we put /o = 0. Finally,
to—1,
HEKsITV) = 3 HEX)Kq.. . K T") (from (3))
s=1
f2=h tz—t]—8+1
> Y (b)) ————H(K)
s=1 2 1



1 t2a=h tz—tl—S—}-l tz—tl—S
— H(K) + £s< - >HK
! ty —tg (K) ; ty — 1ty ty — 1 (K)
H(K)
" ,
ty — 11

where £ = Y251 4,

Now, we have to prove that H(K5|I‘(2)) = 0. Notice that, from Property 1 of Definition 2.1 we
get that H(Ax|T'®) = 0, where X = AU BU {j}. Applying Property 3 of Definition 2.1 we get
that H(Y})‘(’AAX) = 0 for any s € S and for any user U; € Cp, U G4,_4,. Therefore,

0< HKST®) < 3 H(K,[T®)

heS

< Z H(Kp|Ax) (from Lemma 3.1)
heS

< Z H(KHY’}Q;) (from Lemma 3.1)
hes

= 0 (from Property 4 of Definition 2.1)

Thus, equalities (2) are satisfied and the lemma holds. |

The next result is a consequence of the above lemma.

Lemma 3.4 In any ramp (k,ti,ta,n,C)-DKDS, for each j = 1,...,n, and for each set Y C
{1,...,n}\{j} of size at most k — 1, it holds that

Proof. We have that,

k
H(;|Ty) = ZH(I‘i7J‘|I‘yI‘Lj ...T;_1;) (from (8) of Appendix A)

7

Il
—

H(T; ;|ITyTx ;) (from (13) of Appendix A setting X = {1,...,k}\ 1)

Il
'M?’

=1
k
H(K
> ;/ » (_ t)1 (from Lemma 3.3)
_ . HEK)
ty — t
Thus, the lemma holds. [

4 Properties and Bounds

In this section, we show some properties of our model. We present lower bounds on the size of the
piece of information that each server distributing information during the initialization phase has to



send to the other servers, on the size of the piece each server has to store to answer to the key-
request messages, and on the size of the piece of information each server has to send upon receiving
a user’s key-request message. Finally, we present a lower bound on the randomness needed to setup
a Distributed Key Distribution Center.

The following theorem establishes a lower bound both on the size of information v; ; that each of
the initializing servers, Sy, ..., Sk, has to send during the setup phase to Sq,...,S,, and on the size
of information ~; that each server must receive in order to be able to compute his private information
a;.

Theorem 4.1 In any ramp (k,t1,t3,n,C)-DKDS, for each i = 1,...,k, and j = 1,...,n, the fol-
lowing inequalities are satisfied:

H(K)
ty —t1

H(K
( ), and H(T;) > k- (-

H({I;;) >
(i) 2 €

Proof. Notice that, from (9) of Appendix A and from Lemma 3.3, we have that

H(T;;) > H(T; ;|TaTx, ;) > (- :
to — 11

Along the same line, from (9) of Appendix A and from Lemma 3.4, we have that

H(K)

H(T;) > HLj|Ty) > k- (- )
ty — 1y

Thus, the theorem holds. [ |

Using some basic properties of the entropy function, we can obtain a lower bound on the size
of the piece of information that each server, contacted by a user, has to send upon receiving a
key-request message. This is formally stated by next theorem.

Theorem 4.2 In any ramp (k,t1,t2,n,C)-DKDS, for any C, € C, for any i =1,...,n, and for any
U; € Ch, it holds that
H(Y}) > H(K).

Proof. Let X = {iy,... i1} C {1,...,n}. Fori ¢ X, equation (9) of Appendix A implies that
H(Yf-fj) > H(YZAYSLM). Applying equation (12) of Appendix A, we can write

HY!IYY ) = HEY%,) - HEKL|Y% Y + HY Y K.

According to Property 4 of Definition 2.1, one gets H(Kh|Y§‘(,le}-”j) = 0. Moreover, we can prove
that H(K;JY?M) = H(K}) and since equation (7) of Appendix A implies that H(Yzh,jlel(,th) >0,
we can conclude that

H(Y};) > H(Ksx) = H(K),
which proves the theorem. Hence, we have to prove that H(KHYS‘M) = H(Kj}). Property (9) of
Appendix A implies that H(KHYS‘(J) < H(Kp). On the other hand, notice that from Property 3 of
Definition 2.1 we get that H(Yé‘(’j|AX) = 0; setting A = K, B = Y}’j, and C = A x and applying
Lemma 3.1, it results that

H(Kn|Y% ;) > H(Ki|Ax). (5)

10



Moreover, applying Property 1 of Definition 2.1 we get that H(Ax|I'y) = 0; setting A = Kp,
B = Ay, and C =Ty and applying and Lemma 3.1, it results that

H(Kp|Ax) > H(K,|Tx). (6)
But, from (6) and (9) of Appendix A, and from Property 5 of Definition 2.1 we get
ta — |G|
2 —h

where X = {i1,...,ik—1}, Z=XN{1,...,k},and N = {1,...,n}. If we consider a coalition G with
|G| = t1, we have

H(KuTx) > H(Ky|Y* MDY, N) > H(K),

H(Kh|Y§(,j) > H(Kp|T'x) > H(K)
and the theorem holds. []

We can also show that each server, to answer the user’s key-request messages, has to store some

. . . H(K
information whose size is lower bounded by £ - %—T}

Theorem 4.3 In any ramp (k,t1,t2,n,C)-DKDS, for each i =1,...,n, the private information a;,
stored by the server S;, satisfies
H(K)

H(A;) > (- -
ty — t

Proof. Let G = {Uj,,...,Uj,} be a group of users, and let Hg = {s1,...,5.}. Moreover, let
X =A{i1,...,ix} C{1,...,n}. For each r = 1,...,k, consider the mutual information between A;,
and Ky, given Ax\; . Applying equation (12) of Appendix A, we can write

H(A; |Ax\;,) = H(KyglAx\,)— HEKug|Ax)+ H(A;, |Ax\;,Kug).
We can prove that

H(K)

H(Ky,|Ax\,) > L
(KnolAxy,) > £

and H(Ky,|Ax)=0.

Equation (9) of Appendix A implies that H(A;,) > H(A;,|Ax\;,) and since property (7) of Appendix
A implies H(A; [Ax\; Ky, ... Ks,) > 0, we have that

H(A) > (- H(K),

which proves the theorem. Hence, we have to prove that H(Ky,[Ax\;,) > £ - %_Et} Indeed, from
Property 1 of Definition 2.1, and Lemma 3.1 it holds that

H(K'HG|AX\ir) > H(K?{GlI‘X\ir)

I
= > H(K,,|Tx\i,Ku,\s) (applying (8) of Appendix A)

=1

<

H(KST|I‘X\1~TYZ§G\ST) (from property (13) of Appendix A)

M~

=1
H(K)
Tty — 1

<

v
~

(from Property 5 of Definition 2.1).

11



Moreover, from property (7) of Appendix A, H(Ky.|Ax) > 0, while, applying the chain rule, we
have that

4
H(KyqlAx) < ZH(KMAXKHG\@;)

< Z H(K; |Ax) (from property (13) of Appendix A)
< Z H(K;,|YY ;) (from Property 3 of Definition 2.1 and Lemma 3.1)
< 0 (choosmg J € G, and applying Property 4 of Definition 2.1)
Therefore, the theorem holds. [ |

Communication Complexity The Communication Complexity (CC, for short) of a ramp DKDS
is measured by the amount of information sent by the servers Si,...,S; during the initialization
phase. It is not difficult to see that

- H(K)

CC:ZZH(I‘,-J) Zk-z-n-t2_t1.

Randomness When we want to set up a cryptographic protocol as, in this case, a ramp Dis-
tributed Key Distribution Scheme, often we need a number of random bits. This resource is usually
referred to as the randomness of the scheme. The randomness of a scheme can be measured in several
ways. Knuth and Yao [15] proposed the following approach: Let Alg be an algorithm that generates
the probability distribution P = {py,...,p,}, using only independent and unbiased random bits.
Denote by T'(Alg) the average number of random bits used by Alg and let T'(P) = ming g T(Alg).
T(P) is a measure of the average number of random bits needed to simulate the random source
described by the probability distribution P. In [15] it has been proved the following result

Theorem 4.4 H(P) < T(P) < H(P) + 2.

Hence, the entropy is a natural measure of the randomness of a ramp DKDS and the randomness
R of a Distributed Key Distribution Scheme can be lower bounded by H(I'y...T,,). The next theorem
holds

Theorem 4.5 In any ramp (k,t1,t2,n,C)-DKDS R satisfies
H(K)

ty — 1

R>k 1.

Proof. Notice that, from Theorem 4.4 and property (11) of Appendix A, we have

R>H(Iy...T,) > H(T;...T,,) (foreach {j1,...,5} C{1,...,n})

k
= Y H(T;|Tj ...Tj,_1) (applying (8))
r=1

12



]~

H(T;, |Ty) (f Y = {j,...,7%} \ {jr} applying (13))

r=1
k
H(K
> Z:l k-t » (_ t)1 (from Lemma 3.4)
= k2.0, H(K) .
ty — 1
Thus, the theorem holds. [ |

5 A Protocol meeting the bounds

In this section we propose a protocol which meets the bounds of Theorems 4.1, 4.2, 4.3, and 4.5.

Let s =ty — t1 and let /1, fs,...,{s be integers representing the maximum of the cardinalities of
He for all coalitions of users G of size, respectively, g1, ..., gs, where g1 = ¢4, g, = t; + 1 — 1, for
1=2,...,8—1,and g, =ty — 1. We assume that a conference key is a tuple of s elements belonging

to the finite field Z,, for a certain prime ¢. The protocol is as follows:

INITIALIZATION PHASE

e For : = 1,...,k, server S;, constructs s random bivariate polynomials P}l (z,y),..., P} (z,y)
of degree k — 1 in z, and, respectively £; —1,...,f,—11in y by choosing k-{;,..., k- £, random
elements in Z,.

e Then, for i = 1,...,k, S; computes, for each £ € {fy,...,4,;} and for each j = 1,...,n, the
polynomial Q;l(y) = P!(j,y), and sends Q;[(y) to the server S;. For j = 1,...,n, server S
computes, for each £ € {f4,..., £}, the polynomial Q;,(y) = >;_, ;Ay). These s polynomials
form the secret information a; stored by server S;.

KEY REQUEST PHASE

e A user in conference C}, who wants to compute the conference key, sends a request to at least
k servers.

e Each server §;, invoked by the user, checks that the user belongs to C},, and sends to the user

the values Q¢ (h),...,Qj e, (h).
KeEy COMPUTATION PHASE

e Using the k sets of values received by the servers and by polynomial interpolations, each user
in Cp, recovers the secret key k, = [P, (0,h), ..., P, (0,h)], where, for each £ € {l1,...,15}, we
have Pf(may) = Zf:l P;(‘r7y)'

Correctness. It is immediate to see that the protocol satisfies Definition 2.1. Indeed, as re-
quired from Properties 1 and 2 of Definition 2.1, for z = 1, ..., n, server S; can compute his private
information if and only if he receives the values vy ;,...,7%,: sent by the k servers performing the
initialization phase. Each server, holding a;, can answer to the conference key requests, as required
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by Property 3 of Definition 2.1. Moreover, each user interacting with k servers, can recover a key for
a conference in which he does belong to, satisfying Property 4 of Definition 2.1.

Security. The security property of the protocol can be shown as follows: The worst case scenario
we have to consider consists of a coalition of any & — 1 servers performing the inizialization phase,
and a set of users G C U which can compute exactly /; different conference keys. Without loss of
generality, assume that the servers involved in the attack are Sy,...,Sr_1. They know the polyno-
mials Q1. (¥), -, Q1,6,(¥), -, Qk-1,6 (¥),-- -, Qr-1,¢,(y) and, for i =1,... .k —land j=1,...,m,
the polynomials Q’ (y), .. .,Qz’fs(y), i.e., the “partial” polynomials they send to the other servers
during the initialization phase. If the users in G have required /; keys for conferences in which they
belong to, they are able to interpolate at most the first £; — £ polynomials of degree £;,...,¢; in y,
but they have no information about the other of degree f;14,...,{;. Thus, about the /,;;-th key,
they can compute the first £; — £ values but nothing about the other ones. Indeed, they can receive
k — 1 sets of points from the dishonest servers but they have no information about the k-th set of
points which could send them another server of the system. As we have seen, the protocol establishes
that each server, during the initialization phase, can compute its polynomial only if it receives & dif-
ferent partial polynomials (we recall that @ (y) = vk Q;li(y)). Notice that, this means & — 1
initializing servers do not have information about the polynomials of another server since, for each
choice of the k-th initializing server, these polynomials can be different. Hence, Sy, ..., Sk_1 cannot
guess the values that a k-th server of the system can send to a user after a key-request message
better than if they choose the value at random. Therefore, Property 5 of Definition 2.1 is satisfied.

Tightness. The protocol shows that the bounds of Theorems 4.1, 4.2, 4.3, and 4.5 are tight.
Indeed, a key is an s-tuple of random values (uniformly chosen) of Z,, and, hence, H(K) = s -logg.
Each server, performing the distribution during the initialization phase, sends exactly £ = >_ /; values
of Z, to any other server. Hence, any server during the initialization phase receives k - £ values of
Z,. Moreover, each server adds the k sets of values received from each server and stores exactly /£
new values of Z,. The communication complexity of the distribution phase is exactly k- n - /£ loggq
bits. At a user’s key-request message, a server answers with an s-tuple of values of Z,. Finally, the
randomness needed to setup the scheme is k% - £ - log ¢ bits, since each of the k servers performing
the distribution during the initialization phase randomly chooses k - £ values in Z,.

Remark. Notice that when the two thresholds ¢; and ¢y of a ramp (k,#1,%2,n,C)-DKDS are
defined by t; = t; + 1, then we recover the notion of (k,n,C)-DKDS given in [3, 12]. Moreover, the
above protocol is exactly the protocol given in [17] and showed to be optimal in [3, 12]. Basically, the
ramp approach enables to gain a factor t;tl
and randomness, compared to the one-threshold case, by “splitting” the whole key in smaller pieces

in terms of memory storage, communication complexity

that can be recovered separately. In other words, the real key belongs in Z,- but is represented by
an s-tuple belonging to (Z,)® and can be recovered by applying a certain mapping ¢ : (Z,;)* — Z-.
The drawback is that coalitions of users, whose size is in between the two thresholds, from the values
they have received in order to compute some keys, can gain partial information about new ones.
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A Information Theory Elements

This appendix briefly recalls some elements of information theory (see [11] for details).
Let X be a random variable taking values on a set X according to a probability distribution
{Px(z)}zex. The entropy of X, denoted by H(X), is defined as

— Z Px (z) log Px (z),
reX

where the logarithm is relative to the base 2. The entropy satisfies 0 < H(X) < log|X]|, where
H(X) =0 if and only if there exists zg € X such that Pr(X = z¢) = 1; whereas, H(X) = log | X| if
and only if Pr(X =2)=1/|X|,forall z € X.

Given two random variables X and Y taking values on sets X and Y, respectively, according
to the joint probability distribution {Pxvy(z,¥)}sex yey on their cartesian product, the conditional
entropy H(X|Y) is defined as

H(X|Y) ==Y >" Py(y)Pxy(z|y) log Pxy (z|y).

yeY zeX

It is easy to see that
H(X[Y) > 0. 7)

with equality if and only if X is a function of Y.
Given n + 1 random variables, X ...X,, Y, the entropy of X, ...X,, given Y can be written as

H(X,...X,|Y)=H(X4|Y)+ HXX 1Y)+ -+ H(X,X; ... X1 Y). (8)
The mutual information between X and Y is given by

I(X;Y) = H(X) - HX|Y).
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Since, I(X;Y)=I(Y;X) and I(X;Y) > 0, it is easy to see that
H(X) > H(X[Y), (9)

with equality if and only if X and Y are independent. Therefore, given n random variables, X; ...X,,
it holds that

H(X;...X,) = iH(X,;|X1 LX) < iH(X,;). (10)

Moreover, the above relation implies that, for each k& < n,

H(X;...X,) > H(X;...X}). (11)

Given three random variables, X, Y, and Z, the conditional mutual information between X and Y
given Z can be written as

I(X;Y|Z)=H(X|Z)-H(X|ZY)=H(Y|Z) - H(Y|Z X) = I(Y;X|Z). (12)
Since the conditional mutual information I(X;Y|Z) is always non-negative we get

H(X|Z) > HX|ZY). (13)
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