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Abstract

A (k,n)-threshold visual cryptography scheme ((k,n)-threshold VCS, for
short) is a method to encode a secret image SI into n shadow images called
shares such that any k& or more shares enable the “visual” recovery of the secret
image, but by inspecting less that & share one cannot gain any information on
the secret image. The “visual” recovery consists of xeroxing the shares onto
transparencies, and then stacking them. Any k shares will reveal the secret
image without any cryptographic computation.

In this paper we analyze the contrast of the reconstructed image for (k,n)-
threshold VCS. We define a canonical form for (k, n)-threshold VCS and we also
provide a characterizazion of (k, n)-threshold VCS. We completely characterize
contrast optimal (n — 1,n)-threshold VCS in canonical form. Moreover, for
n > 4, we provide, a contrast optimal (3, n)-threshold VCS in canonical form.
We first describe a family of (3, n)-threshold VCS achieving various values of
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contrast and pixel expansion. Then, we prove an upper bound on the contrast
of any (3, n)-threshold VCS and show that a scheme in the described family has
optimal contrast. Finally, for £ = 4,5 we present two schemes with contrast
asymptotically equal to 1/64 and 1/256, respectively.

1 Introduction

A (k,n)-threshold visual cryptography scheme for a set P of n participants is a
method to encode a secret image ST into n shadow images called shares, where each
participant in P receives one share. Any (qualified) set of k& or more participants can
“visually” recover the secret image, but (forbidden) sets of participants of cardinality
less that k have no information (in an information-theoretic sense) on SI. A “visual”
recovery for a set X C P consists of xeroxing the shares given to the participants in
X onto transparencies, and then stacking them. The participants in a qualified set
X will be able to see the secret image without any knowledge of cryptography and
without performing any cryptographic computation. Visual cryptography schemes
are characterized by two parameters: The pizel expansion, which is the number of
subpixels each pixel of the original image is encoded into, and the contrast which
measures the “difference” between a black and a white pixel in the reconstructed
image.

This cryptographic paradigm was introduced by Naor and Shamir [12]. Further
results on (k,n)-threshold visual cryptography schemes ((k,n)-threshold VCS, for
short) can be found in [1, 3, 5, 7, 9, 16]. The model by Naor and Shamir has been ex-
tended in [1, 3] to general access structures (an access structure is a specification of all
qualified and forbidden subsets of participants), where general techniques to construct
visual cryptography schemes for any access structure have been proposed. Droste [7]
gave an algorithm to construct (k,n)-threshold visual cryptography schemes. In [3]
the authors provide the first construction for (2, n)-threshold VCS having the best
possible contrast, for any n > 2. In [5], for any n, it is provided a complete characteri-
zation of (2, n)-threshold VCS having optimal contrast and minimum pixel expansion
in terms of certain balanced incomplete block designs. In [9] the authors showed that
by solving a suitable linear program one can compute the best contrast achievable
in any (k,n)-threshold VCS. In [9], for the cases k = 2 with n even and k = 3 with
n divisible by 4, it is described a (k,n)-threshold VCS achieving the best possible
contrast.

For a simple and non-technical introduction to visual cryptography see [15].

In implementing visual cryptography schemes it would be useful to conceal the
existence of the secret message, namely, the shares given to participants in the scheme
should not look as a random bunch of pixels, but they should be innocent looking
images (an house, a dog, a tree, ...). Naor and Shamir [12] first considered the problem
of concealing the existence of the secret message for the case of 2 out of 2 threshold
VCS. In [2] the authors gave a general technique to implement visual cryptography
schemes with such an extended capability. Droste [7] also considered the problem of
concealing the existence of the secret message and presented a technique to implement



such schemes.

Alternative reconstruction methods for visual cryptography schemes based on
“opaque” shares [13] and on polarized filters [4] have been recently proposed. Both
models make assumptions different from ours on the way the shares combine. Visual
cryptography schemes to encrypt coloured images are given in [10, 14, 16]. Recently,
authentication and identification methods for human users based on visual cryptogra-
phy have been considered [11]. In [6] the authors analyze the amount of randomness
needed to visually share a secret image.

In this paper we analyze the contrast for (k,n)-threshold visual cryptography
schemes. We are mainly interested in schemes achieving the maximum possible con-
trast for any fixed values of & and n. We refer to such schemes as contrast opti-
mal. We define a canonical form for (k,n)-threshold VCS, and characterize (k,n)-
threshold VCS (see Lemmas 3.9 and 3.10). We completely characterize contrast
optimal (n — 1, n)-threshold VCS in canonical form. Moreover, for n > 4, we present
a contrast optimal (3, n)-threshold VCS in canonical form. We first describe a fam-
ily of (3, n)-threshold VCS achieving various values of contrast and pixel expansion.
Then, we prove an upper bound on the contrast of any (3,n)-threshold VCS and
show that a scheme in the described family has optimal contrast. Finally, for & = 4
and 5 we present two schemes with contrast asymptotically equal to 1/64 and 1/256,
respectively.

2 The Model

We assume that the secret image consists of a collection of black and white pixels.
Each pixel appears in n versions called shares, one for each transparency. Each share is
a collection of m black and white subpixels. The resulting structure can be described
by an n X m Boolean matrix S = [s;;] where s;; = 1 iff the j-th subpixel in the i-th
transparency is black. Therefore the grey level of the combined share, obtained by
stacking the transparencies iy,...,,, is proportional to the Hamming weight w(V)
of the m-vector V.= OR(ry,,...,r;,) where r;, ... 1, are the rows of S associated
with the transparencies we stack. This grey level is interpreted by the visual system
of the participants as black or as white according to some rule of contrast.

Definition 2.1 Let k and n be two integers such that k < n and let P be a set
of n participants. Two collections (multisets) of n x m boolean matrices Cy and C;
constitule a (k,n)-threshold visual cryptography scheme with pizel expansion m if
there exist the value o and the set {(X, tX)}XgD;|X|=k satisfying:

1. Any (qualified) set X = {i1,12,...,7x} € P can recover the shared image by
stacking their transparencies.
Formally, for any M € Co, the “or” V of rows iy,ia,..., 1 salisfies w(V) <
tx — a - m; whereas, for any M € Cy it results that w(V) > tx.

2. Any (forbidden) set X = {i1,12,...,1,} C P, with p < k, has no information
on the shared image.



Formally, the two collections of p x m matrices Dy, with t € {0,1}, obtained by
restriclting each n X m matriz in C; to rows iy,1s, ..., 1y, are indistinguishable in
the sense that they contain the same malrices with the same frequencies.

Each pixel of the original image will be encoded into n pixels, each of which
consists of m subpixels. To share a white (black, resp.) pixel, the dealer randomly
chooses one of the matrices in Cy (Cy, resp.), and distributes row ¢ to participant
2. Thus, the chosen matrix defines the m subpixels in each of the n transparencies.
Notice that in the previous definition Cy is a multiset of n x m boolean matrices.
Therefore we allow a matrix to appear more than once in Cy (C1). Finally, observe
that the size of the collections Cy and C; does not need to be the same.

The first property is related to the contrast of the image. It states that when any &
participants stack their transparencies they can correctly recover the image shared by
the dealer. The value a is called contrast of the image and the set {(X,1x)}xcp:x|=k
is called the set of thresholds. (We use a slightly different terminology from [12]
where the contrast is called relative difference and the quantity o - m is referred to
as the contrast of the scheme.) We want the product of the contrast times the pixels
expansion to be as large as possible and at least one, that is, @ > 1/m. The second
property is called security, since it implies that, even by inspecting all their shares,
any set of less than k£ participants cannot gain any information in deciding whether
the shared pixel was white or black.

Notice that if a set of participants X is a superset of a qualified set X', then
they can recover the shared image by considering only the shares of the set X’. This
does not in itself rule out the possibility that stacking all the transparencies of the
participants in X does not reveal any information about the shared image. A strong
(k,n)-threshold VCS is a (k, n)-threshold VCS in which Property 1 of Definition 2.1
is satisfied for any set X of cardinality at least k, that is, the image is visible if and
only if £ or more participants stack their transparencies.

There are few differences between the model of visual cryptography we propose
and the one presented by Naor and Shamir [12]. Our model is a generalization of the
one proposed in [12], since with each set X of size k we associate a (possibly) different
threshold ¢x. Nevertheless, all the (k, n)-threshold VCS given in this paper have the
property that for any X, X’ C P with |X| = |X’'| > k, it results that {x = tx.

2.1 Basis Matrices

In this paper we consider only (k,n)-threshold VCS in which the collections Cq and
Ci have the same size, i.e., |Co| = |C1] = r. Actually, this is not a restriction at all.
Indeed, in Section 2.1 of [1] is has been shown how to obtain, from an arbitrary (k,n)-
threshold VCS, a VCS having the same parameters m, o, and {(X,1x)}xcp:x|=,
with equally sized Cy and C;.

All of the constructions in this paper are realized using two n x m matrices, S°
and S!, called basis matrices satisfying the following definition.



Definition 2.2 Let k and n be two integers such that k < n and let P be a set
of n participants. A (k,n)-threshold VCS with contrast o and sel of thresholds
{(X, tX>}Xg'p:|X|=k is realized using the two n X m basis matrices S and S' if the
following two conditions hold.

1. [fX = {i17i27"'7ik} - 'P; (i'8'7 ZfX is a quahﬁed Set), then the “or” V Of
rows iy,1z,...,0, of SO satisfies w(V) < tx — a - m; whereas, for S* il resulls
that w(V) > tx.

2. If X ={i1,12,...,1,} CPandp <k (i.e., if X is a forbidden set), then the
two p X m malrices obtained by restricting S and S* to rows iy,1iz,...,1, are
equal up to a column permutation.

The collections Cy and C; are obtained by permuting the columns of the corresponding
basis matrix (S° for Cy, and S* for C;) in all possible ways. Note that, in this case,
the size of the collections Cy and Cy is the same (it is equal to m!) and it is denoted by
r. This technique has been introduced in [12]. The algorithm for the VCS based on
the previous construction of the collections Cy and C; has small memory requirements
(it keeps only the basis matrices S® and S') and it is efficient (to choose a matrix in
Co (Cy, resp.) it only generates a permutation of the columns of S° (S*, resp.)).

3 Canonical (k,n)-threshold VCS

Most of the constructions found in literature for (k,n)-threshold VCS are realized by
using basis matrices. Among these constructions there are a few having the property
that all the columns of a given weight appear with the same multiplicity in the basis
matrices (see, for instance, [12, 3, 1, 7, 5, 9, 16]). Because of the relevance of this
property we review some of the constructions for (k,n)-threshold VCS having such a

property.

e Naor and Shamir [12] proposed a (k,k)-threshold VCS which is obtained by
means of the construction of the basis matrices S and S' defined as follows:
SY is the matrix whose columns are all the boolean k-vectors having an even
number of ‘1’s, and S is the matrix whose columns are all the boolean k-vectors
having an odd number of ‘1’s. In [12] the basis matrices of (2, n)-threshold VCS
are realized as follows: S° contains n — 1 columns of weight 0 and one column
of weight n; whereas, S* contains all the columns of weight 1. Naor and Shamir
[12] also proposed a (3, n)-threshold VCS whose basis matrices are realized as
follows: S contains n — 2 columns of weight zero and all the columns of weight
n — 1; whereas, S' contains all the columns of weight 1 and n — 2 columns of
weight n.

e In [3] the authors showed how to construct a (2,n)-threshold VCS which is
optimal with respect to the contrast. The basis matrix S! of such scheme is
realized by considering all the columns of weight |n/2]; whereas, the basis
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[n/2]

matrix S° contains ([:LJZIJ) columns of weight zero and ( 1_1) columns of

weight n.

e Droste [7] gave an algorithm to construct basis matrices of any (k, n)-threshold
VCS. The basis matrices realized by such an algorithm are constructed by
adding/deleting all the columns of particular weights to the basis matrices.

e Other (k,n)-threshold VCS in which all the columus of a given weight appear
in the basis matrices can be found in [5]. For instance, when k|n, setting
¢ =nl/ ((n/k)')k, we have that, for j = 0,...|k/2], the basis matrix S' is
realized by considering all the columns of weight (25 + 1)n/k each appearing
with multiplicity £ and the basis matrix S° contains all the columns of weight
29n/k each appearing with multiplicity £.

e In [9] basis matrices containing all the columns of a given weight each occuring
with the same frequency have been referred to as totally symmetric matrices.
The authors analyzed (k,n)-threshold VCS having as basis matrices totally
symmetric ones. They gave explicit constructions for k = 2,3, n.

e In [16] the authors proposed two constructions for (k, n)-threshold VCS whose
parameters are connected to notions in finite geometry and coding theory. The
basis matrices derived from such constructions contain all the columns of a given
weight.

In this section we consider basis matrices containing all the columns of a given
weight each occuring with the same frequency with few additional properties (see
Definition 3.1). We refer to such matrices as canonical. We show how to construct
for any (k,n) threshold VCS a canonical scheme preserving the contrast. Since we
are interested in optimizing the contrast, we focus our attention only on canonical
form.

Before we state our results we need to set up our notation. Let M be an n X m
matrix and let X C{1,...,n}and Z C {1,...,m}. Let M[X][Z] denote the | X|x |Z]
matrix obtained from M by considering its restriction to rows and columns indexed
by X and Z, respectively. Let M be a matrix in the collection Cy U Cy of a (k,n)-
threshold VCS on a set of participants P. For X C P, let My denote the m-
vector obtained by considering the or of the rows corresponding to participants in X;
whereas M[X] = M[X][{1,...,m}] denotes the | X| x m matrix obtained from M by
considering only the rows corresponding to participants in X. Let M be a matrix and
let D be a sub-matrix of M having the same number of rows, with M\ D we denote
the matrix obtained from M by removing all the columns of the matrix D. For sets
X and Y and for elements x and y, to avoid overburdening the notation, we will often
write z for {«}, zy for {z,y}, 2Y for {x}UY, and XY for XUY. Let ¢ be a boolean
vector, with € we denote the vector obtained from ¢ by complementing all its entries;
whereas, given a boolean matrix M with M we denote the matrix obtained from M
by complementing all its entries. For 2 = 0,1, with f.; we denote the multiplicity of
the column ¢ in S%, that is, fe; is the number of times the column ¢ appears in S°.
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By abusing of notation, we write ¢ € M to denote the fact that ¢ is a column of the
matrix M.

Definition 3.1 Let (S°, S') be the basis malrices of a (k,n)-threshold VCOS. They

are tn canonical form if, for 1 = 0,1, the following two properties are satisfied.
1. For any columns ¢ and ¢’ such that w(c) = w(c'), it results that fc; = for ;.

2. For any column ¢ it results that

foi= Jei if k is even
) feimi i ks odd.

A (k,n)-threshold VCS whose basis matrices are in canonical form is referred to as a
canonical (k,n)-threshold VCS.

To prove some of our results we need the following theorem.

Theorem 3.2 ([5]) Let S° and S' be two n x m boolean matrices. The malrices
SY and S' are basis matrices of a (k,n)-threshold VCS with pizel expansion m and
contrast a if and only if for all subsets X consisting of k rows there evist a boolean
matriz D[X| and an integer z, > a-m such that D[X] is a sub-matriz of both S°[X]
and S'[X], all the even columns appear in S°[X]\D[X| with multiplicity z,, and all
the odd columns appear in S'[X]\D[X] with multiplicity z, .

Theorem 3.2 follows directly from Theorem 7.1 of [5], and from Lemma 3.5 of [1].
More precisely, Theorem 7.1 of [5] establishes that a couple of basis matrices (79, T"),
such that the same column does not appear in both, realizes a (k, k) threshold VCS
if and only if there is an integer A for which T° contains all the even columns with
multiplicity A, and T contains all the odd columns with the same multiplicity A.
Since for any subset X of k rows, the restriction (S°[X], S'[X]) of (5°,S") defines a
couple of basis matrices realizing a (k,k)-VCS, then, from Lemma 3.5 of [1], S°[X]
and S'[X] have the following structure: There is a matrix D[X] and an integer zx
such that D[X] is a submatrix of both S°[X] and S*[X], all the even columns appear
in SO[X]\ D[X] with multiplicity zx, and all the odd columns appear in S*[X]\ D[X]
with the same multiplicity zx.

Example 3.3 Lel

00011110 111000 01
00011101 11100010
S°=|10001 101 1], St=|1 1100100
000710111 11101000
00001111 11110000

be two basis matrices realizing a (3,5) threshold VCS. If we consider the restrictions
of these malrices to the first three rows, il is easy to see that S°[X] (resp. S'[X])



conlains all the even (resp. odd) colums one lime and the common maltriz, up to a
column permutation, is

11
DIX]=|1 1
11

o O O
O OO

We will use the next lemma to prove that if there exists a (k, n)-threshold VCS
with contrast «, then there exists a canonical (k, n)-threshold VCS having the same

contrast a. A weaker version of the result stated by the next lemma was independently
proved in [16, Theorem 5.7].

Lemma 3.4 Let (S°, S') be the basis matrices of a (k,n)-threshold VCS with pivel

expansion m and contrast a. The matrices (B°, B'), defined as
(ST,59) ifk is odd

(B, B"Y=4{ __ __ o
(59,581) if k is even,

are the basis matrices of a (k,n)-threshold VCS with pizel expansion m and conlrast

a.

Proof. Assume that k is odd and let B = ST and B' = 59, Since (S°,S) are
basis matrices of a (k, n)-threshold VCS, then, from Theorem 3.2, it results that for
all subsets X consisting of k& rows there exist a boolean matrix DX and an integer
z, > a-m such that D¥ is a sub-matrix of both S°[X] and S'[X], all the even
columns appear in S°[X]\ DX with multiplicity z,, and all the odd columns appear
in S'X]\D¥ with multiplicity z,. Hence, for all subsets X consisting of k rows there
exist a boolean matrix G¥ = DX and an integer z, such that G¥ is a sub-matrix of
both B°[X] and B'[X], all the even columns appear in B°[X]\GX with multiplicity
z., and all the odd columns appear in B'[X]\G* with multiplicity z,. Therefore,
from Theorem 3.2, we get that (B°, B') are basis matrices of a (k, n)-threshold VCS.
It is immediate to see that the contrast of the (k,n)-threshold VCS having basis
matrices (B?, B') is the same as the contrast of the scheme we started with.

The proof for the case k even is analogous to the one for £ odd. 0

In [5] it was shown that if there exists a (k,n)-threshold VCS X, realized using
collections of n x m boolean matrices Cy and C;, having contrast a, then there exists
a (k,n)-threshold VCS realized by using basis matrices having the same contrast as
Y. We state this result as a lemma.

Lemma 3.5 Let Cy and Cy be the collections of malrices of a (k,n)-threshold VCS
with contrast a. Then, there exists a (k,n)-threshold VCS realized by using basis
matrices having contrast «.

Proof. Without loss of generality we can assume that r = |Co| = |Ci] (see Section
2.1 of [1]). Suppose that Co = {M®' ..., M®"} and C; = {M"' ..., M"'"}, where
o denotes the concatenation of two matrices. It is immediate to check that S° =
M% oo M% and S' = M"'o---0o M constitute the basis matrices of a (k,n)-
threshold VCS having the same contrast as 2. 0
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The next lemma holds.

Lemma 3.6 Let Cy and Cy be the collections of malrices of a (k,n)-threshold VCS
with contrast o, Then, there exisls a canonical (k,n)-threshold VCS realized by basis
matrices (S°, S') having contrast a.

Proof. Assume k odd. Let ¥ be a (k,n)- threshold VCS with pixel expansion
m and contrast a. Suppose that X is realized using collections of n x m boolean
matrices Cop and C;. By Lemma 3.5 there exists a (k,n)-threshold VCS realized by
using basis matrices (S°, S') having the same contrast a as ¥. For i = 0,1, let D'
be the collection of boolean matrices obtained from S* by permuting its rows. Now,
construct a new pair of matrices D° and D' by concatenating all the matrices in DY
and D!, respectively. Tt is immediate to see that DY and D! constitute basis matrices
of a (k,n)-threshold VCS having the same contrast as ¥. At this point, it results
that if a column of weight w appeared in S° (S'), then all the columns of weights w
appears in D° (D). Finally, let B® = DT and B' = D°. By Lemma 3.4, the pair
(B, B') represents the basis matrices of a (k,n)-threshold VCS having contrast a.
It is straightforward to check that A = B° o D® and A' = B' o D' are the basis
matrices of a canonical (k,n)-threshold VCS having contrast a.

The proof for the case k even is analogous to the one for £ odd. 0

Notice that in [9] the authors considered totally symmetric matrices which satisfy
only Property 1. of Definition 3.1 and they proved the analogous of Lemma 3.6.

In any canonical (k,n)-threshold VCS, by Property 1 of Definition 3.1, all the
columns of a given weight appear with the same multiplicity. Therefore, we define the
multiplicity of a column of weight j in S* as h;;, i.e., hj; = fe; if w(c) = j. Hence,
any canonical (k,n)-threshold VCS can be simply described by the pair of vectors
(hoos---shno) and (hoa,...,hy,1). Clearly, the pixel expansion m of a canonical

(k,n)-threshold VCS is equal to

£uf)-£u()
7=0 J 7=0 J

Moreover, it is easy to see that in a canonical (k, n)-threshold VCS, for any X, X' C P,

with | X| = |X'| = k, we have that {xy = tx: as in the original definition by Naor and

Shamir [12]. This means also that the optimal contrast is the same in our definition

as in the Naor Shamir’s definition (however, the minimal pixel expansion need not be

the same).
The next corollary is a consequence of Definition 3.1.

Corollary 3.7 Let ¥ be a (k,n)-threshold VCS in canonical form. If k is odd, then
for 3 =0,...,n, il results that h;o = h,_;1; whereas, if k is even, for j =0,...,n, i
results that hjo = h,—;0 and hjy = h,_;1.

There is another equality relating the h; ;’s which is based on the security of the
(k,n)-threshold VCS. From Condition 2 of Definition 2.2 in [1], for j = 0,...,n, it

9



has to be that w(S°[j]) = w(S'[j]). From which one gets that

L n—1 i n—1
hiol . =) hiil . :
Hence, in any canonical (k,n)-threshold VCS all the rows of the basis matrices have

the same weight. The next corollary is an immediate consequence of previous obser-
vation and of Lemma 3.6.

Corollary 3.8 The pizel expansion of any canonical (k,n)-threshold VCS is twice
the weight of any row of a basis matriz.

Proof. Suppose n is odd (n even) and let (59, S') be the basis matrices of a canonical
(k,n)-threshold VCS. From Corollary 3.7 it results that S'~' = S§7 (§' = §7), for
i = 0,1. Hence, as in any canonical (k,n)-threshold VCS all the rows of the basis
matrices have the same weight, we have that the weight of any row of a basis matrix
is half of the pixel expansion of the scheme. 0

Notice that if (A%, A') and (BY, B') are (k,n)-threshold VCS having contrast a,
then (Ao B, A' o B'), where o denotes the operator “concatenation” of two ma-
trices, is a (k,n)-threshold VCS having contrast . Hence, if (hog,...,hno) and
(ho1,...,hn1) are a pair of vectors describing a canonical (k, n)-threshold VCS hav-
ing contrast «, then, for any positive integer ¢, the vectors (¢ - hog,..., € hyo) and
(£-hoy..., L h,1)again describe a canonical (k, n)-threshold VCS having contrast a.
Therefore, if we want to minimize the pixel expansion m for a given value of the con-
trast a, we consider values hog,...,hu0,h01,. ..,y such that ged(hog, ..., hyo) =

ng(hO’], e ;hn,]> = 1.

Suppose that n > 2 is an integer, and 2 < k& < n. Forz = 0,1, let h; =
(hois---shyi) be an (n + 1)-tuple of non-negative integers. For i = 0,1, define S(h;)
to be the matrix in which every binary n-tuple of weight j occurs exactly h;,; times
as a column (0 < j < n). In the following we provide a necessary and sufficient
condition for the existence of (k,n)-threshold VCS realized by such matrices S(hyg)
and S(hy1). The following lemma holds.

Lemma 3.9 S(hg) and S(hy) are basis malrices of a (k,n)-threshold VCS with pizel

expansion m and contrast o« if and only if the following properties are satisfied:

15y (D) hio = Simg (3) hja = m.

J

n—p+p' (n— n—p+p’ (n—
2. ijgl b (]‘—;)/)hm = ijg, b (j_;,)hj,], for1<p<k—1and0 <yp <p,

5. 5020 (") (hjo — hja) = a - m.

Proof. Suppose that S(hg) and S(hq) are basis matrices for a VCS with the stated
parameters. The number of columns in S(h;) (1 = 0,1) is

" In
Ry
JZ:;)(J) !
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Therefore property 1 holds.
Next, let ¢ be a binary column p-tuple, where 0 < p < k — 1. Suppose that the
weight of ¢ is p’ (note that p’ < p). Fix p rows of S(hg) and S(hy), say the first p

rows. The number of occurrences of ¢ as a column of S(h;)[{1,...,p}] is
n—p+p’ B
> (n_ ‘7) hjis
= \J-p

for : = 0,1. Therefore property 2. holds.
Finally, we look at the weight of the OR of k rows of S(hy) and S(h;), say the
first k& rows. If we let X = {1,...,k}, then

w(S(h1)x) —w(S(ho)x) > a-m.

Let ¢; denote the number of occurrences of (0,...,0)" as a column of S(k;)[X], for
¢t =0,1. It is easy to see that

w(S(hZ)X) =m — €,

for : = 0,1. Hence,

n—k _k
w(S(hi)x)=m — Z (n . )hj,z'a
=0\ J
for 1 = 0,1. Therefore property 3. holds.
Conversely, if properties 1.-3. hold, it is easy to see that S(hg) and S(h;) are
basis matrices for a VCS with the stated parameters. 0

We can in fact simplify the statement of the above lemma, by observing that many
of the conditions are redundant. More precisely, property 2 of Lemma 3.9 considers,
for each 1 < p < k — 1, the restriction of the basis matrices to p rows, and requires
that the same subcolumns appear with the same frequencies. However, we can simply
check if the subcolumns of weight 1 < p’ < k — 1 appears with the same frequencies
in S(ho) and S(hq). Indeed, if this property is satisfied, the symmetric structure of
the matrices, assures that any restriction of S(ho) and S(h1) to 1 < p <k —1 rows
contains the same subcolumns with the same frequencies.

From a mathematical point of view, by repeated application of Pascal’s identity for
binomial coefficients to property 2 of Lemma 3.9, we obtain the following equivalent
formulation.

Lemma 3.10 S(hg) and S(hy) are basis matrices of a (k,n)-threshold VCS with pizel
expansion m and contrast o if and only if the following properties are satisfied:

150 (M) hio = Simo (2) hja = m.

J

2. For1 <p <k-1, Z?;é" (n;pl)hj,o = Z}:S)l (n;pl> hji.

3. Z?:_éc (n;k) (h]"O — hj,l) = o-m.

11



Example 3.11 Suppose £ = 2 and n = 4. The following example is from [5]. Let
ho = (3,0,0,0,3) and let h; = (0,0,1,0,0). This defines a (2,4) threshold VCS with

m = 6 and contrast o = 1/3:

of a construction we give in Section 4.2.

(0,0,1,0,0,0,0,9). This defines a (3,7)

a=1/10:
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7. The following example is an application
Let hy = (9,0,0,0,0,1,0,0) and let h; =
threshold VCS with m = 30 and contrast

The characterization of (k,n)-threshold VCS provided by Lemma 3.10, because

of Lemma 3.6, gives rise to a natural and simple formulation for computing their

optimal contrast for any fixed n and k in terms of linear programming. We set m = 1
without loss of generality since a is unchanged if all the h;;’s are multiplied by a
constant factor. The resulting LLP has only 2n + 2 variables.
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Maximize:

Subject to:

20 ki =
7=0
n—p' .

(n -p)(hj,o—hj,1):0 forp=1,...,k—1
7=0 .]
hjo =0 for 7=0,...,n
hji =0 for y=0,...,n

It 1s worthwhile to notice that our linear program is equivalent to, but simpler
than, the one given in [9]. In Appendix B are depicted tables whose entries have been
filled in by solving the previous linear programming problem for 2 < k < n < 11.
Also in [9] are tabulated some values of the contrast.

We can further simplify the previous LP formulation taking into account Corol-
lary 3.7. For odd values of k& the LP formulation can be written as follows.

Maximize:

Subject to:

I

n
(j)h” =

7=0
n—p' .
(njp)(hjvo_hn—Jv()):O fOT‘pI:1,._.’]{:—]
7=0
hjo>0 fory=0,....n

For even values of k the LLP formulation can be obtained similarly. This new LP
formulation is clearly simpler than the previous one as it uses only half of the variables
and it reduces the number of constraints.

In view of Lemma 3.6, if we are interested in getting schemes with a given contrast
or bound on the contrast itself, then we can restrict our attention to canonical (k,n)-
threshold VCS. Therefore, henceforth, unless otherwise specified, all (k,n)-threshold
VCS we consider/analyze are canonical (k, n)-threshold VCS.

13



4 Contrast Optimal (k,n)-threshold VCS

We recall that, for fixed values of k& and n, a contrast optimal scheme is a scheme
achieving the maximum possible contrast over all (k,n) threshold VCSs. Contrast
optimal (k,n)-threshold VCSs for £ = 2 and k£ = n, have already extensively studied
(see [5, 12]). It is interesting to point out that the basis matrices realizing the (k, k)-
threshold VCSs described in [12], and the basis matrices of the first construction
proposed in [5] for (2, n)-threshold VCSs are both in canonical form.

Notice that the same column cannot appear in both basis matrices of a contrast
optimal (k,n)-threshold VCS. This property is easy to verify. Indeed, if the same
column appears in both basis matrices, then by removing it we obtain a new scheme
having a better contrast than the one we started with. This property implies the
following fact.

Fact 4.1 In any contrast optimal (k,n)-threshold VCS whose basis matrices are in
canonical form, for 1 =0,....n and 1 = 0,1, it holds thal,

1. ]f hj,l—i > 0, then hm‘ =0.

2. If k 1s even, then h;; = hp_j;.

3. If k is odd, then hj; = hyp_j1-;.

As a consequence of above fact and because of Corollary 3.7, we have that if n is even

and k is odd then hy/o0 = hpjeq = 0.

4.1 Contrast Optimal (n — 1,n)-threshold VCS

In this section we characterize contrast optimal (n — 1, n)-threshold VCS whose basis
matrices are in canonical form.
The next lemma holds.

Lemma 4.2 Letn > 3. In any contrast optimal (n—1,n)-threshold VCS whose basis
matrices are in canonical form, the h;;’s satisfy:

1. hjo > 0 if and only if either j < n/2 and j is even or j > n/2 and j is odd.
2. hj1 >0 if and only if either 7 < n/2 and j is odd or j > n/2 and j is even.

Proof. Let (5% S') be the basis matrices of a canonical (rn — 1, n)-threshold VCS
which is contrast optimal. It holds that:

If yis odd and hj;; = 0, then hji;; > 0;
whereas, if 7 is even and hjo =0, then hji, 0 > 0.

(1)

Would it be otherwise we have h;; = hjy11 = 0 which is impossible as, by Theo-
rem 3.2, all the columns of weight j have to appear among the columns of S'[X],
where X is a subset of {1,...,n} of cardinality n — 1. Similarly, we can prove that if

14



J is even and h;o = 0, then it holds that A9 > 0.
We will prove that for any integer j < n/2 it holds that:

If j is even, then h;o > 0; whereas, if j is odd, then h;; > 0. (2)

Therefore, applying Corollary 3.7, the lemma holds.

Now assume that n is even and j < n/2. Suppose by contradiction that h;q = 0.
From (1) and by Fact 4.1 we have hj 19 > 0 and hjyq; = 0. Applying again (1) and
Fact 4.1 we get hjio1 > 0 and hjy99 = 0. Iterating the previous argument we get
that either h, 59 > 0 or hy/5; > 0 depending on whether /2 is even or odd which is
a contradiction (recall that h, /50 = hy,je,1 = 0). If j is odd, then we repeat the proof
for the case j even, mutatis mutandis.

If n is odd, then by Corollary 3.7 we have that h(,_1)/2; = h(n41)/2,, Where 1 = 0, 1.
At this point we repeat the proof for the case n even, mutatis mutandis. We get that
either h(n—l)/Z,O = 0 and h(n+1)/2’0 > 0 or h(n—l)/Z,l = 0 and h(n+1)/2,1 > 0 which is a
contradiction. Thus, the lemma holds. 0

The next lemma states the exact value of the h;; of any contrast optimal (n—1,n)-
threshold VCS whose basis matrices are in canonical form.

Lemma 4.3 Letn > 3. In any contrast optimal (n—1,n)-threshold VCS whose basts
matrices are in canonical form, the h;;’s satisfy:

o Ifn is even, then for j =0,...,[(n —2)/4], we have hyjo = hp_oj1 = % — 25;
whereas, for j =0,...,(n—4)/4], we have hyji11 = hn_@jyn0 = 5 — (27 +1).

o Ifn is odd, then for j =0,...,|n/4], we have hyjo = hp_zj0 = n—4j; whereas,
Jor j=0,....[(n—=>5)/4], we have hajy11 = hy_jy1)0 =n — (47 + 2).

Proof. Let ¥ be a contrast optimal (n — 1,n)-threshold VCS. Let (5%, S') be the
n X m basis matrices of ¥ and let a be its contrast. Let X be a subset of {1,...,n}
of cardinality n — 1 and let ¢ be a column of weight j, where n/2 < j < n. Suppose
7 is even. According to Theorem 3.2, the column ¢ has to appear at least o - m times
more in SY[X] than in S'[X]. Therefore, since ¥ is contrast optimal, by Lemma 4.2
we have that hj410— hj1 = a-m. A similar argument applies when j is odd. In this
case we obtain h;411 — hjo = a-m. For n even, recalling Lemma 4.2 and setting,
w.l.o.g., a-m =1, we get the following n/2 linear equations in n unknowns

hn—?j,l - hn—(?j-l—]),O = 1 fOI' ] = O, ey \_(n - 2)/4J (3>
hn—(2j+1),0 — hn_(gj_}_g)’] = 1 fOI' _] = 0, ey \_(n — 4)/4J

Summing up equations (3) and recalling that hnjapo = hnj2n = 0, we get that h, = n/2
from which we can compute the value of the other unknowns. Therefore, we obtain
that if n is even, then for j = 0,...,[(n — 2)/4], we have hyjo = hn_2j1 = 5§ — 27;
whereas, for j =0,...,|(n —4)/4], we have hqyj111 = hn_(2jsnyo = 5 — (25 +1).

If n is odd, then we set a-m = 2 and we repeat the proof for the case n even, mutatis
mutandis. i
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The results of the above lemma can be summarized as follows: If n is even, then, for

7=0,...,n,
Z—j ifjisevenand j <n/2
hjo=hn_ji =1 j—% ifjisoddand j>n/2
0 otherwise.

If n is odd, then, for 5 =0,...,|n/2],

n—2j5 ifjiseven and j < n/2
hjvo hn_j70 = .
otherwise.

and

n—2j ifjisodd and j <n/2
hjvl = hn_jvl = .
otherwise.
The next lemma holds.

Lemma 4.4 For anyn > 3 and for any contrast optimal canonical (n—1,n)-threshold
VCS the pizel expansion m is given by

%(HT/LQ if n is even
n((ni;)lp) if n is odd.

Proof. Assume n is even. We have that,
L n
m = Zhjp( )
§=0 J
l(n=2)/4] n L(n=2)/a] n
= — =23 / ——(27+1 /
2 (2 ]>(2j>+ . <2 (]+>><2j+1)

=0
nf2—1

- > (5-9(})

j=0

Since for any even integer r and any integer g it holds that, see [8, pag. 166],

> (5-9) () -5 (, 0
=)

On the other hand, if n is odd, then

"l /4] I
7=0 J 7=0 2j

then,
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We begin by simplifying the sum as follows:

zo-ofs) = Hle-(,7) -2 ()

Recall that

1257 n—1 5] n—1 _
S (M) = (0T ) =
s 29 —\2)— 1

J
for any positive integer n. Suppose n = 1 mod 4. Then we have the following:

Vgl(n_]) B L%J(n_l +L§J(n_1>_(n_1>
=\ 2 —~\ 25 AR n—l

oy Wy n—1
- 35 2 b)) - ()
~ L%J(n_1)+?l( n—1 )_(n_1)
N =\ 2 o\n—1-2j a-l
1

Suppose n = 3 mod 4. Then we have the following:

27 7] 5]
2 -1 4 -1 2 -1
o \ 2 o\ 2] =241 \ 2

Therefore, for n odd we have

%(n—l):{ %(2”—2+(E)> if n =1 mod 4

% (2”_2) if n =3 mod 4.



Similarly,

L) 7, 1 B %(2”‘2) if n=1mod4
N l<2”_2—(ﬁ;_11)) if n =3 mod 4.

2

Thus, the theorem holds. 0

Theorem 4.5 For any n > 3 and for any canonical (n — 1,n)-threshold VCS the
maximum conlrast o is given by

[%(HT/LQ)}_I if n is even

{%((;—_1;/2)}_1 if n is odd.

Proof. In the proof of Lemma 4.3, to compute the value of the h;;’s of any contrast
optimal (n — 1,n)-threshold VCS, for n even, we set a-m = 1; whereas for n odd, we
set - m = 2. Therefore, applying Lemma 4.4 the theorem holds. 0

It is worthwhile to notice that according to the previous lemma one has that in
any contrast optimal (n — 1,n)-threshold VCS a = ©(27"n~"/?). This is a lower
contrast than an (n,n)-threshold VCS.

4.2 Contrast Optimal (3,n)-threshold VCS

In this section we provide, for n > 4, a contrast optimal (3, n)-threshold VCS which is
also strong and has its basis matrices in canonical form. We first describe a family of
(3, n)-threshold VCS achieving various values of contrast and pixel expansion. Then,
for any fixed n > 4, we determine the scheme in this family having the best contrast.
Finally, we prove that the scheme has optimal contrast among all (3, n)-threshold
VCS by proving an upper bound on the contrast of any (3, n)-threshold VCS.

For any n > 4 and any integer 1 < g < n/2, consider the visual cryptography
scheme whose basis matrices are in canonical form, denoted by S(3,n,g), described
by the following h;;’s.

hoo = by = (" - 1) - (" - 11) and  hy_go=hy1 =1 (4)

g g—

whereas all the remaining h;;’s are equal to zero. This is a strong (3,n)-threshold

VCS as shown by the Theorem 4.7.

Example 4.6 If n =5, then g can be either 1 or 2. Let g =1. Then, hog = hs1 =

(5;1) — (i’j) =3, and hypy = h11 = 1. The corresponding basis malrices are,
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S0 = s

O OO OO
e R e B e B e Y @)
O OO oo
—_ = = = O
—_— = O =
——_ O = =
—_— O = =
O = = =
Il
— = = = =
— = = = =
— = = = =
O OO o =
S OO = O
OO = OO
o = O OO
—_ 0 O O O

Let g = 2. Then, hoy = hsy = (°3') = (32}) = 2 and hsp = hay = 1. The

2 2-1
corresponding basis matrices are,

001 1110000UO0TO0
001 00O0OT1T1T1U0U0°0
S=10001001001T10
0000100710101
(00000100101 1]
11 00001 1111 1]
110111000111
S'=11 11011011001
1111011010710
11111011010 0]

Theorem 4.7 For any n > 4 and any integer 1 < g < n/2, the scheme S(3,n,q)
described by (4) is a strong (3,n)-threshold VCS having pizel expansion and contrast

equal to
m =2 n—l and o= 9(n —29) \
g 2(n —1)(n —2)

respectively.

Proof. Let h; = (hoy, ..., hni), for i = 0,1, where the h;;’s are given by (4) and let
Sy(ho) and S,(hy) be binary matrices in which, for ¢ = 0,1, every binary n-tuple of
weight j occurs exactly hj; times as a column of S,;(h;). Then, S,(ho) and S, (k1)
satisfy the conditions of Lemma 3.10, where

() -G _ atn—29) o n—1
2" 2An—1)(n -2 and m—2< g )

g

o =

(5)

Indeed, it is immediate to verify that

()= (")) - (00 () -2 )
2 ()=() () -G =2
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Hence, Condition 1 of Lemma 3.10 is satisfied. Condition 2 is also satisfied because

of

] P v S e R (P B o Gy
and
o e P B i v ) R Vi

- ()50

Now, we prove that Condition 3 of Lemma 3.10 is satisfied, where o and m are as

given by (5). We have that

=3 n—3
Z ( ] )(hj,o - h’jJ) =
7=0

This proves that Condition 3 of Lemma 3.10 holds.

Finally, we prove that the scheme S(3,n,g) is strong. For any 3 < ¢ < n and for
any Y C {l,...,n} such that |Y| = £, the number of zero columns in S,(ho)[Y]
(S,(h1)[Y]) does not depend on the particular set Y, but only on its size £ since the
basis matrices are in canonical form. Hence, we refer to such a quantity as x§ (x}).

We have that

-1 -1 -/ -/
a=(1 )G (D)) e =)
g g—1 n—g g

Notice that when £ > g, then (::ﬁ) = 0; whereas, (”j) =0 when g > n — /1. We
define the function 3(¢), for 3 < ¢ < n, as 5(/) 2 XY — x;, that is,

n—1 n—1 n—1/ n—1/
=) -G)+G)-04)
g g— n—g g
To prove that the scheme is strong it is enough to show that 3(¢) > a - m, for
3 < ¢ < n. We next show that the function 3(¢) is non decreasing, by proving that
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B+ 1) = B(f) > 0. Indeed, this difference can be written as

n—~¢—1 n—/ n—/ n—/~—1
=0 = (7,1 )( J« ()07
n—g g g
_ (n—t—1 n—{—1
B g—1 n—g-—1
 (n—Ll-1 n—{—1
-\ g1 g=t )
Notice that if £ > g, then (nel)—()and Bl +1)—p(f) >0. Assume ¢ = g. Then
Bl+1)—=p(() = ( n—t= 1) —1. Since g < n/2 and £ = g, then g—1 < n—/¢—1. Thus,

B+1)—5(0) > O.g_P}inaHy, assume ¢ < g. Then
(n—0—1)! (n—0—1)!
1 — B = -
A=A = o= t=g =0 =g =1
(n—0—1)! Zi(n—g — ) —TZi(g — )

(=0l (n—l—g)!  TZin—g—75)-(g—7)

The above quantity is non-negative, as n — g — j > g — j for g < n/2. Therefore, the
function B(¢) is a non decreasing function. Hence, since §(3) > a - m, the scheme
S(3,n,g) is strong. 0

From the arguments used in the proof of the above theorem one can see that by
stacking together more than three transparencies from the scheme S(3,n,¢), the
image we recover becomes more visible (i.e., the difference between a white and a
black pixel is larger when we stack together more than three transparencies). When

we stack n — g < ¢ < n transparencies we have that 3({) = (”;1) — (:j) Since

m = 2(”;1), we get that the “contrast” in this case is equal to

sy () -0G2)  n-2

TG B CE)

Notice that, for fixed n, the contrast of the scheme given by Theorem 4.7 depends only
on the parameter g. Hence, the scheme achieving the best contrast among the schemes
S(3,n,g) is obtained by choosing the integer ¢ in the interval [1,r/2[, in such a way
that the quantity (n — 2¢)g is maximized. For real g the function (n — 2g)g is convex
N and reaches its maximum at g = n/4. Since g has to be an integer, a simple algebra
shows that the quantity (n —2¢)g reaches its maximum at g = [(n +1)/4]. Thus, for
any n > 4, the following h;,’s describe a strong (3, n)-threshold VCS achieving the
best contrast among the family of schemes S(3,n, g).

ho,o = hn,1 = (



whereas all the remaining h;;’s are equal to zero. The contrast of the scheme described
by the above hj;;’s is equal to

(=214 17
2(n — 1)(n — 2) ’ (7)

We now show that the schemes described by (6) is indeed a contrast optimal (3, n)-
threshold VCS.

Theorem 4.8 Let n > 4. In any (3, n)-threshold visual cryptography scheme it holds

that
(- 1
- Q(n—l)(n—Q) .

Proof. Let S and S' be the n x m basis matrices in canonical form of a (3,n)-
threshold VCS with contrast «. Since our aim is to prove an upper bound on the
contrast we do not loose of generality in considering basis matrices in such a form (see
Lemma 3.6). Let T = {2,...,n} and Z; = {j : S'[1][j] = 0}, that is, Z; denotes the
set of indices of columns of §* having a zero as first entry. Finally, let A° = S°[T][Z]
and A" = S'[T][Z1]. In other words, the pair of matrices A = (A% A') is constituted
by the sub-matrices of S and S! obtained by removing all the columns having a one
as first entry and removing the first row. Hence, up to a column permutation, the
basis matrices S® and S* are of the following form:

0...0‘1...1 0...0‘1...1

0 _ 1 _

i B

where BY and B' are boolean matrices. It is known (see Theorem 6.1 and Corollary
6.2 of [5]) that A® and A" are basis matrices of a (2,n—1)-threshold VCS. Now, denote

by a(A) the contrast of the (2,n — 1)-threshold VCS with basis matrices (A%, A").
Since by Corollary 3.8 m = 2w(S°[1]), then it is easy to see that the contrast a of

the scheme represented by (5%, 9") is equal to
o= —=, (8)

while the pixel expansion is equal to m = 2m’, where m/ is the pixel expansion of the

-1
scheme having basis matrices (A% A'), that is, m’ = Z hijq (n . ), where J is the
jedJ J
set of indices j for which A;; > 0 and j < n in A'. Let X be a set of two rows, we
have that A A0
Oz(A)< w( X)_w( X)

= 3
ml

Since w(A'[i]) = w(A°[i]), for i = 1,...,n — 1, we have that w(A%) — w(A%) is equal
) | in A°[X].

to the number of columns 0

o | in A'[X] minus the number of columns {
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Therefore, we get that

w(Ay) —w(A%) = > lhw (j:f) ‘h"‘f‘o(n:il)]
- a2 (20
S |(0) - (520)]

a(A) < € - (n_' 1) , (9)

J€J

Hence,

Notice that for any function g(z), for any positive function f(z), and for any non
empty set D which is a subset of both functions’ domain, it holds that

> ()

zeD < max =—+ g(x)
S f(x) ~ =€D f(z)
reD

Therefore, since J C {0,...,n — 1}, we have that

ghﬂl(j:f)_c:;)] < 03) - () (2
> by (" ]_ 1) o e (”]‘.1) i€d (n—1)(n — 2)

J€J

We have already seen earlier in this section that the function (n — 2j)j reaches its

maximum over the integers j € {0,...,n — 1} at j = [(n + 1)/4]. Therefore,

(n—2|2£]) (2]
(n—1(n—2)

The theorem then follows by (8). 0

a(A) <

Let as(n) be the expression (7). It is easy to see that nh_)rgo as(n) = 1/16. There-
fore, the construction for (3, n)-threshold VCS given at the end of Section 5 in [5] has

nearly optimal contrast asymptotically, as well as a small pixel expansion.

5 A Canonical (4, n)-threshold VCS

In this section we provide, for n > 4, a class of strong (4,n)-threshold VCS whose
basis matrices are in canonical form. We first describe a family of (4,n)-threshold
VCS achieving various values of contrast and pixel expansion. Then, for any fixed
n > 4, we determine the scheme in this family having the best contrast.
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For any even n > 4 and any integer 1 < g < n/2, consider the visual cryptography
scheme whose basis matrices are in canonical form, denoted by S(4,n,g), described
by the following h;;’s

hoo = hao = (177, eli= 020"

n/2—1 ng(n—g)
n—3 10
hn/270 = tn,g’ 'dIld h971 = h’)’L—g,l = <€7/12_;3> ) t":é] ( )

where 4, & = (Z:f) / ged {(Z:f), (n%_f’l)} and all the remaining h;;’s are equal to zero.

This is a strong (4, n)-threshold VCS as shown by the following theorem.

Theorem 5.1 For any even inleger n > 4 and any integer 1 < g < n/2, the scheme
S(4,n,qg) is a strong (4,n)-threshold VCS having pizel expansion and contrast equal

_mmAn—U(n—3> and o 9 =g)(n—29)*

= g(n —g) n/2—1 N 4n(n—1)(n—2)(n—3)’

to

respectively.

Proof. Let h; = (ho,...,hn;), for + = 0,1, where the hj;’s are given by (10) and
let S;(ho) and Sy(h1) be binary matrices in which, for : = 0,1, every binary n-tuple
of weight j occurs exactly h;; times as a column of S,(h;). Then, S,;(ho) and S, (k1)
satisfy the conditions of Lemma 3.10. Indeed, it is immediate to verify that

E0) = Pl ) s ()]

n/2—1 ng(n — g) n?(n — 2)
- T )
and
)= 0 - )
SN )\ () ) gn—g) An/2 1

Hence, Condition 1 of Lemma 3.10 is satisfied. To prove that Condition 2 of Lemma 3.10
is satisfied we have to show that, for £ = 1,2, 3, the following identity holds

505 P F 5o "

=0 i=0

Notice that, for £ = 1, we have

in 4 o n—3 \(n— 1)(n—29)2 (n— 1)
,722;) ( J )hm s (”/2 - 1) ng(n — g) g n/2
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and

( n—3 ) n(n—1)
=4, S
“\n/2 =1/ g(n —g)
Therefore, for £ = 1, we have that the identity (11) holds. (The cases £ =2 and ¢ = 3

are considered in Appendix A.) Now, we prove that Condition 3 of Lemma 3.10,
where a and rn are as given by (5), that is,

5 (n j 4) (hio = Rir) = 2(%9—(”2)_(5“6/—)23) (nT/Lz_—SJ (12)

=0

is satisfied. We have that

n=3\[m-Dm-2  Cn) (3+ (::;)}
tn,g + n—3 n—2
( ) [ n— g) (n/?—l) (g—l)
(n—2)"  (n—4)(n—6)
n—g) + 2n(n — 3)
(n—g-Nn-—g-2)(n—g-3) (9—1)(9—2)(9—3)]

g(n =2)(n =3) (n —g)(n—2)(n-3)

_ h,(n—29) ( n—3 )

2(n —2)(n —3)\n/2 -1

This proves that Condition 3 of Lemma 3.10 holds.

Finally, we prove that the scheme S(4,n,¢g) is strong. For any 4 < ¢ < n and for
any Y C {l,...,n} such that |Y| = £, the number of zero columns in S,(ho)[Y]
(S,(h1)[Y]) does not depend on the particular set Y, but only on its size £ since the
basis matrices are in canonical form. Hence, we refer to such a quantity as x9 (x}).

We have that
o bt (n—1)(n—-29* n-3 n—1/{
X0 = ¥ +tng
ng(n — g) n/2—1 Y\ n/2
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and

it ((/)) ()62

Notice that when £ > g, then (Z:ﬁ) = 0; whereas, (n;é) =0 when g >n — /1. We
define the function 3(¢), for 4 < ¢ < n, as §(/) 2 X7 — x}, that is,

e ) L vy R = (P

g—1

To prove that the scheme is strong it is enough to show that 3(¢) > a - m, for
4 < ¢ < n. Next we show that the function 3(¢) is non decreasing, by proving that
B+ 1) — B(f) > 0. Indeed, this difference can be written as

s[5 (T e (5

g—1

Assume ¢ < g. Then, after some algebra, to prove (¢ + 1) — 3(£) > 0 is equivalent
to prove that

ﬁ(n—g—3)+ﬁ(9—j)—2ﬁ<%—y)

Since j < £ < g < n/2, we have that the denominator is positive. Therefore, we have
to show that the numerator is non negative. To this aim we need some definitions
and properties of combinatorial quantities (see [8, pag. 47-48]). For any integer s > 0
and real x, the rising factorial power z° is defined as 2* = z(z + 1)+ (z + s — 1).
The rising factorial power is strictly related to the Stirling numbers of first kind. For
any integers n and k such that n > &k > 0 and n > 0, the Stirling numbers of first

kind, denoted by Z

and they are defined as

e[ 2] e [3)res] o

The Stirling numbers of first kind and the rising factorial powers are related by

] , count the number of ways to arrange n objects into k cycles

:ZM

k=0

Using the rising factorial powers and the above identity, we have that
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2
STES [t e
:[g 1](g_g+1)p
= gv;l]((n—g—€+1)p—2(g—£+1>p+(g—£+1)p>

By induction on p, it is immediate to see that (n —g—£¢+1)? —=2(n/2—(+1)P + (g —
L+ 1)P > 0. Indeed, setting a =n/2 — {41 and d = n/2 — g, we have to prove that
(a +d)? —2a? 4+ (a — d)? > 0. (Notice that « > d > 0.) For p =1, the basis of the
induction is true. By inductive hypothesis, assume that (a + d)? —2a? 4 (a — d)? > 0,
for some p > 1. We have that

(a+d)fP" 4 (a—dy*' = al(a+d)" + (a = d)] +d[(a +d)" — (a - d)]
> al(a+d)P + (a —d)’]
> 2a*'. (by the inductive hypothesis)

Hence, for ¢ < g, we have that (¢ + 1) — 5(¢) > 0.
Assume now g < { < n/2. Then, to prove that (¢ + 1) — 3(£) > 0 is equivalent to
prove that

= n
1 (5-)

II1(5-7
Since 7 < £ < n/2, we have that the denominator of the above expression is a positive
quantity; while, the numerator can be written as

(n—g—04+1)7"=2(n/2 — 0+ 1)7"

_ 1[5_1]@—9—“1)?’—2%[[;1](g—Hl)p

p p=1

- [ (e (o))

=1

o~
|

’\’ﬁ
Il

3

By induction on p, one can see that (n —g—/¢+1)? —2(n/2—{+1)? > 0. Therefore,
for g < < n/2 we have that (£ + 1) — 3(¢) > 0.
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Finally, assume that ¢ > n/2. Then,

" L (n—L=1 n—3
Bl+1)—pBl) = — (9n1_2)(/2 ‘)20.
(g—l)
Therefore, the function 3(£) is non decreasing. Hence, since 3(4) > a-m, the scheme

S(4,n,g) is strong. 0

Notice that, for fixed n, the contrast of the scheme given by Theorem 5.1 depends
only on the parameter g. Hence, for fixed n, the scheme achieving the best contrast
among the schemes S(4,n,g) is obtained by choosing the integer ¢ in the interval
[1,n/2[, in such a way that the quantity

g(n — g)(n — 29)*
dn(n —1)(n — 2)(n — 3)

(14(9, 'fL) =

is maximized. For real g and for fixed n, a simple algebra shows that the function g(n—
g)(n—2g)%, with g € [1,n/2[, is convex N and reaches its maximumat g = (2—\/5)7@/4.
Since ¢ has to be an integer, we have that g can be either equal to |(2 — \/?)n/llj or
equal to ]—(2—\/5)77/4-‘ For any fixed n > 4, let g, € {\_(2 - \/5)17/4], [(2 — \/5)77/4-‘}
be the integer which maximizes a4(g,n). One can easily see that nh_}r{)lo ay(gn,n) =

1/64.

Remark 5.2 Theorem 5.1 holds only when n is even. If n is odd, then, by applying
the technique given in Theorem 5.1, we construct a (4, n+1)-threshold VCS, and then
we consider only the first n rows of the basis matrices of such scheme. Therefore, for
any odd n > 4 and any integer 1 < g < n/2, there exists a strong (4, n)-threshold
VCS having pixel expansion and contrast equal to

._ﬁﬂéiiﬁ( nt1-3 ) g4 1—g)(n+1—29)
gt 1= \(n+1)/2 -1 ~ dn(n+ )(n—)(n—2)

respectively.

6 A Canonical (5, n)-threshold VCS

In this section we provide, for n > 5, a class of (5,n)-threshold VCS whose basis
matrices are in canonical form. Similarly to the previous cases, we first describe a
family of (5,n)-threshold VCS achieving various values of contrast and pixel expan-
sion. Then, for any fixed n > 5 we determine the scheme in this family having the
best contrast.

For any two integers £ and g such that 1 </ < g < n/2, the (5, n)-threshold VCS
whose basis matrices are in canonical form, denoted by S(5,n,/,¢g), is described by
the following h;;’s:

hg70 = hn_gvl = t(n,l,g)’ hn_['vo = h[-v] = S(n,[,g)’ and h070 = hn‘v] = T(n,l,
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where

(=) - (=) (= )

/ _ , itig _'tm,g . o )
(n,8,9) ng{(‘Z:f) B (2:;:)’ (3:411) B (3:3)} Stn,t,9) (n.t,9) [(g_f) - (Z—g)}

n—4 n—4 n—4 n—4
Tt = %ea [\ g ) T eza)| e [\ g ) T g 2]

and all the remaining h;;’s are equal to zero.

Theorem 6.1 For any two integers { and g such that 1 < ¢ < g < n/2, the scheme
S(5,n,0,g) is a canonical (5,n)-threshold VCS having pizel expansion and conlrast

equal to
e () () - G0+ [G)+ G20 C4)
. g Oln—g)n— 20— 20
S 2= 2g)(n = D = 2)(n = {n — )
respectively,

Proof. It is easy to see that Condition 1 of Lemma 3.10 is satisfied as the basis
matrices of the scheme S§(5,n,/, g) are one the complement of the other. To prove

that Condition 2 of Lemma 3.10 is satisfied we have to show that, for 1 < ¢ <4, the
following equality holds

n—q / n—q /
3 (” . q) =S (” . q) hjo. (14)
=\ ]

=0

We have that
”f (n - q) . . (n - Q> (521) = (;23) o (n - q)
N ‘71 = n,l,g n— n— n,f,g
=0\ J ! WO )G -G M\ -y

and

n—4 n—4 n—gq
t("yzvg) q o g — 4 + t("yzvg) q '

Therefore, equality (14) is satisfied if and only if the quantity
n—4 n—4
A n7 £7 = A - - - 15
(n:£:9) (=) - () l (-4 g g—4 (15)
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is equal to

S =1 [ | [ G o R

-1 £—-3

If we substitute ¢ for 4 in (16) we get expression (15). Therefore, (14) is satisfied
for ¢ = 4. We will prove that equality (14) holds when ¢ = 1 and 4 < ¢ < g. (The
remaining cases are analyzed in Appendix A.)

Note that A(n,, g) can be written as

@ig[TKQQXf —ﬂ(n—4)Vn—z—1xn_z_2xn_z_3)_g_3]

(7;:;1 [”—(5:1)(6:2‘)—2 _1] (-3 (6 —1)(0—2) n—1{
_(n—4) l(n—g—1)(n—g—2)(n—g—3) B 9—3]
9-3 9(g =19 =2) n—g

which is equal to

(os) { i e e

g—3

After some algebra, we get that the above expression is reduced to

n—4\(n—1)(n—2)(n—3)(n —2g9)(g—{)(n — € —g)
(9 - 3) 9l(g — (g —2)(n —)(n —g) ' (17)

We can rewrite B(n,?,g,1) as:

(o) "=t -1 ( —4) l(n_ D =2)(n=3)  (n—1)(n—2)(n —3>]

(Z:::) {(”—(7&3%?_—2@)—2) _ 1} {—3 L0 =1)(l—=2) (L=1)l=2)(n—-1)
_(n - 4) [(n —1)(n—2)(n —3) _ (n—1)(n—2)(n — 3)]
g—3 9lg—1)(g-2) (9—1(g—=2)(n—g)

which is equal to

(n— —1)(n— —2) N (n—l)(n—?)(n—B) B (n—l)(n—Q)(n—B)
(n—4) {[ e - 1) "S5 ity )
qg—3

(n—t=1)(n—t=2) _
(s — 1

_l<n—1><n—2><n—3> <n—1><n—2><n—3>]}_

9lg = Dlg = 2) (9—1D(g—2)(n—g)
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A simple algebra shows that the above expression reduces to (17). Therefore, when
g=1and 4 </ < g equality (14) is satisfied.
To prove that Condition 3 of Lemma 3.10 is satisfied we have to show that

(Y1 "

We show that (18) holds for 4 < ¢ < ¢g. (The cases ]| </ < g<3and 1 </{<3
with g > 4 are considered in Appendix A.) It is immediate to see that equation (18)
is satisfied if and only if:

n

2 (n—5

. h]"o—h]"l
J-:0< J )( ): g = )(n = g)(n = 2g)(n — 2() .9
m 2(n +20 —2g)(n —1)(n —2)(n — 3)(n — 4)

We have that

”i (n ; 5) (hjo = hjn)
stwt) |71 = G2 + G20 = (0]~ toe (59 - 029 + 050) - 6]
seay (D + 7N = GZD ]+t Q)+ CZD = (59)]

sta) G20 = GID] =t (G2 = C2D)]

Sty [0+ (7 = G20 + ey [+ G0 = (59

a2, (2 = ()] b= 1., [(2) — (5]
¢ Z 500 [(2) + (7)) = (022)] 200 () + (G2 - (59

It is easy to check that the following three equalities hold.

l(n — 25)(n2 —nl —6n+ 0>+ 11)
c 2(n—3)(n—4)(n2—n£—3n+2€2+2)'

| 2

b B (n? —ng—6n+g°>+11)

a (nQ—nE—Gn—}—E?—I—ll)'

g _ l(n — 25)(2712 —3ng —3n + 2¢* + 2)

c (n—Qg)(n—g)(n2—nf—Sn—l—QﬁQ—l—Q).
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Since (a — b)/(c + d) = % we have that

stwea) |(13) = (020)] = tonew [G23) = G23)]
sty (1) + (77) = (28]t [ ) + G3) = (757)]

can be rewritten as

fn—20)(m* —nl—6nf L 4+11) IR == )
. _ 2 . 2 £(n—20)(2n2 =3ng—3n+2g92+2 )
2n=3)(n—4)(n* —nl=3n+204+2) |1 4 (n(_zg)(7)1(_g)(n2 —i£—3n+92£2+)2)

It 1s simple, but tedious to check, to see that the previous expression reduces to

(g = O)(n — g)(n — 2g)(n — 20)
2(n + 20 — 29)(n — 1)(n — 2)(n — 3)(n — 4).

Therefore, Equation (18) is satisfied and the theorem holds. 0

Notice that, for fixed n, the contrast of the scheme given in the above theorem
depends only on the parameters £ and g. Therefore, if we want to get from the
construction given by Theorem 6.1 the scheme achieving the best contrast we have
to choose, for a fixed n, the integers £ and g, where 1 </ < g < n/2, in such a way
that the quantity

(g = O)(n —g)(n — 2g)(n — 20)
n+ 20 —2g)(n—1)(n —2)(n —3)(n —4)

as(l,g,n) = o

is maximized. Choosing £ and ¢ proportional to n, setting / = v-n and g = § - n,
where v and ¢ are constant to be determined later such that 0 < v < d < 1, we have
that

(6 =) = (1 = 26)(1 — 29)n’
2(1 +2y —=28)n(n —1)(n —2)(n — 3)(n — 4)'

as(y-n,6-n,n) =

One can easily see that

, 70 =) (1 = 8)(1 —25)(1 - 2)
i as(y -0, d-n,n) = 2(1 + 2 — 26) '

For real v and §, with 0 < v < § < 1, by using the system Mathematica™, we have
seen that, for fixed n, the function y(§ — v)(1 — 6)(1 — 26)(1 — 27)/2(1 + 2y — 20)

reaches it maximum at (7,4) = (0.0954913, 0.345492) and the above limit is equal to

1
956

Therefore, there are (5,n)-threshold VCS that, for large n, have contrast almost
1/256.

=2

lim as(¥ - n,

n—0o .n’n)
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7

Conclusion

In this paper we have analyzed the contrast of the reconstructed image for (k,n)-
threshold VCS. We have defined a canonical form for such VCS and we have also
provided a characterizazion of (k,n)-threshold VCS. Several open problems arise.
For instance, we conjecture that the (k,n)-threshold VCS, for & = 4 and 5, have
an optimal contrast. Moreover, further research could be done in finding a closed
formula for the optimal contrast for general (k,n)-threshold VCS.
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A Appendix A

In the following we show the computation omitted from the proof of Theorem 5.1.

e Proof that the equality (11) in Theorem 5.1 is satisfied for the case { = 2. We
have that

o L () e 1Y)

_ t( n—3 ) l( —1)(n — 2g)? +2(n—2)]

"I\n/2 -1 ng(n — g) n
(L—?))L —2ng —n + 2¢*
= 1,
n/2—1 g9(n—g)

and

H("fg)hj,l _ i ( n—3 )w

o2 1)

_ n—3 (n—g—1) g-—1
- t"”(ﬂ/?—l)l g +n—9']

_ n—3 \n?—2ng—n-+2g*
o m\n/2 -1 g(n—g) '

Therefore, for £ = 2, we have that the identity (11 in Theorem 5.1 holds.

e Proof that the equality (11) in Theorem 5.1 is satisfied for the case £/ = 3. We
have that

(15 o = e[ e ()]
)

= (nT/LQ_—Bl) l n;(nn—_g)29>2 += ; 4]

and

S (77 -
(et (o 3) ()G (o))
that is,

(n= =29 n2=2_(7)+ ()
ng(n — g) n/2 (”—2>




which turns out to be equivalent to
(n —1)(n — 2g)? +n—4 _ (n—g—1)(n—g—2)
ng(n — g) n g(n —2) (n—g)(n—2)

A simple algebra shows that the above equality holds.

In the following we show the computations omitted from the proof of Theorem 6.1.
Recall that equality (14) holds if and only if the expression (15) is equal to the
expression (16). Now, we show that equality (14) is always satisfied.

e For ¢ =2 and 4 </ < g, we must show that
A(n,l,g) = B(n,l,g,2)

In Theorem 6.1 we proved that A(n, ¢, g) is equal to (17). Notice that B(n,?, g,2)
can be written as

(o) [T — 1] (n—4> l(n—f—l)(n—zxn—:ﬂ_<n—2>< ~3)
(Tg:g) {—(”—éjggz_—%—ﬂ — 1} (-3 ((0—1)(—2) (¢ —2)(n—1)
_(n—4> [(n—g—l)(n—Z)(n—?)) B (n—Z)(n—S)]
g—3 9lg —1)(g —2) (9—2)(n—g)

which is equal to

(o-D)(a=2) =) (=2)(n=0)

(n _ 4) { [ﬁn—_g—%n—_g—?l _ 1} {(n—f—l)(n—2)(n—3) _ (TL—Z)(n—B):|

g-3 =il
B [(n—g—l)(n—Q)(n—?)) B (n—Q)(n—fi)H
9lg —1)(g —2) (9=2)(n—9g)])

A simple algebra shows that the above expression can be reduced to (17). There-
fore, equality (14) is satisfied when ¢ =2 and 4 </ < g.

e For ¢ =3 and 4 </ < g, we must show that

A(n,l,g) = B(n,l,g,3)

In Theorem 6.1 we proved that A(n, ¢, g) is equal to (17). Note that B(n,/, g,3)

can be rewritten as

(9=1)(9—=2) —
(Z:;l) {K_M_l”—(;::)(ﬁ:;)—Q - 1} (-3 (0 —1)(0 —2) (n— 1)
_(n—4) l(n—g—l)(n—g—Q)(n—?)) (n—3)]

g—3 a

(”“‘)[wwl—l}(n—4)l(n—f—l)(n—f—zxn—s) (n—3)

9(g —1)(g —2) (n—g)
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which is equal to

9-3 Ba= En%?)_l}

)
)
_ l(ﬂ—q— (n—g—2)n—-3) (n—3 ]}
(g—1D(g—2) (n-9)])"
A simple algebra shows that the above expression can be reduced to (17). There-
fore, equality (14) holds for ¢ =3 when 4 </ < g.

(n—g—1)(n—g—2) n—_— 1 (n—=£—=2)(n=3) (n—3)

(n—4) {[ e 1] | = ——]
1
1
)

Forg=1,¢=1 and g = 2, we have that

A(n,l,?):<n_3)2(n_4) and B(n,1,2,1) = (n—3)2(n— )

Therefore, A(n,1,2) = B(n,1,2,1) and equality (14) in Theorem 6.1 is satisfied.

For ¢g=1,¢ =1 and g = 3, we have that

An,1,3) = (n—2)(n—4)(n —6) and  B(n,1,3,1) = (n—2)(n—4)(n —6).

3 3
Therefore, A(n,1,3) = B(n,1,3,1) and equality (14) in Theorem 6.1 is satisfied.

For ¢ =1, ¢/ =2 and g = 3, we have that

A(n,2,3) = (n - 1>(n1_25>(n —6) and B(n,2,3,1) = (n — 1>(n1_25><n _ 6>'

Therefore, A(n,2,3) = B(n,2,3,1) and equality (14) in Theorem 6.1 is satisfied.

For ¢ =2, =1 and g = 2, we have that

— —4 — —4
An,1,2) = (n 3)2(” ) and B(n,1,2,2) = (n 3)2(” ),
Therefore, A(n,1,2) = B(n,1,2,2) and equality (14) in Theorem 6.1 is satisfied.

For ¢ =2,/ =1 and g = 3, we have that

A(n,1,3) = (n = ; 4)n — 6) and B(n,1,3,2) = (n —2)(n ; 4)(n — 6>.

Therefore, A(n,1,3) = B(n,1,3,2) and equality (14) in Theorem 6.1 is satisfied.
For ¢ =2, { = 2 and g = 3, we have that
_ 6)

(n — 1)(n1—25)(n —6) and  B(n,2,3,2) = (n — 1)(n1—25)(n

Therefore, A(n,2,3) = B(n,2,3,2) and equality (14) in Theorem 6.1 is satisfied.

A(n,2,3) =

1



For ¢g =3, /=1 and g = 2, we have that

(n—3)(n—4)
2

(n—3)(n —4)

A(n,1.2) =
(n,,) 9

and B(n,1,2,3) =

Therefore, A(n,1,2) = B(n,1,2,3) and equality (14) in Theorem 6.1 is satisfied.
For ¢ =3,/ =1 and g = 3, we have that

(n —2)(n —4)(n - 6) (n = 2)(n —4)(n - 6)
3 3

Therefore, A(n,1,3) = B(n,1,3,3) and equality (14) in Theorem 6.1 is satisfied.

A(n,1,3) =

and B(n,1,3,3) =

For ¢ =3, { = 2 and g = 3, we have that

(n—=1)(n=5)(n —6)
12

(n—=1)(n=>5)(n— 6).
12

A(n,2,3) = and B(n,2,3,3) =

Therefore, A(n,2,3) = B(n,2,3,3) and equality (14) in Theorem 6.1 is satisfied.

Forg=1,¢=1and g > 4, we must show that A(n,1,¢9) = B(n,1,¢,1). Notice
that

o) (n—4>H<n—g—1><n—g—z>_1]<n_4>

g-3 (9—1lg—2)
_[(n—g—l)(n—9—2)(n—g—3)_(9—3)]}
9(g— g —2) (n—g)
and

_ (n—4 (n—g—])(n—g—?)_ .

Blalal) = (9—3)H (9 =19 —2) 1]< ?)
B [(n —1)(n —2)(n —3) B (n—1)(n —2)(n — 3)]}
9(g —1)(g —2) (g—=D(g-2)(n—-9g)|)

After some algebra A(n,1,¢g) and B(n,1,¢,1) can be reduced to
(2 24) =220 =g 1)

g-3 99 =2)(n - g)

Therefore, equality (14) in Theorem 6.1 is satisfied when ¢ = 1, £ = 1 and
g =>4
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For g=1, /=2 and g > 4, we must show that A(n,2,¢9) = B(n,2,g,1). Notice
that

| (- [[EEEEEE - -9 )
(n,2,9) = g3

(n—4) 2
B [(n—g—l)(n—g—Q)(n—g—?)) _ (.q—S)H
9lg—1)(g -2 (n—g)
and
" — (n=o=D(nog=2) _ | [(=Dn=2) _
B(n,2,9,1) = ( _;‘:) {[ (=12 (17%4) (n—=1)]
l(n— Din—2)(n—=3) (n—1)(n —2)(”—3)”_
99—y —2) (9=1)(g—=2)(n~-g)

After some algebra A(n,2,g) and B(n,2,g,1) can be reduced to
(12 4) =Dt 2 g2
g=3 29(9 = 1)(n —g)

Therefore, equality (14) in Theorem 6.1 is satisfied when ¢ = 1, £ = 2 and
g =4

For g =1, =3 and g > 4, we must show that A(n,3,¢9) = B(n,3,g,1). Notice
that

n—4)(n—5
(O

(n—g=1)(n—g—2) (n—1)(n=5)(n—6)
”/—4){[ (9=1)(s—2) _]} 6

(n—g—-1Umn-9g-—2)(n—-9g—3) (93
- 99— 1)(g—2) *Xn—m}
and
(n=g=1)(n=g=2) _ 1] [(n=D)(n=2)(n=3) _ (n=1)(n=2)
B(n,3,9,1) = (Z - ;1) { e 1J_L — 1 =]
_(n —1)(n —2)(n —3) N (n—1)(n —2)(n — 3)}
9(g—1)(g —2) (g—1(g—-2)(n—-9g) )

After some algebra A(n,3,g) and B(n,3,¢,1) can be reduced to
(n - 4) (n—1D(n—=2)(g =3)(n —29)(n—g—3)
9-3 39(9 —1)(g —2)(n —g)
Therefore, equality (14) in Theorem 6.1 is satisfied for g =1, £ = 3 and g > 4.




For g =2,/ =1 and g > 4, we must show that A(n,1,¢9) = B(n,1,g,2). Notice
that

B(n,1,9,2) — (’QL:;‘I) {[(n—g—l)(n—g—z) _1] (n—2)

(9—1)(g—2)
B [(n—g—l)(n—Q)(n—?)) B (n—2)(n—3)]}
g(g—1)(g—2) (9=2(n—-9g) ]}

After some algebra B(n,1,g,2) can be reduced to
(12 #) =23 2= =
g-3 9(g —2)(n —g) '

Therefore, equality (14) in Theorem 6.1 is satisfied when ¢ = 2, £ = 1 and
g =>4

For ¢ =2, ¢/ =2 and g > 4, we must show that A(n,2,g9) = B(n,2,¢,2). Notice
that

) = (121 (o L

g—3 (n—4)
B l(n—g—l)(n—Q)(n—iﬂ B (n—Q)(n—3)H
9(g—1)(g—2) (g=2)(n—9g)])

After some algebra B(n,2,g,2) can be reduced to
(12 4) e =3 e =
g—3 29(g —1)(n — g) '

Therefore, equality (14) in Theorem 6.1 is satisfied when ¢ = 2, £ = 2 and
g =>4

For ¢ =2,/ =3 and g > 4, we must show that A(n,3,¢9) = B(n,3,¢,2). Notice
that

n—4)(n—-5
(=005 _

_l<n—g—1><n—2><n—3> <n—2><n—3>”_

_ (n=0=D)(n=g=2) _ 4] [(n=2)(n=3)(n=4) _ (}, _ 9
B(n,3,9,2) = (" 4) {[ (G=1)(s=2) ] [ 6 ( )}

9lg =19 -2) (9 =2)(n—9)
After some algebra B(n,3,g,2) can be reduced to
(” - 4) (n—1)(n=2)(g =3)(n —29)(n — g —3)
9-3 39(9 —1)(g —2)(n —g)
Therefore, equality (14) in Theorem 6.1 is satisfied for ¢ =2, £ = 3 and g > 4.
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e For g =3,/ =1and g >4, we must show that A(n,1,g) = B(n,1,g,3). Notice
that

e T R e eI (TR

g-3 (9—1)(g—2)
_[(n—g—l)(n—g—Q)(n—i*) B (n—3)]}
9(g —1)(g - 2) (n—9)] )"

After some algebra B(n,1,g,3) can be reduced to
(22 4) =2l s 25 =g
g-3 9(g —2)(n —g) .

Therefore, equality (14) in Theorem 6.1 is satisfied when ¢ = 3, £ = 1 and
g =4

e For g =3,/ =2and g >4, we must show that A(n,2,g) = B(n,3,g,3). Notice
that

n — %_1 (n—3)2(n—4)

B(n,2,9,3) = (g_g){[ (=1 )(n_4)H )
_l(n—g—l)(n—g—Q)(n—?))_(n—S)]}
glg—1)(g —2) n—g)| [

After some algebra B(n,2,g,3) can be reduced to
(12 4) =3 2 = =
9-3 29(g —1)(n —g) '

Therefore, equality (14) in Theorem 6.1 is satisfied when ¢ = 3, £ = 2 and
g =4

e For g =3, (=3 and g > 4, we must show that A(n,3,g) = B(n,3,g,3). Notice
that

"—4){{%4[%_@

g—3 =0=5]

_[(n—g—l)(n—g—Q)(n—i*) (n—3)”_

B(n,3,9,3) = (

99— 19 —-2) (n—g)
After some algebra B(n,3,g,3) can be reduced to

(” - 4) (n=1)(n=2)(g =3)(n —29)(n — g —3)
9-3 39(9 —1)(g —2)(n —g)
Therefore, equality (14) in Theorem 6.1 is satisfied for ¢ =3, £ = 3 and g > 4.
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In the following we prove that equality (18) in the proof of Theorem 6.1 holds for
the cases 1 </ <3 with g >4 and 1 </ < g < 3. In order to prove (18), we must
show that

po o[ = (2] =t () = ()
o 1)+ ()= (2] 7t [0) + 02) — (5]

is equal to

A lg—=0)(n—g)(n—2g)(n—20)
Dinb.9) = S 2 m = ) = =) =)

Recall that in the proof of Theorem 6.1 we have defined

T | I ) b=ty [(20) — (23]
25,0 [+ (7= ()] 4=t () + (21 - (5]

o If /=1 and ¢ > 4 it holds that:

a 1 b (n?—ng—>6n+11+ g%
¢ 2n-2) a (n—3)(n—4)
and
d  (2n® =3gn —3n +2¢* +2)
R R TICEE)
Since

(a—b) _a(l-2)
(c+d)  c(1+19)

(21)
we have that

(n—g)(n—2g)(g—1)
Q(n —2g + 2)(n — 1)(n — 3)(n — 4)

F(n,1,9) =

and

_ (n—g)(n—29)(g—1)
Din,1,9) = 2(n—2g+2)(n — )(n—3)(n —4)

Therefore, equality (18) is satisfied.
o If /=2 and ¢g > 4 it holds that:

a (n—5) b_(nQ—ng—6n+11+g2)

¢ (n2=5n+10) a (n—3)(n —5)

and

d 2(2n2 —3gn — 3n + 2¢* + 2)(n —4)

¢ (n —g)(n —2g)(n? — 5n + 10)

viil



From (21), we have that

B (n—g)(n —2g)(g — 2)
F(n,2,g) = (n—2g+4)(n—1)(n —2)(n—3)

and
(n—g)(n —2g)(g —2) _
(n =29+ D)(n— D(n—2)(n—3)

Therefore, equality (18) is satisfied.

D(n,2,q9) =

If /=3 and g > 4 we have

3(n—5)(n —6) b (n? —ng —6n+ 11 + ¢*)

a e

(n(n—1)(n=2)+(n—4)(n—=>5)(n—6)) a (n—4)(n—=05)

and

d 3(n— 6)(2n® — 3gn — 3n + 2¢° + 2)
— (n—g)(n —2g)(n? — 6n + 20)

From (21), we have that

3(n — g)(n —2g)(g — 3)(n — 6)
2(n —2g+46)(n —1)(n —2)(n —3)(n —4)

F(n,3,9) =

and
3(n —g)(n —29)(g — 3)(n —6)
2(n —2g+46)(n —1)(n —2)(n —3)(n — 4)'

Therefore, equality (18) is satisfied.

D(n,3,9) =

If /=1 and g = 2 it i1s easy to see that

1
F(n,1,2) = D(n,1,2) = .
(n,1,2) = D(n. 1.2) = 50—y =3
If /=1and g = 3 it is easy to see that
B B (n—6)
F(n,1,3) = D(n,1,3) = S —1)(n — )"
If / =2 and g = 3 it is easy to see that
(n - 6)

F(n,2,3) = D(n,2,3) =

2(n —1)(n — 2)'

Therefore, equality (18) is satisfied.
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