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Abstract

A secret sharing scheme is a cryptographic protocol by means of which a dealer shares a
secret among a set of participants in such a way that it can be subsequently reconstructed
by certain qualified subsets. The setting we consider is the following: in a first phase, the
dealer gives in a secure way a piece of information, called a share, to each participant.
Then, participants belonging to a qualified subset send in a secure way their shares to a
trusted party, referred to as a combiner, who computes the secret and sends it back to
the participants.

Cheating-immune secret sharing schemes are secret sharing schemes in the above set-
ting where dishonest participants, during the reconstruction phase, have no advantage in
sending incorrect shares to the combiner (i.e., cheating) as compared to honest partici-
pants. More precisely, a coalition of dishonest participants, by using their correct shares
and the incorrect secret supplied by the combiner, have no better chance in determining
the true secret (that would have been reconstructed if they submitted correct shares) than
an honest participant.

In this paper we study properties and constraints of cheating-immune secret sharing
schemes. We show that a perfect secret sharing scheme cannot be cheating-immune.
Then, we prove an upper bound on the number of cheaters tolerated in such schemes. We
also repair a previously proposed construction to realize cheating-immune secret sharing
schemes. Finally, we discuss some open problems.

*An extended abstract of this paper was presented at the International Workshop on Coding and Cryptog-
raphy (WCC 2003).
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1 Introduction

Secret sharing schemes are a fundamental primitive in cryptography. They were introduced
in 1979 by Blakley [1] and Shamir [13]. The reader can find an introduction and references
to the literature in [14].

In its basic form, a secret sharing scheme is a protocol divided into two phases: Share
and Reconstruct. During Share, a dealer distributes a secret among a set of participants by
sending in a secure way a piece of information to each of them, called a share. Then, during
Reconstruct, some subsets of participants (called qualified subsets) can reconstruct the secret
either by pooling together their shares, or by sending their shares in a secure way to a trusted
party (called a combiner) who collects the shares, reconstructs the secret, and sends it back
to these participants'. Other subsets (called forbidden subsets), even by pooling together and
processing their shares, do not learn any information about the secret. In such a model, the
dealer and participants are assumed to be honest.

However, many applications have to deal with the case of dishonest participants and (pos-
sibly) a dishonest dealer. Tompa and Woll in [16] showed that Shamir’s threshold scheme can
be subject to the following attack (which can be applied to all linear secret sharing schemes).
A dishonest participant, during Reconstruct, can submit to the combiner an opportunely con-
structed fake share. Hence, the reconstructed secret is different from the original one. But,
from this secret, the dishonest participant (and only he) can recover the original secret.

For example, consider the simple secret sharing scheme where the secret K is the modulo-¢
sum of three shares: K = s; + sy + s3 mod ¢. If the first participant submits an incorrect
share, say s| # sq, then the combiner outputs the value K’ = s} + sy + s3 mod ¢. Given K’,
the first participant can compute the correct secret K = K’ + s; — s} mod ¢q. The second
and third participants may not even know that the value K’ is incorrect. In any event, they
cannot compute K even if they do know that K’ is incorrect.

Tompa and Woll showed in [16] how to modify Shamir’s scheme to avoid such an attack.
Other papers which deal with the model analysed by Tompa and Woll include [4, 5].

In order to design secret sharing schemes that keep working even in hostile environments,
the concept of verifiability was introduced in [7]. With this more general approach, some extra
information is used to enable participants to detect a dishonest dealer, who sends inconsistent
shares during Share, and to verify during Reconstruct that each participant submits a correct
share. A lot of research has been done for both unconditionally secure and computationally
secure verifiable secret sharing schemes (see [3, 6, 9, 15, 12], to name a few papers). Verifi-
able secret sharing schemes have been widely used in multi-party computation and in other
applications of secret sharing schemes.

However, the world of applications is quite varied and verifiable secret sharing schemes
are not always necessary. Morever, the computation, communication, and round complexities
of verifiable secret sharing schemes are considerably greater than in the basic model for
secret sharing. Therefore, achieving some forms of limited protection against cheaters in the
basic model remains an interesting research problem. Along this line, a different approach
to deal with cheating in secret sharing schemes was suggested by Pieprzyk and Zhang in
[17, 10, 11]. In the model therein considered, called cheating-immune secret sharing, the

'In this paper we deal only with the latter reconstruction mode.



dealer and combiner are assumed to be honest. Participants can cheat, during Reconstruct,
by submitting incorrect shares to the combiner. Such a secret sharing scheme is said to be
cheating-immune if cheaters, on submitting incorrect shares, have no advantage (as compared
to honest users) in determining the true secret. Notice that the combiner will only hear from
some qualified subset of participants, and some bounded number of these may be cheaters.

It is perhaps useful to point out that, despite some superficial resemblances, cheating-
immune and verifiable secret sharing schemes are solving two different problems. A verifiable
secret sharing scheme is one that tolerates incorrect shares, allowing the correct secret to be
reconstructed even when certain shares are faulty, via a process of detection and/or correction
of the faulty shares. A cheating-immune secret sharing scheme will not compute the correct
secret if a submitted share is faulty. The objective is rather to prevent cheaters from being
able to compute the secret when honest participants cannot do so.

Organization of the paper: In Section 2, we give some background on secret sharing schemes:
we recall the concepts of perfect and ideal secret sharing schemes. In Section 3, we describe
a model for cheating-immune secret sharing scheme, which is the same given in [10], and in
Section 4 we recall a characterization for such schemes; while, in Section 5, we point out a
relation with resilient functions, which enables us to prove an upper bound on the number of
possible cheaters in any (n, n) threshold scheme. In Section 6, we repair a previously proposed
construction for cheating-immune secret sharing schemes. Finally, in Section 7, we state some
results for the case of ramp schemes.

2 Perfect Secret Sharing Scheme

In this section we briefly recall the definition and some properties of perfect secret sharing
schemes.

Let P be a set of participants and let S be a set of possible secrets. The collection
of subsets A C 27, qualified to reconstruct the secret, is usually referred to as the access
structure of the secret sharing scheme. Denoting by S a random variable representing the
choice of a secret in S, by A the shares received by a subset of participants A € A, and using
the entropy function?, we can state the following definition:

Definition 2.1 A perfect secret sharing scheme X with secrets chosen in S, for the access
structure A C 27, is a protocol consisting of a Share phase and a Reconstruct phase, satisfying
two conditions:

1. FEvery qualified subset of participants can compute the secret:

Formally, for all A € A, it holds that H(S|A) = 0.

2. Any forbidden subset of participants gets absolutely no information on the secret value:

Formally, for all A ¢ A, it holds that H(S|A) = H(S).

Property 1. means that the value of the shares held by A € A uniquely determines the
secret s € 5. On the other hand, Property 2 means that the probability that the secret is
equal to s given that the shares held by A € A are «, is the same as the a priori probability
of the secret s. In other words, by pooling together their shares, a forbidden subset of

2The reader is referred to Appendix A for the definition of the entropy function and some basic properties.



participant gets absolutely no information about the secret. If Property 2. is not satisfied,
i.e., H(S|A) < H(S), then a secret sharing scheme X is said to be not perfect.

A secret sharing scheme Y can be represented by a matrix M, where each row corresponds
to a possible distribution of shares for a certain secret. More precisely, in this representation,
the first column of M is indexed by the dealer D, and contains the possible secret values he
may wish to share, and the remaining columns are indexed by the participants in P, and
represent the shares they can get for each secret. This model has been proposed in [14].

The efficiency of a secret sharing scheme is measured by means of an information rate,
which relates the size of the secret to the size of the shares given to the participants. More
precisely, given a secret sharing scheme X for the access structure A, on the set of secrets S,
and denoting by K (P) the set of possible shares for participant P, we define the information
rate p(2, A, S) as
log | 5

P A ) = e rep log IR (P)

and the optimal information rate of A as
p(A) =supp(X, A,S)

where the sup is taken over the space of all possible sets of secrets S, such that |S| > 2, and
all secret sharing schemes % for A. Secret sharing schemes with information rate equal to
one, which is the maximum possible value of this parameter (i.e., the secret and the shares
have the same size), are called ideal.

3 Cheating-Immune Model

We consider ideal secret sharing schemes with shares and values in GF(p'). More precisely,
we start by considering (n,n) secret sharing schemes ((n,n)-SSS, for short), i.e., schemes
where all shares held by n participants are required to reconstruct the secret. The model and
the notation are the same as in [10].

Let GF(p') denote a finite field with p’ elements, where p is a prime number and ¢ is a
positive integer. Let GF(p')™ be the vector space of n-tuples of elements from GF(p'). For
each o = (a1,...,a,) € GF(p")", we denote by HW (o) (Hamming Weight) the number of
non-zero coordinates of a.

In our setting, a vector o € GIF'(P")" represents the shares the participants get from the
dealer during Share. The secret sharing scheme X is represented by a defining function,

f: GF(pt)” — GF(pt),

which associates to each n-tuple of shares a secret value in GF(p?).

Cheaters are represented by a vector § € GF(p")", called cheating vector: non-zero el-
ements represent the change of the true shares performed by the cheaters. The number of
cheaters is equal to the Hamming weight of 4. Moreover, given two vectors, z and 4, we denote
by zi € GF(p))™ a vector such that Tj- = xz; if §; # 0, and Tj- = 0 otherwise. Conversely,
we denote by =5 € GF(p')" a vector such that 27 = z; if §; = 0, and 2} = 0 otherwise.
Finally, given two vectors 7 and §, we say that 7 < § if 7; # 0 implies é; # 0. Using the
above notation we further define the following sets:

R(6, oz;', K) = {z|f(z5 + oz}') =K}



and,
R, af +6,K*) = {a5|f(25 +af +0) = K*}.

where K = f(a) and K* = f(a + 6).

The first set represents the possible shares held by honest participants, enabling the re-
construction of the true secret K, if cheaters behaved honestly. The second one, represents
the possible shares held by honest participants enabling the reconstruction of K*, when the
cheaters submit incorrect shares. Therefore, the value

pso = |R(8, af + 8, K*) N R(8,ocf, K)|/|R(3, af + 6, K*)|
is the probability of successful cheating with respect to § and a.

Definition 3.1 [10] An (n,n)-SSS with shares and values in GF(p') is said to be k-cheating-
immune if, for every o € GF(p")" and any § € GF(p")", with 1 < HW (8) < k, it holds that

Psa =Dp".

A 1l-cheating-immune secret sharing scheme will be simply referred to as a cheating-
immune secret sharing scheme. Notice that the above definition assumes that all the cheaters
submit fake shares. When k£ > 1, a more general definition takes into account the possibility
that some subset of the cheaters submit correct shares. The underlying idea that justifies
such an extension of the model is that there could be a strategy by means of which a coalition
of cheaters can gain more information if only some of them submit incorrect shares. More
precisely, we use a binary vector § to identify the cheaters and a vector 7 € G F(p")" to specify
how much they cheat and, for every 7 < §, we define

P = |R(8, af + 1, K*) N R(S,af, K)|/|R(6, af + 7, K*)|
to be the probability of successful cheating with respect to ¢, 7, and «.

Definition 3.2 [10] An (n,n)-SSS with shares and values in GF(p') is said to be strictly
k-cheating-immune if, for every o € GF(p")", any vector § € GF(2)", and any 7 € GF(p')",
such that 7 < 6, 1 < HW(8) < HW (1) < k, it holds that ps .., = p~*.

4 Characterisation for k-Cheating-Immune Secret Sharing

In this section we show some results about cheating-immune secret sharing schemes. We start
by proving that a perfect secret sharing scheme cannot be cheating-immune. More precisely,
we can state the following;:

Theorem 4.1 Let Y be an (n,n)-secret sharing scheme with shares and values in GF(p'). If
Y. is perfect, then ¥ cannot be cheating-immune.

Proof. For simplicity, assume the set of shares and secrets is GF'(2). In this case, the defining
function, f, is given by

FGF@E)™ = GF(2).



Moreover, assume that 0 and 1, the values the secret can assume, are uniformly distributed.
For any subset of participants A = {iy,...,7,-1}, Condition 2 of Definition 2.1, implies that
0 and 1 still have the same a-priori probabilities, once the users in A pool together their
shares. From the point of view of user 7,, this means that his share determines the value of
the function. In other words, assuming that the share he gets from the dealer is 0, if during
the reconstruction phase he submits 1, and the reconstructed secret is b, then he knows that
the real secret is 1 — b. Hence, the cheating-immune property is not satisfied since ps, # %
with respect to any @ and § = (0,...,0,1,0,...0), with a single one in position 4,. A similar
argument can be used for the case in which the set of shares and secrets is GF(p'). [ ]

Notice that, if Definition 3.1 is extended to the case of general (ideal) access structures
A, defined over the set of participants P, the above result still holds. Indeed, the key point
in the above proof is that Condition 2 of Definition 2.1 rules out, from the point of view of
participant ¢,, one possible secret; hence, ps . # 7%.

A cheating-immune secret sharing scheme will satisfy property 1. of Definition 2.1, namely,
a qualified subset of shares will determine the value of the secret. Therefore it follows from
Theorem 4.1 that property 2. cannot be satisfied. Hence, in a cheating-immune secret shar-
ing scheme, some forbidden subsets of participants will, in some circumstances, be able to
determine some (partial) information about the secret by pooling their shares.

The structure of the defining function f of a cheating-immune secret sharing scheme can be
precisely characterized. The following result was shown in [10]. We recall this characterization
by giving a slightly simplified proof, compared to the one given in [10].

Theorem 4.2 Let ¥ be an (n,n)-SSS with shares and values in GF(p'). Then, ¥ is k-
cheating-immune < for any integer £, where 1 < { < k, for any § € GF(p")", such that
HW(8) = L, for any 7 < 6§, and for any u,v € GF(p'), the following conditions hold simul-
taneously:

(Z) |R((s, T, ?J)l o pt(n_é—l)}
(“) |(R(6a T, ’U) N R((S, T+ 57 u))l — pt(n—f—Z) .

Proof. The first implication is immediate: indeed, if (i) and (i7) hold, then the scheme is
k-cheating immune. Hence, given a k-cheating immune secret sharing scheme, we have to
show that (i) and (4¢) hold. Let HW(§) = (. For any «,d € GF(p")", the family of subsets
{R(3,f + 8, K*)}kreqr(pt) is a partition of the set {z5|6 € GF(p')™ and 25 € GIF(p')"} C
GF(p")". Since |{z5]|6 € GF(p")" and z5 € GF(p")"}| = p'®=9), we have that

> |RGof +6,K7)=p) (1)

K*eGF(pt)

From the definition of a k-cheating immune secret sharing scheme, we also have

|R(S,af + 6, K*) N R(S, e, K)

1
= E|R((Sa ()t5+ + 57 [(*)|' (2)

On the other hand, we can partition R(4, 043', K) as follows:

R(6,0f , K)= () A{R(S0f+6 K )NRES of K)}
K*eGF(pt)



Therefore,
IR, of \K)| = > |R(S,0f +6,K*)NR(S0f, K)|. (3)
K*€GF(pt)

Then, substituting equation (2) in equation (3), we get
. 1 .
[R@0f K)| = > —[R(%,af +6,K7)],
K*eGF(pt)
and, by using equation (1),
1

|R(8,af, K)| = S RO, of 46, K%)= pnTY. (4)
p K*eGF(pt)

~h

Thus, property (i) is satisfied. At this point notice that, since (4) holds for every pair (8, af),
using an appropriate 3, we can always write ozg' = ﬁg’ + é. Therefore, we can replace oz:s" in
R(8,af, K) in equation (4) with af + . Hence

|R(S,af + 6, K)| = p'"=*=1),

and, by using equation (2), we get
o , 1 o o
|R(5,Ozg_+(),](*)QR((;’OA;’A”:E_pt( 0=1) _ pHn=t=2)

Therefore, the result holds. [

5 k-Cheating-Immunity and k-Resilience

In this section we investigate the relation between k-cheating-immune secret sharing scheme
over GF(p') and resilient functions. Such a relation has already been pointed out for the
binary case (k-cheating-immune secret sharing scheme over GF(2)) in [11, 17]. We use it
to state an upper bound on the number of possible cheaters tolerated in a cheating-immune
secret sharing scheme.

Definition 5.1 A function f : GF(p')" — GF(p') is said to be balanced if, for each K €
GF(p'), it holds that
{z € GF(P")"[f(z) = K} = p'" V.

In other words, each value f(z) € GF(p') has the same number of pre-images z.

Definition 5.2 A function f : GF(p')" — GF(p') is said to be k-resilient if, for every subset
{J1s-- oy du} CH{1, ..., n} and every (ar,...,a;) € GF(p')*, the function

f($17 R ‘rn)|r“=a1,...,xjk=ak

is balanced over GF(p)"~F.



Notice that, if f: GF(p')" — GF(p") is the defining function of a perfect (n, n)-SSS where
the secrets are chosen uniformly at random, then, for any 1 < k < n, f is k-resilient. This
property easily follows from Condition 2 of Definition 2.1.

The next corollary, concerning k-cheating-immune secret sharing schemes, easily follows
from Theorem 4.2.

Corollary 5.3 Let ¥ be an (n,n)-SSS, and let f : GF(p")™ — GF(p') be the defining function
of 2. If ¥ is k-cheating-immune, then f is k-resilient.

On the other hand, we can prove the following result:

Theorem 5.4 Let Y be an (n,n)-SSS, and let f : GF(p')" — GF(p') be the defining function
of ¥. If ¥ is k-cheating-immune, then f cannot be (n — k)-resilient.

Proof. We need some notation and preliminary results.

o Let 1 < s < k. For any subset of indices v = {ji,...,js} C {1,...,n}, let ¥ =
{i1, o ytin—st = {1,...,n}\ {Jj1, ..., js} be the complementary subset. For any vector
z e GF(phH™, let

w=(zj,...,2z;,), and v=(z;,...,z;,_.).

Then, we can write f(z) = f(u,v). Moreover, let @ = (aj,,...,a;,) € GF(p")®. This
vector represents shares held by cheaters. If # and a have no common coordinates, that
is, aj, # w;, for every 1 <7 < s, we say that they are totally distinct, and we write

u % a.

e If ¥ is k-cheating immune, Theorem 4.2 implies that, for any K € GF(pt) and any
a e GF(p')’,
[{v €GP f(0,0) = K| = p=D.

Let us fix K € GF(p') and @ € GF(p')®, and denote by
RI{,Q = {U € ijv(pt)’n_ﬂf(og7 U) = I(}

Then, |R | = p'»=*=1) and applying again Theorem 4.2, for any K* € GF(p') and
any u € GF(p")*, such that u % a, we have that

{v € Rl f(u,v) = K7} = ‘RK,a N{v e GF(P")" ™" f(u,v) = K}

n—s—2)

= pin=s-2),

The above relation holds even for K = K*.

o Let
Qr.o = {(u,v)|uc GF() vt a,v € Rkq, f(u,v) = K}.



It easily follows that

@kl = Y. HveRgalf(uv)= K}

uEGF(pt)s uter

= (p'—1)*pr2, (5)
Equation (5) holds for 1 < s < k; while, when s = 0, we have
Qr ol = {v]v € R, f(v) = K} = [{v|f(v) = K} = p'7V. (6)

e For any subset @ C {1,2,---,s} and @ = {1,2,---,s} \ a, let
S(aya)={uec GF(")’|Vica, uj,=a; and Vica uj #a;}.

Notice that if ¢ and b are different subsets, then S(a,a)N S(a,b) = 0. Moreover,
S(OA, Q)) = {u S GF(pt)s|u ¢ OA}, and S(Ot, {17 2, '78}) = {a}

We can express

GF(pt)s = U S(a,a).

aC{1,2,,s}

At this point, we can start the real proof. Let us fix K € GF(p'),« € GF(p")*, and a k-subset
of indices v = {j1,...,Jx} C {1,...,n}. Let us consider the set

To(u,v) = {(u,v)|u € GF(p")*,v € RKa, f(u,v) = K}.

The value

-y

a€GF(ph)k

= Z H{(u,v)|u € GF(p)*,v € R0y f(u,v) = K}
aEGF(p)*

= Y Y Hwv)ueS(e,a),v€ Rro, f(u,v) = K}

a€GF(pt)k aC{1,2,k}

= Y Y Hmv)ueS(aa),ve Rrq, f(u,0)= K},

aC{1,2,k} a€GF(pt)*

T (u, )]

We prove that f cannot be n — k-resilient by showing a contradiction on the value of T". First
we compute the real value of 7" and, then, the one that we would get if f were n — k-resilient.
Since the two values are different, we conclude that f cannot be n — k resilient.

For any a C {1,2,...,k}, let

v= Z [{(u,v)[u € S(a,a),v € Ri o, f(u,v) = K}|.

a€GF(ph)*
By fixing an m-subset of indices ¢ = {iy,...,i,} C {1,2,...,k}, we can partition
GF(pt)k = U {OA|OA[a] € GF(pt)m7 Q] = ﬂ}

ﬁEGF(pt)k_m



where oy = (@i, ..., @) and oz = (@i, -, @, ). Then,

Ue = Z {(u,v)|u€ S(a,a),v € Rg,qa, f(u,v) = K}|.
ﬁEGF(pt)k_moc[a]EGF(pf)m7oc[;J=,@

Let us fix 3 € GF(p')F—™, and let

Wa(ﬁ): Z |{(U7U)|UES(O‘7G)’UERK,aaf(uvv):I(H-

a[a]EGF(pt)’”,a[a] =3

Moreover, let w = U,e,1{7:}, and n =7 \ w. Denoting with y = z[,], 2 = z[,), and v = 2y,
we can re-write f(z) as

f(@) = fzp)em) = @), o), 2m) = £y, 2,0).

Notice that, v = o implies y = a,) and z = az). Therefore, we can rewrite R , and S(a,a)
as

RK,a = {U € GF(pt)n_klf(a[E]a Qg ’U) = [(}
S(,a) = {(y,2) € GF(p")*™™ x GF(p')"|y £ o), 2 = o}

Using these expressions, we get

wepg) = > {(y,2,v)|(y, 2) € S(a,a),v € Ri,a, f(y,2,v) = K}

] EGF (pt)™, az=p
= {(y,2,0)ly # a@,y € GF(p) ™7, 2 = apq,
] €EGF(p?)™, =0
floga, o, v) = K, fy, 2,v) = K}
= Y Hwzo)ly#ByeGFE)", 2= ap),

) €EGF(pt)™
f(B,amy,v) = K, fy,2,v) = K}
= W zv)ly#8,yeGFE) ™ f(B 2,v) = K, fy,z,v) = K}|.

Since there is a natural one-to-one correspondence between v’ € G F(p!)"~**™ and (z,v), we
can treat v’ = (z,v). Then,

W B) = Wy, o)y # 8,y € GFEHY™, F(B,v) = K, f(y,v) = K}|
= Hw,v)ly# 8,y €GP )™, v € Rk, f(y,v) = K}|
= |QK,5|-

From equations (5) and (6), it follows that

if £ > m,
itk =m.

1)k—mpt(n—k+m—2)
)

t —
W(B) = Q| = { ottt
Therefore, we have that

T = ZU“

aC{1,...,k}

10



> > W)

aC{1,..,k} BEGF (pt)k-m

= > > 1Qxksl

aC{l,.. .k} BEGF(pt)k—m

- 3 S Qrsl+ Y Z |Qxc ]

aC{l,..k},az{l,.. .k} BEGF (pt)k-m a={1,..,k} BEGF (pt)k—m
— Z E (p _l)k m t(n k+m— 2)+p(n 1)
aC{1,...,k},az{1,.. .k} BeGF(pt)k-m
— Z pt(k—m) (pt _ 1)k—mpt(n—k+m—2) +pt(n—1)
aC{l,..k},a#{l,. .k}
k—1

k
— Z (m) (pt _ 1)k—mpt(n—2) +pt(n—1)

m=0

k
— n2){z<m)p_1k‘ m+1} pn2)+p(n 1)

k

— n 2) Z <k>1m p _ 1) pt(n—2)+pt(n—1)

_ p( )(l-l-p _1) _pt(n—?)_l_pt(n—l)
RN Y )

On the other hand, if f were n — k-resilient, for any fixed v € GF(p)"~*, f(u,v) would be
balanced; that is, for each K € GF(p)?, it would be

|{(“’”)|“€GF(pt)  flu,v) = K| = pi=1),

Since, from Theorem 4.2, |Rx | = p'®=%=1) then for any K € GF(p') and any v C {1,---,n}
of size k, we have that

[Ta(u,0)| = [{(uwv)lue GFE")*,v € Ria, f(u,v) = K}
= | U {(wv)lue GFE)", fu,v) = K}

vERK o
= > Hwo)lue GFEY, f(u,0) = K}
vERK o

t(n—k—1), t(k—1)

= D
p

p
t(n—Z)'

Therefore,

o= ) [Ta(u,)

a€GF(pt)k
— Z pt(n—?)
a€GF(pt)*

— ptkpt(n 2)

= ptinth=2) (8)

11



which clearly contradicts (7). Therefore, f cannot be n — k-resilient. [ |

At this point, we can state the main result of this section.

Theorem 5.5 A secret sharing scheme Y defined by f : GF(p")" — GF(p') can be k-
cheating-immune only if k < 5.

Proof. A k-resilient function is also s-resilient, for any 1 < s < k. This observation, together
with Theorem 5.4 and Corollary 5.3, implies the result. [

The above upper bound on the number of cheaters holds also for the case of strictly
k-cheating-immune secret sharing. Indeed, a strictly k-cheating-immune secret sharing pos-
sibility that all & cheaters submit fake shares.

6 A Construction for k-Cheating-Immune Secret Sharing

We present a construction for k-cheating-immune secret sharing applying the ideas of the
construction given in [10]. Basically, we use a new function p as a building block for the
scheme, instead of the function y described (unfortunately, the function x proposed is not
balanced, as the construction requires).

In the following, if 1 denotes the identity in GF(p'), we indicate the sum of [p/2] elements
equal to 1 by b;’, and the sum of [p/2] elements equal to 1 by b;. Therefore, for any
a € GF(p')", the term bta (b a, resp.) is the sum of [p/2] (|p/2], resp.) elements equal to
a. In order to show the properties of our new function, we need some results, that we briefly
recall.

Definition 6.1 [10] A function h of degree two is said to have the property B(k) if, for any
§ € GF(p")", with 1 < HW (8) < k, and for any T < 8, the function h(z5 +6+7) —h(zy +7)

is a non-constant affine function.
The next lemma is used to prove that our function is balanced.

Lemma 6.2 [10] Suppose a function f of degree two on GF(p')" does not have a nonzero
constant term; in other words, f(0,...,0) = 0. Then, f is balanced if and only if there exists
a nonzero vector o € GF(p')" such that f(z 4+ «) — f(z) is constant and f(a) # 0.

The function g we use in order to set up a k-cheating-immune secret sharing scheme is
defined as follows:

Lemma 6.3 Let n > 2k+ 1, and let p, , : GF(p')" — GF(p") be a function defined by

Hnp =21+ Z {bz;z[?i—l](n)x[%](n) + b;l'[zi](n)l'[%-}-l](n)} + 0 otherwise,

i=1

[n/2] { by znxy + b;‘mlml if nis odd,

where [i],) denotes the integer j such that 1 < j < n, and j = i mod n. Then, (i) jinyp is
balanced, and (ii) p,, , satisfies the property B(k).

12



Proof. lor any 2 < j < n, by definition, p,, has p quadratic terms including z;, which
consist of either b;’ terms L[i=1)( T and b, terms LT[ 41] (5 OF b, terms B[i=1)( T and b;’
terms 2;2[;41), in p,,. Moreover, if n is even, there exist p quadratic terms including 2z,
which consist of b;’ terms z,2, and b; terms z1x9. Otherwise, there exist p + b; quadratic
terms including z, which consist of b terms 2,2, b; terms z1z3, and b;‘ terms zy21. Let
g be a function defined as ¢ = p,,, — 1. Then, g can be re-written as

[n/2] _ e
_ 21 (b, +bF2y) if nis odd,
9= 2: ﬂc[21'](n){bp T(2i-1], T b;m[%‘l']](n)} + { 0 ' ’ otherwise.
=1

Let @ = (1,...,1), and assume n is odd. Since pe = 0 for any e € GF(p")™ (p is the
characteristic of the finite field GF(p')), and there exist [n/2]p quadratic terms, then g(a) =
0. Moreover, for 2 < j < n, z; appears in p quadratic terms, while z; appears in 20, quadratic
terms with another term z3 # z1, and in b;‘ terms of the form z,z;. Finally, since a term
(z1 4+ 1)(z1 4+ 1) produces two single z; terms, g(z + a) — g(z) produces 2p single z; terms.
Therefore, it is easy to verify that g(z + o) — g(z) = 0. Hence, pin (2 + @) — pinp(2) = 1,
and g, ,() = 1. Using Lemma 6.2, we can conclude that i, , is balanced. When n is even,
we can also show that p, , is balanced, similarly.

To show that (7i) of the lemma holds, we can proceed as follows: Let § = (&1,...,6,) €
GF(p")™ be a cheating vector such that HW (§) = £, where 1 < £ < k. Moreover, let 7 < §,
and let J = {j[é; # 0,1 < j < n}. Then, |J| = HW () = £. Each quadratic term that
includes z; consists of variables in {m[i_l](n) ,Ti, 93[1-_|_1](n)}. Let X; = {[i = 1(n), 2, i+ 1)} Tt
can be easily seen that no quadratic term exists in p, (23 +7 +8) — pnp (23 +7). Therefore,
to show that u, , has the property B(k), it is enough to show that there exists a linear term
T i fin p(2F +748) — pinp(zF +7). To this aim notice that, since n > 2k+1, there exists an i
such that X;N.J = {[i — 1](,)}. Let 4o be such that X;,N.J = {[ig — 1](,)}. Then 5[2-0_1](") #0,
and &, = dfj; 1], = 0. Hence, in fnp(TF + 7+ 68) = piup(zf + 7), either 5[¢-0_1](n)b;'mi0 or
Oi9—1]( bp Tio is the only term which includes z;,. Therefore, i (2F +7+8) — pnp(zf +7)
includes a linear term z;,, which ensures that y, , has the property B(k). ]

Example 6.1 We provide an example of a function p,,(z). Let n =3, p =3, and k£ = 1.

Then, we have that b, = 1 and b;’ = 2. According to the above lemma, the function pss:
GF(3)* = GF(3) is defined as follows:

pas(T1, e, x3) = 21 + 2129 + 22923 + 2321 + 22121,

It is not difficult to see that p3 3 is balanced. Indeed, we have

1 Ty x3 || S 1 Ty x3 || S r1, xy xz3 || S
0 0 010 0 0 1]/0 0 0 20
1 0 014l 0 1 0 101 1 0 21 2
2 0 01 2 0 170 2 0 21 2
0 1 0y 0 0 1 1] 2 0 1 211
1 1 01l 1 1 1 11 1 1 211
2 1 01/ 0 2 1 11 2 1 21 2
0 2 010 0 2 14 1 0 2 21 2
1 2 014l 2 1 2 14 1 1 2 210
2 2 0] 2 2 2 11 2 2 2 21 2

—_
w



Notice that us33(0,0,0) = 0 and, for &« = (1,1, 1), it holds that us3(1,1,1) = 1. Moreover,
simple algebra shows that

pags(zr + 1,20+ 1,254+ 1) — pgg(1, 29, 23) = 1.

We can also easily check that uss has property B(1). Indeed, for each § € GF(3)?, with
HW (4) =1, and for any 7 < §, we have that pss(z; + 6 + 7) — pss(zy + 7) is given by:

3 T psa(ey +06+71) — pss(ey +7)
(1,0,0) (0,0,0) Ty + X3
(1,0,0) (1,0,0) 1-|—.T2-|—£63
(1,0,0) (2,0,0) 2+$2+$3
(0,1,0) (0,0,0) 1+ 22
(0,1,0) (0,1,0) 1+ 223
(0,1,0) (0,2,0) z + 223
(0,0,1) (0,0,0) 1 + 229
(0,0,1) (0,0,1) T + 224
(0,0,1) (0,0,2) 21 + 22,
Therefore 33 has property B(1). [ ]

According to the strategy defined by Lemma 5 and Theorem 5 in [10], using p,, as a
building block, we can construct a k-cheating-immune secret sharing scheme. More precisely,
it is possible to show that the following lemma holds.

Lemma 6.4 [10] Let fi and f; be two functions defined over GF(p')™ and GF(p')"2, re-
spectively. Let f(z) = fi(y) + f2(2), where x = (y,z2), and y € GF(p")™,z € GF(p")".
Then,

1. f is balanced if fi or fy is balanced.
2. f has the property B(k) if both f1 and fy have the property B(k).

By setting Xog4+1 = M2k+1,p, and using the above result, the following lemma holds:

Lemma 6.5 [10] Let X4k+2($17 .- -a$4k+2) = X2k+1 (5617 .- -a$2k+1) +X2k+1(‘$2k+2, .- -,5U4k+2)-
Then, the function xag+2 is balanced and satisfies the property B(k).

Finally, a k-cheating-immune secret sharing scheme can be realized as follows:

Theorem 6.6 [10] Let k and s be positive integers with s > k 4+ 1, and let ny,...,ns €
{4k + 1,4k + 2}, such that n = ny + -+ -+ ns. Let f(z) be a function defined over GF(p')"™ by
f(@) = Xn, (1) + ...+ xn.(z5), where 2 = (z4,...,25), and, for i =1,...,s, the value z; €
GF(p")™. If each x,, is constructed according to Lemma 6.3 or Lemma 6.5, and Xp,, .-, Xn,
have mutually disjoint variables, then the secret sharing scheme with defining function f(z)
is k-cheating-immune.
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Example 6.2 We give an example of an (11,11) cheating-immune secret sharing scheme.
Let K =1, s =2, and p = 5. Moreover, let us set, according to Theorem 6.6, ny = 5 and
ny = 6. 1t follows that n = ny 4+ ny = 11. Let us start by constructing the functions ps 5 and
p3,5. Since p =5, we have that b = 2, and b;‘ = 3. Hence:

ps (T, o, 23, 24, 25) = X1 + 22125 + 32023 + 2x324 + 3x425 + 20521 + 3T124
/,L3’5(I1,332,.'l‘3_) = +2£L‘1332+3.’I‘2.’l‘3+2.’l‘3$1+3$1.’1‘1.
Then, let us define the functions xs(z1) and xe(z2), where z; = (z1, 22, 23,24, 25) and

2y = (26, 27, T8, Tg, T10, Z11), as follows:

X5 (Zl) = H575(m17 L2y L3y L,y $5)
T + 21‘11‘2 + 31‘21‘3 + 2.’1331'4 + 3374.’175 + 2.’175.’171 + 31‘1.’171
pas(ze, 27, x8) + fi3,5(29, 10, Z11)

= ¢+ 2zer7 + 3r708 + 22876 + 3T6T6 + To + 2910 + 310711

X6(Z2)

+2x1129 + 3711211

The defining function f(z) : GF(5)'" — GI(5) of the cheating-immune secret sharing
scheme is given by:

f(@) = x5(21) + x6(22),

where @ = (21, z2). By plugging in the above pieces, we get the explicit form:

f(m) = f(;fl,mz,;ﬂg,$4,$5,$6,$7,$8,$9,l‘10,$11)
= x1+ 22122 4 32223 + 22374 + 32475 + 22521 4+ 37121
+x6 + 20677 + 327208 + 27876 + 3T6T6

+z9 + 229210 + 3210211 + 221179 + 3211211-
| |

A construction for strictly k-cheating-immune secret sharing schemes, which basically
generalises the above one, can be found in [10].

7 Ramp Secret Sharing Schemes

The idea of a ramp secret sharing scheme has been introduced in [2]. More precisely, a
ramp secret sharing scheme ((¢1,f2,n)-RS, for short) is a protocol by means of which a dealer
distributes a secret s among a set of n participants P in such a way that subsets of P of
size greater than or equal to ty can reconstruct the value of s; no subset of P of size less
than or equal to t; can determine anything about the value of the secret; and a subset of size
t1 < t < ty can recover some information about the secret [2]. Using the entropy function
[8], the three properties of a (linear) (1,2, n)-RS can be stated as follows. Assuming that
A denotes both a subset of participants and the set of shares these participants receive from
the dealer to share a secret s € S, and denoting the corresponding random variables in bold,
it holds that

o Any subset of participants of size less than or equal to ty has no information on the
secret value: Formally, for each subset A C P of size |A| < t1, H(S|A) = H(S).

15



e Any subsel of participants of size t; < |A| < tz has some information on the secret

value: Formally, for each subset A C P of size t; < |A] < ty, H(S|A) = @% (S).

o Any subset of participants of size greater than ty can compute the whole secret: Formally,
for each subset A C P of size |A| > t5, H(S|A) = 0.

It can be easily seen that the defining function of a (#1,%s,n)-RS, where the secrets are
chosen uniformly at random, is ¢;-resilient. Applying the same arguments we have applied
before, and using Theorem 5.4, we can show the following:

Theorem 7.1 A (t1,t,n)-ramp secret sharing scheme ¥ defined by f : GF(p')" — GF(p")
can be k-cheating-immune only if k < n —ty.

8 Conclusions and Open Problems

We have studied some properties and constraints holding for cheating-immune secret sharing
schemes. We have shown that a perfect secret sharing scheme cannot be cheating-immune,
and we have given an upper bound on the number of tolerated cheaters in such schemes.
Then, we have repaired an existing construction to realize cheating-immune secret sharing
schemes. Interesting open problems are secret sharing constructions for threshold and general
(ideal) access structures. Another interesting research line could be the generalization of the
definition of cheating-immunity: at the moment, it is implicitly assumed that the secrets
are chosen by the dealer uniformly at random. If the dealer chooses the secret according to
a certain probability distribution on the space of secrets, we have to require that, when the
cheaters submit fake shares, the probability distribution that they infer over the set of possible
true secrets (once the incorrect secret has been reconstructed) must be the same as the one
that the honest participants infer (i.e., there is no advantage for the cheaters compared to
the honest users).
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A Entropy Function

This appendix briefly recalls some elements of information theory. However, the reader is
encouraged to consult [8] for details.

Let X be a random variable taking values on a set X according to a probability distribution
{Px(z)}zex. The entropy of X, denoted by H(X), is defined as

H(X)=- Z Px (z) log Px (z),
reX
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where the logarithm is to the base 2. The entropy function satisfies the inequality
0 < H(X) < log |X],

where H(X) = 0 if and only if there exists 2y € X such that Pr(X = ) = 1; whereas,
H(X) =log|X|if and only if Pr(X = z) = 1/|X]|, for all z € X. The entropy of a random
variable is usually interpreted as

e a measure of the equidistribution of the random variable
e a measure of the amount of information given on average by the random variable.
Given two random variables X and Y taking values on sets X and Y, respectively, ac-

cording to the joint probability distribution {Pxy(z,y)}sex yey on their cartesian product,
the conditional entropy H(X|Y) is defined as

H(X[Y)==Y_ > Py(y)Pxpy(z|y) log Pxy(z|y).
yeY zeX
It is easy to see that
H(X[Y) >0,

with equality if and only if X is a function of Y. The conditional entropy is a measure of the
amount of information that X still has, given Y.
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