
Des. Codes Cryptogr. (2015) 77:587–610
DOI 10.1007/s10623-015-0094-2

The random oracle model: a twenty-year retrospective

Neal Koblitz1 · Alfred J. Menezes2

Received: 8 January 2015 / Revised: 29 April 2015 / Accepted: 2 May 2015 /
Published online: 13 May 2015
© Springer Science+Business Media New York 2015

Abstract It has been roughly two decades since the random oracle model for reductionist
security arguments was introduced and one decade since we first discussed the controversy
that had arisen concerning its use. In this retrospective we argue that there is no evidence that
the need for the random oracle assumption in a proof indicates the presence of a real-world
security weakness in the corresponding protocol. We give several examples of attempts to
avoid random oracles that have led to protocols that have security weaknesses that were not
present in the original ones whose proofs required random oracles. We also argue that the
willingness to use random oracles gives one the flexibility to modify certain protocols so as
to reduce dependence on potentially vulnerable pseudorandom bit generators. Finally, we
discuss a modified version of ECDSA, which we call ECDSA+, that may have better real-
world security than standard ECDSA, and compare it with a modified Schnorr signature. If
one is willing to use the random oracle model (and the analogous generic group model), then
various security arguments are known for these two schemes. If one shuns these models, then
no provable security result is known for them.

Keywords Cryptography · Public key · Random oracle

Mathematics Subject Classification 94A60

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue
on Cryptography, Codes, Designs and Finite Fields: In Memory of Scott A. Vanstone”.

B Alfred J. Menezes
ajmeneze@uwaterloo.ca

Neal Koblitz
koblitz@uw.edu

1 Department of Mathematics, University of Washington, Box 354350, Seattle, WA 98195, USA

2 Department of Combinatorics & Optimization, University of Waterloo, Waterloo, ON N2L 3G1,
Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-015-0094-2&domain=pdf

588 N. Koblitz, A. J. Menezes

1 Introduction

The random oracle model is a powerful tool introduced by Bellare and Rogaway in [6] in
order to make it possible to give rigorous “proofs of security” for certain basic cryptographic
protocols, such as Full Domain Hash (FDH) signatures [6] and OAEP encryption [7]. Typ-
ically it is a hash function that is modeled by a random oracle. Informally speaking, this
means that one regards the hash function H as a black box that responds to a query for the
hash value of a bitstring M by giving a random value. For each query the oracle makes an
independent random choice, except that it keeps a record of its responses H(M) and repeats
the same response if M is queried again.

To say that H(·) can be modeled by a random oracle is a much stronger assumption than
collision-resistance, preimage resistance, the pseudorandom function property, and other
properties that are commonly assumed to hold for hash functions in various applications. It is
natural to wonder whether maybe the random oracle assumption is too strong—whether the
use of such a powerful model might cause some “provably secure” protocols to be insecure
when implemented with a concrete hash function such as SHA-256. We will have more to
say about this controversy in later sections.

To give background for this controversy, let us start by recalling the definition of the
FDH signature scheme [6], which is one of the simplest and most elegant constructions in
cryptography. We then use the random oracle assumption to give a very informal proof that
a successful chosen-message attack is equivalent to inverting the trapdoor one-way function,
e.g., in the case of RSA-FDH this means inverting the function f (x) = xe mod N , where
(N , e) is the public key.

Let f : S → S be a permutation of a finite set S. We assume f to be a trapdoor one-way
function. In other words, using public information any randomized algorithm has negligible
probability (taken over the elements of S and the sets of coin tosses in executing the algorithm)
of finding f −1(y) in a reasonable amount of time. Using secret information, f can easily be
inverted.

Let H be a hash function—a function from message strings of arbitrary length to the set
S—whose values range uniformly over the entire set S. (This is what “full domain” means.)

The basic signature scheme works as follows. The signer Alice possesses a secret key
that allows her to invert f . To sign a message M , she finds H(M) and then computes
s = f −1(H(M)), which is her signature. After receiving M and s, Bob verifies the signature
by checking that f (s) = H(M). That’s all there is to it.

Here is an informal proof of security of FDH. Suppose that Chris is an (existential) chosen-
message forger. This means that he can ask for the signatures of a set of messages Mi of
his choice, and then is able to produce the signature of some message M ′ that’s not in the
set. Chris queries the random oracle to get the hash values hi = H(Mi) and h′ = H(M ′),
and for each i he queries Alice to get her signature si for the message Mi . Because of the
assumption regarding randomness of the hash function, the choice of messages Mi and M ′ is
irrelevant. What the forger has to work with is a random sequence of values hi along with the
corresponding si = f −1(hi), and the forger is required to produce f −1 of a random h′. The
security claim is that this is no easier than producing f −1 of a random h′ ∈ S without having
the sequence of pairs (hi , si). The informal proof amounts to the rather trivial observation
that, since both the hi and the si are randomly distributed over S, you can obtain an equally
good sequence of pairs (hi , si) by starting with the random si and finding hi = f (si);
and the latter process requires only publicly known information. (Note that this uses the “full
domain” assumption, i.e., H does not map to a proper subset of S.) In other words, a sequence

123

The random oracle model 589

of random (hi , f −1(hi)) is indistinguishable from a sequence of random (f (si), si). It makes
no differencewhether you look at your sequence of pairs left-to-right or right-to-left. Thus, the
proof boils down to the following tautology: the problem of solving an equation is equivalent
to the problem of solving the equation in the presence of some additional data (hi , si) that
are irrelevant to the problem and that anyone can easily generate.

This informal argument might be convincing, but it is not a formal proof. A formal proof
constructs an actual reduction from the problem of inverting the one-way function to the
forger’s task. In Sect. 3 of [47] we discuss the formal proof, especially the tightness issue
that arises in the reduction.

Could this argument be replaced by one that does not use random oracles? In [33] Dodis
et al. gave a negative answer to this question “generically.” That is, they proved that security
of FDH cannot be proved without random oracles if the trapdoor permutation f is treated as
a black box, i.e., if no special properties of its construction are used in the proof.

We shall use the term “ROM-protocol” to mean that the protocol has a security reduction
(that is, a reductionist security argument) in the random oracle model but no known security
reductionwithout randomoracles. The tradition in the provable security literature is to employ
the term standard model to refer to any set of properties and hardness assumptions that do
not include random oracles. This leads to some questionable uses of the word “standard”
(see [49]). We prefer the more neutral term “non-ROM protocol” to refer to a protocol that
was constructed so as to have a security reduction without random oracles.

2 The bronze serpent controversy

The first major assault on the validity of the random oracle model was the widely-cited paper
[24] by Canetti, Goldreich, and Halevi, who constructed a ROM-protocol that’s insecure with
any concrete hash function. By their own admission, their construction was contrived and
bizarre from the standpoint of real-world cryptography. Nevertheless, two of the three authors
arrived at some extremely strong conclusions based on the result. First, according to Canetti
(Sect. 6.1 of [24]), “This leaves us no choice but concluding that, in spite of its apparent
successes, the Random Oracle model is a bad abstraction of protocols for the purpose of
analyzing security.” Goldreich (Sect. 6.2 of [24]) was equally blunt:

Bottom-line: It should be clear that the Random Oracle Methodology is not sound;
that is, the mere fact that a scheme is secure in the Random Oracle Model cannot be
taken as evidence (or indication) to the security of (possible) implementations of this
scheme. Does this mean that the Random Oracle Model is useless? Not necessarily:
it may be useful as a test-bed (or as a sanity check). Indeed, if the scheme does not
perform well on the test-bed (resp., fails the sanity check) then it should be dumped.
But one should not draw wrong conclusions from the mere fact that a scheme performs
well on the test-bed (resp., passes the sanity check). In summary, the Random Oracle
Methodology is actually amethod for ruling out some insecure designs, but this method
is not “complete” (i.e., it may fail to rule out insecure designs).

(Halevi’s conclusions in Sect. 6.3 of [24] were more moderate and balanced.)
In our first paper in the “Another look” series [47] (posted in 2004), we discussed the

random oracle model as part of our attempt to evaluate the strengths and weaknesses of
the proofs of security of well-known protocols. In addition to the construction in [24], we
looked at the two other most frequently cited examples of failure of the random oracle model

123

590 N. Koblitz, A. J. Menezes

(see [8,41]). In all three cases we found that the constructions relied in essential ways on
violations of basic principles of sound cryptographic practice. For instance, a certainmessage
triggers the release of the secret key, or a verification step from one part of a hybrid protocol is
inserted into another part. Although the examples might be clever and of theoretical interest,
they were no cause of concern for practitioners.

Remark 1 The same comment applies to recent efforts to undermine the random oracle
model. For example, in [43] the authors show that if indistinguishability obfuscation exists,
then there exists a bit-encryption protocol that is secure in the random oracle model but is
insecure when the random oracle is instantiated by any concrete function. They do this by
modifying a scheme so that, when presented with certain pairs (xi , H(xi)), it outputs the
secret key.

In [47] we went further, arguing that the inability of some of the top researchers in
cryptography—the authors of [8,24,41,57]—to come up with a convincing example of any
real danger in using ROM-protocols should in and of itself serve as an argument in their
favor:

. . .if one of the world’s leading specialists in provable security (and coauthor of the
first systematic study of the random oracle model [6]) puts forth his best effort to
undermine the validity for practical cryptography of the random oracle assumption,
and if the flawed construction in [8] is the best he can do, then perhaps there is more
reason than ever to have confidence in the random oracle model.

We concluded our discussion by saying that “Our confidence in the randomoracle assumption
is unshaken.”1

In response to [47], Goldreich wrote an opinion piece [40] in which he accused us of
post-modernism and had especially harsh words for our defense of the random oracle model,
which he likened to worship of the Bronze Serpent:

Indeed, what happened with the RandomOracle Model reminds us of the biblical story
of the Bronze Serpent, reproduced next. (See Numbers (21:4–8) and 2 Kings (18:4).)
During the journey of the People of Israel in the desert, the prophet-leader Moses
was instructed by the Lord to make a “fiery serpent” as a symbolic means for curing
people that have been bitten by snakes (which were previously sent by the Lord as a
punishment for some prior sin). Several hundred years later, the bronze serpent made
by Moses has become an object of idol worship. This led the righteous King Hezekiah
(son of Ahaz) to issue an order for breaking this bronze serpent to pieces. Let us stress
that the king’s order was to destroy an object that was constructed by direct instruction
of the Lord, because this object has become a fetish. Furthermore, this object no longer
served the purpose for which it was constructed. This story illustrates the process by
which a good thing may become a fetish, and what to do in such a case. . . [G]iven

1 It has long been known that one has to use the random oracle assumption carefully if the protocol uses
an iterated hash function, because of the extension attack (see Example 9.64 in [55]). That is, the random
oracle assumption essentially says that a deterministic function H(K , M) behaves like a random function to
someone who does not know the key K . However, if a message is obtained by adding a suffix to a queried
message, then the hash of the whole message is the hash of the suffix with known key, and so the random
oracle assumption does not apply. It is because of this extension attack that prefix-MAC, defined by H(K , M),
is insecure. Despite the need for caution, in fact this potential pitfall has never, to the best of our knowledge,
led anyone to a fallacious proof. In particular, no one ever claimed a security result for prefix-MAC under the
random oracle model.

123

The random oracle model 591

the sour state of affairs, it seems good to us to abolish the Random Oracle Model.
[emphasis in original]

Goldreich is not the only researcher who uses strong words to disparage any protocol
whose proof relies on the random oracle model. The choice of title of the paper [33], for
example, would suggest to the casual observer that the authors had found an insecurity in
FDH.However, that is not the case—showing the impossibility of a generic non-ROMproof is
very different from actually finding a security weakness. In fact, in the twenty years since the
security analysis of FDH in [6] no one has found any actual insecurity, generic or otherwise,
related to the use of the random oracle model in the proof.

∗ ∗ ∗

The purpose of this paper is to reflect upon how things stand roughly a decade after the
controversy described above. First, it should be noted that no real-world protocol failures have
been found that result from the use of random oracles; people are still citing the same four
theoretical papers [8,24,41,57] to explain why they feel the need to replace ROM-protocols.
With this in mind one can only marvel at the extraordinary amount of work that’s been
devoted to constructing non-ROM replacements for these protocols. In [9] Bellare, Hoang,
and Keelveedhi comment:

There is a large body of work on cryptography without random oracles. (A Google
Scholar search shows 286 papers with the phrase “without random oracles” in the title,
and 3640 with this phrase somewhere in the paper, as of June 6, 2013.)

Our purpose is not to comment on 286 papers. Rather, we examine three of the most
important efforts to construct replacements for ROM-protocols (see [13,37,44]) and find that
all of the non-ROM constructions have potential security weaknesses that were not present
in the original ROM-versions. Following [25], we also describe a remarkable fact about
pairing-based protocols: essentially the only ones that are known to be directly vulnerable to
induced-fault side-channel attacks on pairing computations are those that were constructed
specifically as non-ROM alternatives to earlier ROM-protocols. This is not accidental—the
very same feature of the protocol accounts for both the non-ROM proof and the susceptibility
to induced fault attacks. This is a case where a tremendous effort devoted to developing a
way around what appears to be only a theoretical problem has resulted in greatly increased
vulnerability to what in some settings is a significant real-world threat.

On occasion it is possible for protocol development that is motivated by a desire to avoid
random oracles to lead to a non-ROM protocol that is superior to the earlier ROM-protocol
from the standpoint of both security and efficiency. However, in many cases the opposite
occurs, and this is what we describe in this paper.

Finally, we argue that if one is willing to use random oracles, then some important proto-
cols can be modified so as to avoid or reduce dependence on pseudorandom bit generators
without losing reductionist security guarantees. In particular, we discuss provable security
of ECDSA+, which is arguably an improvement over standard ECDSA from a real-world
security standpoint, and of a modified version of Schnorr signatures. If one is willing to use
random oracles (and generic groups), then these signature schemes have several reductionist
security properties; if not, then, as far as we know, they have none.

123

592 N. Koblitz, A. J. Menezes

3 Gennaro–Halevi–Rabin signatures

The Gennaro–Halevi–Rabin (GHR) signature scheme [37] is an interesting variant on RSA
signatures that allowed the authors to prove existential unforgeability against chosen-message
attack without using random oracles. It works as follows. Suppose that Alice wants to sign
a message M . Her public key consists of an RSA modulus N and a random integer t ; here
N = pq is a product of two primes such that (p − 1)/2 and (q − 1)/2 are also prime. Let
h = H(M) be the hash value, where we assume that the hash function H takes odd values
(so that there is negligible probability that h has a common factor with p −1 or q −1). Alice
now computes˜h such that˜hh ≡ 1 (mod p − 1) and (mod q − 1). Her signature s is t˜h mod
N . Bob verifies Alice’s signature by computing h and then sh mod N , which should equal t .

Unfortunately, while theGHR scheme is provably secure in the usual Goldwasser–Micali–
Rivest [42] security model for signatures, it easily succumbs to a certain type of attack that
is outside that model.

3.1 The duplicate signature key selection (DSKS) attack

In aDSKSattack [12]we suppose thatAlice,whose public key is accompanied by a certificate,
has sent Bob her signature s on a message M . A successful DSKS attacker Chris is able to
produce a certified public key of his own under which the same signature s verifies as his
signature on the same message M . We are not interested in the trivial attack where Chris
simply claims Alice’s public key as his own, and so we shall suppose that the certification
authority demands a proof of knowledge of the corresponding private key before granting a
certificate for the public key.

As discussed in Sect. 2 of [50], although a DSKS attack falls outside the standard
Goldwasser–Micali–Rivest security model (which asks only for security against adaptive
chosen-message forgers), it can have serious consequences in certain applications of signa-
tures, such as lotteries, coupon redemption systems, and so on.

Following [12], we note that it is easy to mount a DSKS attack on the Gennaro–Halevi–
Rabin signature scheme. Suppose that an adversary Chris wants to carry out such an attack.
That is, he wants to find N ′ and t ′ such that sh ≡ t ′ (mod N ′). But this is simple. He can take
an arbitrary RSA modulus N ′ with N ′ > N and then just set t ′ = sh mod N ′. Notice how
little computation is needed—Chris expends no more computational effort than a legitimate
user.

In [37] the main motive for introducing Gennaro–Halevi–Rabin signatures was to avoid
the use of random oracles. The ease of carrying out a DSKS attack on GHR illustrates a
danger in redesigning protocols so as not to need random oracles in a proof—doing so might
open up new vulnerabilities to attacks that are outside the security model used in the proof.

4 Boneh–Boyen signatures

In [15] Boneh, Lynn, and Shacham constructed pairing-based short signatures that they
showed to be secure in the random oracle model assuming intractability of the Computa-
tional Diffie–Hellman (CDH) problem. Three years later Boneh and Boyen [13] proposed
a new variant of the signature scheme that they designed with the objective of obtaining a
security reduction without using random oracles. There was a price to be paid for avoiding
the random oracle assumption. First of all, a Boneh–Boyen signature is about twice as long
as a Boneh–Lynn–Shacham signature. In the second place, a Boneh–Boyen signature is more

123

The random oracle model 593

complicated. Namely, suppose that G is a group of prime order q that is used in pairing-based
cryptography. The Boneh–Lynn–Shacham signature is simply s = hx , where h ∈ G is the
hash value of the message and x is the secret key. The Boneh–Boyen signature is a pair (r, s),
where r is a random integer mod q , and s = g1/(x+h+yr), where g is a (publicly known)
generator of the group, the hash h of the message is an integer mod q , and the pair (x, y) of
integers mod q is the secret key.

In the third place, the assumption about CDH is replaced by what Boneh and Boyen call
the Strong Diffie–Hellman (SDH) assumption, which has been much less extensively studied
than the CDH and is presumably a stronger assumption. In the third place, in order to gain
confidence in the intractability of this possibly easier SDH problem, in Sect. 5 of [13] they
derive a lower bound on the computational complexity of SDH in a generic group—that is,
they prove security under the generic group assumption.

The m-SDH problem in a group G of prime order q is the problem, given group elements
g, gx , gx2 , . . . , gxm

(where x is an unknown integer mod q), of constructing a pair (c, h)

such that hx+c = g (where c is a nonzero integer mod q and h is a group element). The
difficulty of this problem can be shown to be less than or equal to that of the CDH problem
(which requires the construction of gxy given g, gx , and gy). In Sect. 5 of [13] the authors
prove that m-SDH in a generic group with a pairing cannot be solved in fewer than (roughly)√

q/m operations.
The groupG that is used in the type of cryptosystem in [15] and [13] is called aGapDiffie–

Hellman group [15]. It must have an efficiently computable bilinear pairing e : G×G → GT .
(More generally, one might have two groups G1 and G2 with a pairing e : G1 × G2 → GT ;
for simplicity, we are supposing that G1 = G2.) The existence of such a pairing implies that
the Decision Diffie–Hellman (DDH) problem (this is the problem, given g, gx , gy , and gz , of
determining whether or not z ≡ xy (mod q)) is efficiently solvable. Informally speaking, the
Gap Diffie–Hellman property means that computational problems such as the Discrete Log
Problem and the Computational Diffie–Hellman problem are much harder than the DDH—
that is, in the inequalities DDH≤CDH≤DLP the first is a strict inequality with a large “gap”
in difficulty.

The security of a pairing-based protocol rests on the hope that there’s a big gap between
the DDH and the problem underlying the protocol (and that, in practice, there is no faster
way to solve this underlying problem than to solve the DLP inG or inGT). For the signature
scheme in [13] the underlying problem is m-SDH, where m is a bound on the number of
signature queries allowed in a chosen-message attack.

The conjectured gap between Decision Diffie–Hellman and m-SDH is hard to analyze.
Strictly speaking, it is not even accurate to speak of a “gap”, since in a general group we do
not know that DDH≤ m-SDH—that is, we do not know how to use an oracle for m-SDH in
order to efficiently solve DDH. While it is reasonable to conjecture that m-SDH is hard in
the groups G that are used in pairing-based cryptography, the fact that we cannot even say
for sure that m-SDH ≥ DDH might be a cause for concern.

It was because of the difficulty of analyzing the m-SDH assumption that the authors of
[13] felt the need to resort to the generic group model. Thus, in order to avoid using random
oracles, they used generic groups—even though, as pointed out in [48], the generic model
for groups is arguably a much weaker reflection of reality than is the random oracle model
for hash functions.

Moreover, a more serious difficulty with the provable security result for the signature
scheme in [13] soon came to light. The Boneh–Boyen lower bound

√
q/m for the difficulty

of m-SDH is weaker by a factor of
√

m than the lower bound
√

q for the difficulty of CDH in

123

594 N. Koblitz, A. J. Menezes

the generic group model. At first it seemed that the factor
√

m was not a cause for concern,
and that the true difficulty of the m-SDH problem was probably

√
q as in the case of CDH.

However, at Eurocrypt 2006Cheon [27], using the same attack that had been described earlier
in a different setting by Brown and Gallant [21,36], showed that m-SDH can be solved—and
in fact the discrete logarithm x can be found—in

√
q/m0 operations if m0 divides q − 1 and

m0 ≤ m, m0 < q1/3.
A little later Jao and Yoshida [45] showed that the m-SDH problem is actually equivalent

to the forging problem for Boneh–Boyen signatures, and hence the Cheon–Brown–Gallant
attack on the m-SDH problem leads to an actual attack on Boneh–Boyen signatures. Jao
and Yoshida described an algorithm that for most pairing-friendly curves is able to recover
private keys in roughly q2/5 time using roughly q1/5 signature queries. Thus, given current
knowledge, the non-ROM Boneh–Boyen signature scheme in fact has significantly lower
security than the ROM-protocol of Boneh–Lynn–Shacham that it replaced. The price of
avoiding random oracles was quite steep.

5 Fault attacks on pairing-based protocols

In a fault attack [14] the adversary causes an error in a cryptographic device that’s performing
an operation with a secret key. The adversary uses the incorrect output, perhaps with other
available data, to obtain some information about the secret key. Starting with [59], a number
of authors have developed fault attacks on pairing-based protocols. The purpose of the recent
paper [25] is for the first time to consider which of the many pairing-based protocols in the
literature would actually succumb to any of these fault attacks. It turned out that only a few
would be vulnerable.

As in the previous section, let e : G1 × G2 −→ GT be a bilinear pairing, where G1, G2,
and GT are groups of prime order q . Suppose that P ∈ G1 is a publicly known point, and
Alice has a secret point Q ∈ G2. Suppose that the pairing value e(P, Q) is transmitted during
the protocol or is easy to determine from the transmitted values. During a later execution of
the same protocol with the same computation of e(P, Q) the adversary induces a fault that
causes Alice to compute e′(P, Q). In some circumstances the adversary can use the correct
and erroneous values together to compute Q.

Typically G1 and G2 are elliptic curve groups, and the pairing is computed by a series of
iterations of “Miller operations” involving a linear function L(Q). If the adversary is able
to cause a certain kind of sign error [68] or a premature termination [59], then a comparison
between the correct and incorrect pairing values leads to equations that can be solved for the
coordinates of Q.

A necessary condition for this type of fault attack to provide useful information to the
adversary is that the protocolmust transmit pairingvalues (or ratios of pairingvalues) for a pair
of points oneofwhich is public and theother secret.And itmust transmit the values themselves
rather than hashes of the pairing values. The authors of [25] found three protocols that
succumb to these attacks—apublic-key encryption scheme [17], an identity-based encryption
scheme [38], and an oblivious transfer protocol [23].

All three of those protocols had been designed specifically so as to have a security reduction
that did not require the random oracle assumption. In all cases a crucial feature that made it
possible to avoid random oracles was that actual pairing values rather than their hashes were
used; it was this feature that made the protocol vulnerable to the fault attacks in [59,68].

123

The random oracle model 595

6 Full domain hash

In defiance of the impossibility result in [33], Hohenberger, Sahai, and Waters [44] were
able to achieve chosen-message security of FDH signatures without using the random oracle
model. Of course, the hash function had to be constructed in a special way in order to
accomplish this. Nevertheless, it was an impressive and unexpected result.

The authors of [44] describe their hash function as simply a replacement that preserves
the essential nature of the FDH protocol:

However, [earlier] schemes proven secure without random oracles required changing
the underlying cryptographic scheme in addition to instantiating the randomoraclewith
a concrete hash function. . . In other words, can we achieve security without changing
the underlying cryptographic scheme at all, but only by replacing the random oracle
with a specific family of hash functions? In this work, we give the first positive answer
to this question. . .Our first result is creating a replacement hash function for the oracle
H(·) and developing a security proof without relying on the random oracle heuristic.
To keep with our original goals, our only modifications will be to H(·) and we will use
the signature scheme construction as is, with no changes to the underlying trapdoor
permutation family. [emphasis in original]

It turns out, however, that the hash function construction in [44] has certain features
which, although in no sense invalidating the results of the paper, nevertheless are a cause
of concern. After describing the construction, we’ll discuss the properties that under certain
circumstances may lead to security weaknesses.

In the version of RSA-FDH in [44], the construction of the hash function depends on the
particular user Alice who needs to sign messages. Suppose that Alice has an RSA public key
(N , e) and knows the factorization N = pq and decryption exponent d . One also supposes
that there is a (publicly known) encoding that maps the message space2 to a code that has
a certain required minimum Hamming distance between the encodings of distinct messages
(see Sect. 3.4 of [35] and Sect. 5 of [53]); this is needed for the proof of adaptive security in
[44]. We let M ′ denote the encoding of M .

Alice randomly chooses a constantv prime to N and a sequence of exponentsai,b,b = 0, 1,
i = 1, . . . , n, where n is the bitlength of M ′. Given an input M whose encoding M ′ has bits
M ′

i , the hash value is defined to be vπ(M ′) mod N , whereπ(M ′) = ∏

ai,M ′
i
. The hash function

H(·) is then an obfuscation of the program that computes this. Roughly speaking, that means
that H(·) is a program that computes the same values, but examining the obfuscated program
reveals no information about the process that computes the values. In other words, H(·)
acts like a black box, although the entire program is publicly available for inspection. More
precisely, the obfuscation process is assumed to have the indistinguishability property, which
is weaker than the black-box property [2]: Given two programs of the same size that produce
the same outputs, suppose that one of them was the input to the obfuscation process; in other
words, it was used to produce the obfuscated program. Then an outsider cannot determine
with non-negligible advantage which of the two programs was the one that was obfuscated.

6.1 Some concerns

We now describe some issues that arise with this hash function.

2 This assumes that the message space is bounded; in [44] it is suggested that if one wants to allow messages
of arbitrary length, one should first hash the message using a collision-resistant hash function.

123

596 N. Koblitz, A. J. Menezes

6.1.1 Image of the hash function has skewed distribution

InRSAFDHas described in Sect. 1, a basic requirement is that the hash functionmaps to all of
Z/NZ and does so uniformly. In contrast, the image of the hash function in [44] is contained
in the cyclic subgroup of (Z/NZ)∗ that is generated by v; this is always a proper subgroup
S ⊂ (Z/NZ)∗, since themaximum possible order of v is ϕ(N)/gcd(p−1, q −1) ≤ ϕ(N)/2.
Thus, the non-ROM version of RSA-FDH that is constructed in [44] is not really “Full
Domain” Hash.

Moreover, the proper subgroups S′ ⊂ S will generally be hit by the hash function with
much greater probability than 1/[S : S′] (which is the expected probability when the image
is uniformly distributed). The exact distribution depends on the random n-tuple of pairs of
exponents (ai,0, ai,1), as well as on the factorization of p − 1 and q − 1.

For example, suppose that we are using 3072-bit RSA with a modulus N such that ϕ(N)

is divisible by t distinct primes p j ≈ 2048; let us also suppose that all of these primes divide
the order of v (which is likely for randomly chosen v), and we are hashing 256-bit messages
M with 1024-bit encodings M ′. Let S′ be the subgroup of S of index p1 · · · pt . We would
expect that for each j exactly one of the 211 randomly chosen ai,b is divisible by p j . Suppose
that p j |ai j ,b j and p j does not divide any of the other 2047 exponents, j = 1, . . . , t . (Also
suppose that i j �= i j ′ for j �= j ′.) In this case the hash value of M will be in S′ if and only if
the i j -th bit of M ′ coincides with b j , j = 1, . . . , t . Thus, the hash values will be spread more
thickly on S′ than in the case of a uniform map roughly by a factor of 2−t p1 · · · pt ≈ 210t .

6.1.2 The hash function is partially invertible if the RSA secret key is revealed

A consequence of the skewed distribution is that if the RSA secret key is known, then the
hash function can be partially inverted, in the sense that in the above setting the exact order of
H(M)k in the group (Z/NZ)∗, where k = ϕ(N)/(p1 · · · pt), reveals the i j -th bit of M ′ for
all j = 1, . . . , t . (Note that after finding p1, . . . , pt the adversary can readily determine the
set of pairs (i j , b j) by computing the exact order of H(M)k for test-messages M .3) Although
only the encoding M
→ M ′ is assumed to be publicly efficiently computable, for a linear
error-correcting code as in [53] the decoding M ′
→ M is also likely to be. In that case the
partial recovery of M ′ may lead to significant information about the message M , although
how much information depends on the details of the encoding.

As far as we can tell, this partial invertibility does not compromise the actual security of
the application to FDH-type signatures. That is, there is no problem as long as Alice uses the
hash function only in the way stipulated in [44].

However, in general it is not very good cryptographic practice to use features from one
part of a protocol in another part, particularly if knowledge of the private key for the former
causes a weakening of the latter. For example, suppose that Alice’s RSA private key is stolen.
At that point she gets a new key and has the certificate for the stolen key revoked. Her earlier
signatures should still, however, be valid (and non-repudiable). And if she injudiciously
used her hash function for other purposes unrelated to signing, ideally one would hope that
no harm would come. But in the case of the hash function in [44], if she used it to store
passwords, then the theft of her RSA signing key could have dire consequences because of
the partial invertibility property. This is not, of course, the fault of the authors of [44]. Rather,

3 Suppose you find the exact order of H(M)k for each of 50 randommessages. The subset of messages M for
which this order is divisible by p j will all have the same bit b j occurring as the i j -th bit of the corresponding
encodings. Any other bit of those encodings will have both 0’s and 1’s (except with negligible probability).
Thus, you can easily spot (i j , b j).

123

The random oracle model 597

the conclusion is that if a hash function of the type described in [44] is ever deployed, it
must be accompanied by a sternly worded warning never to use it as a general-purpose hash
function. The security proof for the hash function in combination with FDH-type signatures
says nothing at all about security of the hash function in other uses.

6.1.3 A user’s hash function must be certified

It is a bit odd for the set-up of a hash function to vary from one user to another, as it does in
[44]. Because of the unusual nature of the set-up, users have a special burden if they want to
avoid some obvious problems. In particular, the entire obfuscated program is part of Alice’s
public key and must be certified along with (N , e). Otherwise, an adversary can easily forge
the signatures s of arbitrary messages M ; he merely chooses an arbitrary function that for
each such M takes M ′ to se mod N and then constructs a plausible “obfuscation” of the
program that evaluates this function.

6.1.4 The scheme is highly vulnerable to DSKS attacks

Although the authors of [44] say that they have modified FDH “without changing the under-
lying cryptographic scheme at all,” it should be noted that in the usual FDH everyone uses
the same hash function, whereas in the scheme in [44] each user has her own hash function.
This leaves the door open for Duplicate Signature Key Selection (DSKS) attacks.

The obfuscated program for the hash function is part of Alice’s key and must be certified;
however, the steps Alice went through in order to construct it are known only to her. For
everyone else it functions as a black box. This makes the task of a DSKS attacker very easy.

Suppose, for example, that Alice obtains a list of several million lottery numbers � along
with the signatures s� of the rightful holders of the lottery numbers. Before the drawing, she
constructs an arbitrary function H such that H(�) = f (s�) for all �, where f is her own
trapdoor function (i.e., f (s�) = se

� mod N if (N , e) is her public RSA-key; here N must
be chosen larger than all the s�). Alice certifies a plausible “obfuscation” of the program
for H along with her keys. As soon as the winning lottery number is announced, she can
immediately claim the winnings, since the winner’s signature verifies under her certified
key. Notice how general this attack is—it doesn’t depend on any particular properties of the
trapdoor function. In contrast, in the ROM-version of RSA-FDH with a fixed encryption
exponent (i.e., e = 3 or e = 216+1) to the best of our knowledge no DSKS attack is possible
(see Sect. 2.2.2 of [50]).

6.1.5 The hash function is prohibitively inefficient

The construction in [44] that allows a non-ROM proof of adaptive security of RSA-FDH
requires the signer to perform n multiplications modulo the order of v, where n is the bit-
length of the encoding M ′ of a message M . To hash a 256-bit message suppose we take
n = 1024. The verifier must use the obfuscated hash program, which must be part of Alice’s
certified public key. As we shall see, this means that the storage space for the public key, the
task of the certification authority, and the running time for verification are all prohibitively
large.

The most efficient way known to compute obfuscations uses the method of multilinear
pairings in [29]. The complexity of the method grows rapidly with the “level” of the pairing.
The construction uses a modulus x0, which is a product of secret primes. In Sect. 3.1.3 of

123

598 N. Koblitz, A. J. Menezes

[1] it is shown that the bitlength of x0 is at least 4k2λ2 log2(λ), where k is the level of the
pairing and λ is the security parameter.

Suppose that we want a 128-bit security level. Then the RSA modulus N should have
bitlength 3072. Let � be the order of v mod N ; since it is likely that � ≥ ϕ(N)/4 (this is
virtually certain if N is the product of two primes of the form 2r + 1 with r prime), we shall
suppose that � has bitlength 3070. The exponents ai,b should also be assumed to have this
bitlength.

The hash program that’s obfuscated first computes the 1024-bit encoding M ′ of the mes-
sage M , then finds the productπ(M ′)mod � of the 1024 exponents ai,M ′

i
, and finally computes

vπ(M ′) mod N . The most efficient construction that satisfies the required indistinguishabil-
ity obfuscation property is due to Zimmerman (Appendix to [70]). In that construction the
multilinearity level k is of order 2d , and the number of ring operations modulo x0 is of order
s, where d denotes the depth and s the size of the circuit that’s obfuscated. Neglecting the
reduction steps mod � and mod N and also the exponentiation,4 let’s compute the depth and
size of a circuit that multiplies together the 3070-bit integers. For simplicity we shall assume
that the circuit has a single output bit—this is the type of circuit to which the obfuscation
constructions apply—and ignore the extension that’s necessary to handle a circuit with 3072
output bits.

First let’s consider an algorithm that is fairly efficient in terms of circuit size s but not
depth d . We note that a circuit with a single output bit satisfies s ≤ 2d .

Suppose that each multiplication of 3070-bit integers requires a circuit of depth
�log2(3070)� = 12. Since the 1023 multiplications can be performed in a binary-tree struc-
ture with 10 levels, the resulting circuit has depth 12 · 10 = 120. This leads to the estimate
k > 2d = 2120 for the level of multilinearity. Since 4k2λ2 log2(λ) ≈ 2259, we find that

x0 ≈ 22
259

in this case.
In an effort to get a more reasonable bound on k (and on the bitlength of x0 and the running

time), let’s consider a more complicated algorithm whose circuit has greater size but much
lower depth. In [4] Beame et al. constructed an algorithm with logarithmic-depth circuit for
the iterated product problem. If m denotes the bitlength of the integers being multiplied, their
circuit has depth O(log2(m)) and size O(m5 log22(m)). In our case let’s set m = 212 and set
the constant in the big-O size estimate equal to 1. Then s ≈ 267. Since s ≤ 2d , we also have
d ≥ 67. This gives a better bound for k—namely, 267 rather than 2120—but (because of the
much greater circuit size) a higher bound s ≈ 267 for the number of ring operations. Note
that the bitlength of x0 is at least 4k2λ2 log2(λ) ≈ 2153. Thus, each of the 267 ring operations

is modulo an integer x0 � 22
153

.
Some caveats are in order. Some of the estimates we have used could perhaps be sub-

stantially improved. For example, the estimates in [1] for the bitlength of x0 were obtained
by considering known attacks on multilinear pairings when used to implement the Coron–
Lepoint–Tibouchi protocol for one-round multi-party key exchange [29]; it is possible that
smaller x0 can be employed when multilinear pairings are used for code obfuscation. In
addition, in our case the iterated product problem has a special type of input: each integer is
taken from a fixed pair (ai,0, ai,1) according to the i-th bit of M ′. Hence it might be possible
to design simpler circuits for this subproblem of the iterated product problem. On the other
hand, we have made optimistic choices for big-O constants, and we have neglected the mod-

4 Remark 1 of [44] suggests that in the exponentiation, rather than first computing π(M ′), “it might be
more efficient to incrementally raise an accumulated value to each ai,M ′

i
.” However, such a highly sequential

algorithm would have circuit depth in the thousands, and hence its obfuscation would have a multilinearity
level whose bitlength is also in the thousands.

123

The random oracle model 599

ular exponentiations. We have also neglected to account for the extension one needs to use
obfuscation for a circuit that has 3072 output bits rather than just 1. In any case, even after
substantial improvement in the estimates, the bitlength of x0 and the running time are likely
to remain way above the practical range.

It should also be noted that Zimmerman’s results [70] are proved in a certain genericmodel
of the multilinear maps—under an assumption that is similar to the generic group assumption
that’s used in some security reductions for Diffie–Hellman and elliptic curve protocols (see
[48] and Sect. 7 below). It is open to question whether one should use such a construction to
implement the obfuscation for the FDH in [44], since the whole purpose of that paper was
to avoid the random oracle model, and one cannot plausibly claim that the generic model
for multilinear maps rests on more solid ground than the random oracle model. That is, it
does not seem prudent to rely on the generic model for multilinear maps in order to avoid the
random oracle model for hash functions. But if one uses the constructions that predate [70],
all of which use matrix branching programs, one gets much worse estimates than in [70].

Recall that the obfuscation—including the value x0—is part of the public key and must be
certified by the CA, and signature verification involves arithmetic modulo x0. Clearly none
of this is remotely possible in practice. In particular, factoring the RSA modulus N (by the
number field sieve), thereby completely breaking the system, is far easier than verifying a
signature.

The word “practical” in the title of [29] is justified by the application to one-round �-party
Diffie–Hellman key exchange, for which timings are given in Sect. 6.4 for � = 7. In that
case one needs one application of a 6-linear pairing, and the implementers found that a key
exchange at the 80-bit security level requires roughly 20 s. However, if we extrapolate to
enormous levels of multilinearity—as in the case of RSA-FDH with 128-bit security—we
obtain humongous running times.

Many commentators have noted that cryptographic research is characterized by a partic-
ularly sharp divide between theory and practice; for an interesting perspective on this issue,
see Bellare’s invited talk at Crypto 2014 [5]. Reading the obfuscation literature, even those
of us who are accustomed to this gap are startled when we encounter the vast chasm that
separates obfuscation theory from cryptographic practice.

Remark 2 An obfuscated program for evaluating a punctured PRF is used in [65] to get
a signature scheme with short signatures and fast signature generation that can be proved
secure without random oracles. However, signature verification is prohibitively slow, as the
authors acknowledge. In addition, the public key is huge, since it contains the obfuscated
program. This is a very high price to pay for slightly shorter and faster signatures and no
random oracles.

Remark 3 For evidence of the impracticality of indistinguishability obfuscation, see [1]. The
authors implemented an obfuscation of a 16-bit point function at the 52-bit security level.
Using a 32-core machine, the time for evaluating the obfuscated circuit was 3 h, and the size
of the obfuscated program was 31 GB. More recently, Bernstein et al. [11] presented several
techniques for evaluating obfuscated programs, which yield a more than 50-fold speedup in
the evaluation of the obfuscation circuit for the 16-bit point function.5 In practice one would
need a far more elaborate function to evaluate H(·) with a 3072-bit modulus N , for instance;
and one would want at least a 128-bit security level.

Remark 4 In November 2014, several researchers [16,28,39] devised polynomial-time
attacks on the multilinear pairing construction in [29] that recover all of the secret quantities.

5 Bernstein D.: Personal communication, 23 Feb 2015.

123

600 N. Koblitz, A. J. Menezes

The authors of [16] and [39] proposed a modification to the multilinear pairing construction
in [29] that appears to resist the new attacks. However, shortly afterwards these countermea-
sures were shown to be ineffective [30]. In February 2015, Coron, Lepoint, and Tibouchi
[31] proposed a variant of their multilinear pairing construction that they claim resists the
new attacks. While the impact of the attacks on the security of obfuscation remains to be
determined, the attacks serve as a reminder that a protocol that is excessively complicated is
likely to have subtle vulnerabilities.

6.1.6 All of the obfuscation constructions are very complicated

Constructing a version of FDH using obfuscation is an elaborate process. The ROM-version
of FDH, in contrast, is one of the simplest constructions in cryptography—just hash and apply
the trapdoor function. One cannot use a raw off-the-shelf NIST-standardized hash function,
because its output does not have length equal to that of the full domain of the trapdoor
function, as required. However, it is not hard to make the necessary adjustments, obtaining a
protocol all of whose ingredients have been studied and cryptanalyzed by many people over
many years.

6.2 KISS

The famous keep-it-simple (KISS) principle of engineering applies with special force to
cybersecurity. In the first place, formal analysis is, in general, much more difficult for a
complicated system than for a simple one. When a suite of protocols relies on a whole
menagerie of little-studied complexity assumptions, one is truly entering a “brave newworld”
that rests on an untested foundation, as we argued in [49].

Security through obscurity—a once-popular notion that was the antithesis of KISS—was,
of course, discredited long ago. But beyond that, security experts have become increasingly
aware of how hard it is to analyze and take countermeasures that protect a system that is
far more complicated than necessary. In particular, the possible forms that a side-channel
attack could take become multiplied as the protocol construction acquires layer upon layer
of complexity. (We discuss this in Sect. 4 of [50].)

Most of the time when protocols are constructed for the purpose of duplicating the func-
tionality of ROM-protocols while avoiding random oracles, the resulting system is far more
complicated than the one it replaces. If there were any convincing evidence that ROM-
protocols have real-world security weaknesses, then we would have to bite the bullet and do
our best to analyze these new protocols. However, we have not seen any such evidence. Thus,
it does not make much sense to sacrifice either efficiency or true security for the sole purpose
of getting security proofs without random oracles. As the popular aphorism says, “If it ain’t
broke, don’t fix it!”

7 The value of random oracles: the example of ECDSA

An underlying premise of this paper is that reductionist security proofs are of value. If they
were not, then the whole question of whether or not random oracles should be used in proofs
would be moot. That is, practitioners who believe that security proofs are worthless—and
who adhere to the viewpoint (attributed to Lars Knudsen) that “if it’s provably secure, then
it probably isn’t”—have no reason to read this paper.

123

The random oracle model 601

So let’s agree to accept the premise that, as we stated in [51], “security proofs are useful
as a minimal type of assurance.” Once we accept this premise, it follows that whenever
we replace a well-studied cryptographic protocol by an alternative version that we believe
improves on its real-world security, we would want the reductionist security results to carry
over to the modified version.

Lately the cybersecurity world has become aware of startling security lapses in commonly
used pseudorandom bit generators. At Crypto 2012 Lenstra reported that many users’ RSA
private keys can be easily revealed because of a faulty implementation of random selection
of prime factors of the modulus (see [52]). In August 2013 it was discovered that a bug in the
Android operating system had been causing a defective implementation of pseudorandom
number generation, resulting in a large-scale theft of Bitcoins [22], among other things. One
month later the public learned from the Edward Snowden leaks [61] that the NSA had put a
backdoor in the NIST-standardized Dual Elliptic Curve Deterministic RandomBit Generator
(EC_DRBG), which was included as the default in RSA’s BSAFE toolkit. These scandals
have made practitioners more aware than ever of the pitfalls of heavily relying on random
number generation.

One of the responses has been to find ways to reduce the dependence on PRBGs. For
instance, the usual version of the Elliptic Curve Digital Signature Algorithm (ECDSA) not
only relies on a random number for key generation, but also needs a new random value k
for each message that is signed. The security of ECDSA is particularly sensitive to poor
implementation of pseudorandom generation of k. For example, in [58] it was shown that if
just three bits of k are known for several hundred signatures, then it is possible to recover
the static secret key K . Starting with Barwood [3] and Wigley [69], a number of people
(see [64]) have proposed replacing pseudorandom generation of k by a deterministic value
k = H ′(K , M) obtained by hashing the message and the static secret key. See also Sect. 2
of [10] for a discussion of the rationale for this modification of ECDSA.

Remark 5 An advantage of stipulating k = H ′(K , M) rather than random k is that it forces
the user to change k for eachmessage. In 2011 Sony’s implementation of ECDSA for PlaySta-
tion 3 was completely broken because they used a constant k; see [34]. An adversary who
has two different messages signed with the same k can easily compute the private key.

7.1 ECDSA and ECDSA*

Before discussing security of the modified version of ECDSA, we first recall how Alice
signs a message in ECDSA. Let G be a subgroup of prime order q of the group of points
on an elliptic curve defined over a finite field, where we suppose that it is computationally
infeasible to find discrete logarithms in G. Let P ∈ G be a fixed basepoint. Alice’s private
key is a random integer K mod q , and her public key is the point Q = K P . Let H be a
hash function whose values are integers mod q . To sign a message M , Alice first randomly
selects an ephemeral secret integer k mod q that must be different for eachmessage she signs.
She computes k P and lets r denote the x-coordinate of k P , regarded mod q .6 She computes
s = k−1(H(M)+ Kr)mod q; her signature is (r, s). To verify Alice’s signature, Bob checks
that the x-coordinate of s−1H(M)P + s−1r Q is congruent to r mod q .

We let ECDSA* denote the modified version with k = H ′(K , M), where H ′ is a hash
function. (It could be—but doesn’t have to be—the same hash function that is used in the
signing equation. We shall later make different assumptions about the two hash functions, so

6 This definition of r applies to ECDSA over a prime field; a different method of determining r from k P is
needed for ECDSA over a binary field.

123

602 N. Koblitz, A. J. Menezes

if the same hash function is used in both positions, then H = H ′ must be a hash function for
which both sets of assumptions are believed to hold.) Before replacing ECDSA by ECDSA*
one would want to investigate whether or not the reductionist security results for the former
protocol carry over to the modified version.

7.2 Security reductions

Recall that we say that a signature scheme is existentially unforgeable against adaptive
chosen-message attack if an adversary that is permitted to interact with a signer, getting valid
signatures for a bounded number ofmessages that the adversary selects during the interaction,
cannot feasibly produce a valid forgery of any message at all that was not queried.

The definitive work on provable security for ECDSA was done by Dan Brown in the
early 2000s (see [19]). He proved that in the generic group model ECDSA is existentially
unforgeable against adaptive chosen-message attack provided that certain conditions are
satisfied by the hash function (collision resistance, a uniformity property, and intractability
of finding a message M with H(M) = 0).7 A natural question to ask about replacing the
random k in ECDSA by deterministic k = H ′(K , M) is whether Theorem 3 of [19] carries
over.

The answer is that it does, provided that one adopts the random oracle assumption. In
other words, one can get a security theorem if one models the hash function H ′ as a random
oracle. In that case the values of k appear random to an attacker, since no information at all
about k can be predicted by someone who does not know the full secret key K as well as the
message.8

Can one dispense with random oracles in going from ECDSA to ECDSA*? The result
also carries over under the weaker assumption that H ′ is a pseudorandom function (PRF),
provided that one uses a separate independent secret key K ′ to generate k. (We give an outline
of a proof below.) This modification is obviously not desirable from a practical standpoint,
since it would mean that each user has to have two static keys (or, equivalently, a key of twice
the length).9 Apparently the only advantage of using different keys in the signing equation
and in the generation of k is that doing so makes the proof of security go through under the
PRF assumption rather than the random oracle assumption.

Let ECDSA** denote the two-key version of ECDSA with k = H ′(K ′, M). We sketch
an informal proof that ECDSA** has the same reductionist security as ECDSA (against
restricted adversaries, which do not query the same message more than once) provided that
H ′ is a PRF. Recall the (informal) definition of the PRF property: Suppose an attacker queries
an oracle that has equal probability of always giving a random value O(M) or always giving
H ′(K ′, M) with hidden key K ′. In reasonable time the attacker is unable to guess which it is
doing with a non-negligible advantage (that is, with probability non-negligibly greater than
1/2 of being correct).

7 In [20] Brown also proved unforgeability in the random oracle model for the hash function but without the
generic group assumption. However, he needed to make the so-called semi-logarithm assumption, which has
been little studied and is presumably stronger than intractability of discrete logs.
8 More precisely, in Table 1 of [19] the description of the oracle’s response to a “hint command” (that is, a
signature query) is modified as follows. The input is a message M rather than a hash value h, and instead of
random generation of zm+1 one queries (K , M) = (z2/z1, M) to the hash oracle. A few minor modifications
are then needed in the proof of Lemma 1 of [19].
9 Two-key versions of signature schemes are just as impractical for deployment as are two-key message
authentication codes. See [51] for an analysis of the security theorems that under suitable conditions enable
one to carry over security results from two-key nested MACs to one-key variants.

123

The random oracle model 603

To prove that ECDSA** has the security properties of ECDSA provided that H ′ is a PRF,
we show that an algorithm A that successfully attacks ECDSA** but not ECDSA could be
used to construct an algorithm B that breaks the PRF property of H ′. Namely, we construct
B as follows. Its input is the oracle in the definition of the PRF property. The algorithm B
can generate a random secret key K . As it interacts with the algorithm A, it uses the oracle
to produce the ephemeral secret k when it answers A’s queries by giving either ECDSA
signatures (if the oracle is O(M)) or ECDSA** signatures (if the oracle is H ′(K ′, M) for
some hidden K ′). If A produces a forgery, then B guesses that the oracle is H ′(K ′, M),
and if not, then B guesses that the oracle is O(M). To put it another way, the fact that A is
successful against ECDSA** and not against ECDSA can be converted into a test of whether
one is being given a random oracle or H ′(K ′, M).

This proof breaks down for ECDSA* because the party giving ECDSA* signatures has to
know the key for H ′ in order to produce the signing equation. In otherwords, the PRFproperty
of H ′ only gives randomness from the perspective of someone who has no information at all
about the key. The signer has complete knowledge of the key, and the attacker, although he
doesn’t know the key, has some indirect information about it (since it was used twice in the
signing equation, including its appearance in the formula for k). Most likely this distinction
between ECDSA* and ECDSA** has no significance for security in practice, but in theory
(that is, in carrying out a formal proof) it makes a big difference.

Remark 6 One could get a proof without random oracles that ECDSA* is as secure as
ECDSA** by making the assumption that the hash function and the elliptic curve group
satisfy the following 1-key/2-key condition: Someone who can ask queries of the signer
cannot determine with non-negligible advantage whether k = H ′(K , M) or k = H ′(K ′, M),
where K is the static key used in the signing equation and K ′ is another static key that is
independent of K . In other words, one could simply assume that ECDSA* and ECDSA**
are indistinguishable from one another. However, as we argued in [49], a security proof is
of questionable value if it relies upon an unnatural and unstudied assumption that is tailor-
made for a given protocol and causes the security reduction to become an exercise in circular
reasoning. Such an approach is not, in our view, preferable to the use of the random oracle
model, which leads to more substantive results.

7.3 A further modification of ECDSA

In Sect. 5 of [47] we discussed security reductions for the Schnorr signature scheme [66] and
compared that scheme to DSA.10 Informally speaking, the security of both schemes is based
on intractability of the discrete log problem in a finite field. However, the security reductions
for Schnorr signatures in the random oracle model [62,63] were lost in going from Schnorr
to DSA. We commented that one could retain some reductionist security in DSA if instead
of simply hashing the message M in the signing equation one hashes both M and a value that
depends on the ephemeral key k. Since ECDSA was modeled on DSA and not on Schnorr
signatures, the same remark applies to ECDSA.

Intuitively, the reason why hashing only M in the signing equation gives more power to
the forger than hashing both M and a value that depends on k is that in the latter case the hash

10 A somewhat similar modification of ECDSA was proposed by NIST in [32]. The NIST modification
randomizes the message by combining it with an ECDSA signature component; however, the procedure for
generating ephemeral secret keys is the same as in ECDSA. The NISTmodification appears not to be sufficient
for obtaining the reductionist security result we want. We also note that Brickell et al. [18] obtained several
security results for modifications of DSA, that is, for a broad class of signature schemes based on the discrete
log problem in a finite field.

123

604 N. Koblitz, A. J. Menezes

computation requires prior knowledge of k, whereas in the former case the forger can wait to
choose the ephemeral key k until after seeing the hash value H(M). Note, by the way, that
even though legitimate ECDSA* signers determine k deterministically as k = H ′(K , M),
any choice of k will lead to a signature that satisfies the verifier, who has no way of knowing
whether k was computed deterministically, randomly, or in some other way. So of course one
cannot assume that the forger’s k is H ′(K , M).11

Thus, suppose we further modify ECDSA* by replacing H(M) by H(k P, M) in the
signing equation and define the signature to be (k P, s); let ECDSA+ denote the resulting
scheme.12

Wenote that for greater efficiency one doesn’t have to hash both coordinates of k P , and one
doesn’t have to include both coordinates in the signature. One can take just the x-coordinate
along with a single bit that indicates which of two possible y-coordinates is the y-coordinate
of k P .

Hence, in ECDSA+ Alice signs a message as follows. As before, P ∈ G is a fixed
basepoint in the subgroup of prime order q of the group of points on an elliptic curve. Alice’s
private key is a random integer K mod q , and her public key is the point Q = K P . Let
H and H ′ be hash functions whose values are integers mod q . To sign a message M , Alice
sets k = H ′(K , M) and computes R = k P . Let r denote the x-coordinate of R, regarded
as an integer mod q; and let ˜R denote a bitstring that includes the x-coordinate of R along
with an additional bit that indicates which of two possibilities is the y-coordinate of R.
Alice computes s = k−1(H(˜R, M) + Kr) mod q; her signature is (˜R, s). To verify Alice’s
signature, Bob extracts r from ˜R and then checks that s−1H(˜R, M)P + s−1r Q is the point
R.

It is not hard to see that Theorem 3 of [19] carries over to ECDSA+. That is, our first
claim is that ECDSA+ is existentially unforgeable against adaptive chosen-message attack
under the generic group assumption on G, the random oracle assumption on H ′, and the
conditions on H (collision-resistance, a uniformity property, and intractability of finding a
preimage of 0) that are given in [19].

In addition, a version of the security result proved for Schnorr signatures can also be proved
for ECDSA+. Unlike Brown’s results, these proofs need only intractability of discrete logs
rather than the much stronger generic group assumption. Thus, our second claim is that
ECDSA+ is existentially unforgeable against adaptive chosen-message attack if the discrete
log problem in G is intractable and the hash functions H and H ′ are modeled by random
oracles. Following [62,63], we now give an informal proof of this claim.

Informal proof Suppose we wish to find the discrete logarithm K of Q to the base P: Q =
K P . We use the forger to forge ECDSA+-signatures with public key Q. Whenever the forger
needs an H -value or H ′-value, we simulate an oracle that gives random values in response
to the forger’s hash queries (except that the same value is returned if the forger makes the
same query a second time). Notice that k is determined before the forger asks for H(˜R, M),
where R = k P; this is a crucial distinction between ECDSA+ and ECDSA*.

We also need to simulate a signing oracle that responds to the forger’s signature queries.
Whenever the forger requests a signature on a message M , we randomly choose two integers

11 Strictly speaking, one cannot even assume that the forger has selected a k at all, since all that is required of
a forger is a message and signature that satisfy the verification algorithm. The preceding discussion is intended
to be informal and intuitive; it is not a formal argument.
12 A very similar versionwas considered in [54], where it was denoted ECDSA III. The version ofMalone-Lee
and Smart differs from ECDSA+ in just two respects: the ephemeral key k is random rather than given by
H ′(K , M), and in the signing equation instead of k P (that is, the x-coordinate along with an additional bit to
indicate y) they hash the sum of the x- and y-coordinates along with M .

123

The random oracle model 605

u and v mod q and set R = u P +vQ and s = v−1r mod q (where r is the x-coordinate of R;
if r = 0 we change our choice of u and v). We return the signature (˜R, s). In order to verify
the signature the forger has to ask for h = H(˜R, M), and in response to that hash query we
send h = us mod q . Since s−1(h P + r Q) = u P + vQ = R, the signature verifies. It should
be noted that in order for this to be a valid simulation, one has to check that h is independent
of R and random, but this is an easy consequence of the fact that the pairs (u, v) for which
u P + vQ = R form a line in the uv-plane mod q , and h ranges through the integers mod q
along that line.

Let qH be a bound on the number of queries for an H -value. We choose a random index
j ≤ qH and hope that the j-th queried value H(˜R, M) happens to be the one the forger uses
to produce a signature (˜R, s) on the message M . Let ε be the forger’s success probability, and
let ε j be the probability that the j-th H -value leads to the forged signature; then

∑

j ε j = ε.
We use two copies of the forger.We give both forgers the public key Q, the same sequence

of random bits, and the same random answers to their hash queries until they both make the
same j-th H -query. At that point we give two independent random answers h1 and h2,13 and
from then on we give the two forgers different sequences of random bits and different random
function values. That is, our interaction with the forgers “forks” after the j-th H -query.

We hope that both forgers produce signatures corresponding to the same M and ˜R. If they
do not (or if we’re unable to proceed because no j-th H -query is made), then we start over
again. If the two forgers do output signatures (˜R, s1) and (˜R, s2), then we have the following
two congruences mod q:

ks1 ≡ h1 + r K and ks2 ≡ h2 + r K .

Since k (which is unknown to us) is the same in both equations, we can solve for K in terms
of known values: K = −r−1(s2h1 − s1h2)/(s2 − s1) mod q .

We need to know that there’s a non-negligible probability that this will all work out as we
hope. The bounding of this probability from below is called the “forking lemma” [62,63].
Let S denote the set of all possible sequences of random bits and random hash responses
during the course of the above procedure. Let A be the set of possible sequences of random
bits and random hash values until the forgers’ j-th H -query, and let B be the set of sequences
of random bits and random hash values after that. Suppose that there are a elements in A,
b elements in B, and ab elements in S = A × B. For ε j ab values in S the forger produces
a valid signature with ˜R and M from the j-th H -query. Applying the “splitting lemma,”14

we can say that there are at least ε j a/2 elements of A that have the following property: the
remaining part of the forgery algorithm (starting with the j-th H -query) has probability at
least ε j/2 of leading to the desired signature. For each such element of A the probability that
both copies of the forger lead to such signatures is at least (ε j/2)2. Thus, the probability that
an element of A × (B × B) will lead to two different signatures with the same ˜R and M is
at least (ε j/2)3.

Since j is chosen uniformly at random from {1, 2, . . . , qH }, the probability that the above
procedure leads to two signatures of the same message is at least 1

8qH

∑

ε3j . The minimum
of this sum subject to the condition that

∑

ε j = ε is achieved when all the ε j are equal, that

13 We shall ignore the possibility that the j-th H -query repeats an earlier query, in which case we need to
choose a different j , and also the (negligible) probability that h1 = h2.
14 The splitting lemma [62,63], which is proved by a simple counting argument, says the following. Suppose
we have two sets A and B containing a and b elements, respectively. Suppose that a pair (α, β) ∈ A × B has
probability ≥ ε of having a certain property, that is, there are at least εab such “good” pairs. Let A0 ⊂ A be
the set such that α0 ∈ A0 if at least εb/2 pairs (α0, β) (β ∈ B) are “good.” The splitting if at least εb/2 pairs
(α0, β) (β ∈ B) are “good.” The splitting lemma says that there are at least εa/2 elements in A0.

123

606 N. Koblitz, A. J. Menezes

is, when ε j = ε/qH for all j . Thus, the probability of success in one iteration of the above
algorithm is at least 1

8qH
· qH · (ε/qH)3 = (ε/2qH)3. This gives us a non-negligible success

probability, although with a very large tightness gap. ��
Remark 7 Because of the tightness gap, Theorem 3 of [19] can be viewed as much superior.
On the other hand, Brown’s result uses the generic group assumption, which is much stronger
than intractability of the discrete log problem. So having a second security reduction based
on the discrete log problem is perhaps worthwhile.

7.4 Schnorr signatures

Wemodify the Schnorr signature scheme in [66] by using an elliptic curve group and also by
determining the ephemeral key k deterministically rather than randomly.We call the resulting
scheme ECSchnorr*. Thus, Alice signs a message as follows. As before, her private key is
a random integer K mod q , and her public key is Q = K P , where P is the basepoint;
and H and H ′ are hash functions whose values are integers mod q . To sign a message M ,
Alice sets k = H ′(K , M) and computes R = k P . Let ˜R denote a bitstring that includes the
x-coordinate of R and an additional bit indicating the y-coordinate of R. Alice computes
h = H(˜R, M) and sets s = k + hK mod q; her signature is (h, s). To verify the signature
Bob computes the point S = s P − hQ and then H(˜S, M), and accepts the signature if this
hash value is equal to h.

There are twomain positive results about the security of Schnorr signatures, both of which
carry over to ECSchnorr* under the random oracle assumption for H ′:

• Pointcheval and Stern [62,63] proved unforgeability under chosen-message attack, assum-
ing intractability of the discrete log problem (DLP) and the random oracle model for the
hash function H . Their result (even after subsequent improvements) has a large tightness
gap, however.

• Neven, Smart, andWarinschi [56], working in the generic group model, proved existential
unforgeability under chosen-message attack if the hash function H is preimage-resistant
in certain senses (this is a weaker condition than collision-resistance). Their reduction is
tight.15

There are also two negative results due to Paillier and Vergnaud [60]; see also [67]. Infor-
mally speaking, they showed that it is unlikely that a reduction from theDLP to unforgeability
of Schnorr signatures exists under a “standard” assumption (meaning that the hash function
cannot be modeled by a random oracle, and the elliptic curve group cannot be modeled by
a generic group), and even in the random oracle model it is unlikely that a tight reduction
exists. In [46] we ask

What do we make of the circumstance that, apparently, no tight reduction from the
DLP to forgery is possible in the random oracle model, and no reduction at all is likely
in a standard model? As usual, several interpretations are possible. Perhaps this shows
that reductions in the random oracle model are dangerous, because they lead to security
results that cannot be achieved in a standard model. On the other hand, perhaps we
can conclude that the random oracle model should be used, because it can often come
closer to achieving what our intuition suggests should be possible.

15 Tightness issues arise in [56] if one wants to use short hash values, which would give a 25% reduction
in signature length compared with ECDSA and compared with Schnorr with full-length hash.

123

The random oracle model 607

Based on the two types of security results listed above, in [56]Neven, Smart, andWarinschi
contrast Schnorr with ECDSA, arguing in favor of the former:

The proof [byBrown for ECDSA] is quite involved and reduces the security of EC-DSA
to a set of non-standard properties of the hash function and the “conversion function.”
We feel our result for Schnorr is cleaner, and the associated hash function properties are
more natural. Combining our results in the generic group model with the advantage of
additionally having a security proof in the random oracle model, we feel that Schnorr
signatures are to be preferred over EC-DSA.

However, whether Schnorr signatures have a significant reductionist security advantage
over ECDSA is debatable, because of the tightness issue. In the generic group model both
schemes have tight security results. The result for Schnorr signatures in [56] makes milder
assumptions on the hash function H than Brown’s Theorem 3 in [19]. Because collision-
resistance is not needed, in principle one can shorten hash lengths by a factor of two.However,
that causes a loss of tightness in the reduction in [56]. In [56] the tightness issue is discussed
in this connection and in connection with the Pointcheval–Stern results, but it is considered
to be of secondary importance. The authors point out that no attack is known that exploits the
tightness gaps, and that practitioners rarelymodify their parameters to take non-tightness into
account. In other words, even if the concrete security guarantee with the chosen parameters
that results from the security reduction turns out to be meaningless, that should not be a cause
of great concern.

We discussed this issue at length in [46]—see also [26]—and we don’t find this argument
convincing. If one believes that rigorous security reductions are of some importance as part of
an evaluation of a scheme—and we accepted this premise at the beginning of this section—
then one would hope that the actual concrete guarantee given by the proof would be taken
seriously.

In the random oracle model the Pointcheval–Stern results for Schnorr are comparable to
the corresponding results for ECDSA (Theorem II.10 of [20]) or ECDSA+ (our claim and
informal proof in Sect. 7.3). Brown’s Theorem II.10 not only has a tightness gap of qH , but
assumes intractability of an unnatural and little studied problem (semi-logarithms) that is
possibly easier than the DLP and in fact is similar to the forgery problem itself. Our result
for ECDSA+ gives a reduction to the DLP, but it is very non-tight.

It is not clear to us which of ECDSA+ and ECSchnorr* is better from a “provable security”
standpoint. But one thing that is clear is that if one shuns the random oracle model and the
analogous generic group model, then no security reduction is known for either scheme. If
one accepts those “non-standard” models, then formal security analysis is possible in both
cases.

∗ ∗ ∗
In their seminal paper [6] Bellare and Rogaway succinctly summarized the value of the

random oracle model as follows: “Goals which are possible but impractical in the standard
setting become practical in the random oracle setting.” Over twenty years later this is still the
case, as shown by the elliptic curve signature schemes ECDSA*, ECDSA+, and ECSchnorr*.

Acknowledgments We would like to thank Dan Brown for valuable discussions of security reductions for
ECDSA, Kenwrick Mayo for useful discussions of obfuscation constructions, Sanjit Chatterjee for thoughtful
comments on an earlier draft, and Ann Hibner Koblitz for helpful editorial suggestions. We would also like to
thank Dan Bernstein for informing us of the work [11] and Francisco Rodríguez-Henríquez for bringing the
paper [54] to our attention. Finally, we thank the referees for their helpful comments.

123

608 N. Koblitz, A. J. Menezes

References

1. Apon D., Huang Y., Katz J., Malozemoff A.: Implementing cryptographic program obfuscation, Crypto
2014 rump session (2014). http://eprint.iacr.org/2014/779.

2. Barak B., Goldreich O., Impagliazzo R., Rudich S., Sahai A., Vadhan S., Yang K.: On the (im)possibility
of obfuscating programs. J. ACM 59, 6 (2012).

3. Barwood G.: Digital signatures using elliptic curves (1997). http://groups.google.com/group/sci.crypt/
msg/b28aba37180dd6c6.

4. Beame P.W., Cook S.A., Hoover H.J.: Log depth circuits for division and related problems. SIAM J.
Comput. 15, 994–1003 (1986).

5. Bellare M.: Caught in between theory and practice. In: Crypto 2014 IACR Distinguished Lecture (2014).
https://www.youtube.com/watch?v=SPVWSG7-i_E.

6. Bellare M., Rogaway P.: Random oracles are practical: a paradigm for designing efficient protocols. In:
Proceedings of the 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM,
New York (1993).

7. Bellare M., Rogaway P.: Optimal asymmetric encryption—how to encrypt with RSA. In: Advances in
Cryptology—Eurocrypt’94. LNCS, vol. 950, pp. 92–111. Springer, Berlin (1994).

8. Bellare M., Boldyreva A., Palacio A.: An uninstantiable random-oracle-model scheme for a hybrid-
encryption problem. In: Advances in Cryptology—Eurocrypt 2004. LNCS, vol. 3027, pp. 171–188.
Springer, Berlin (2004).

9. Bellare M., Hoang V.T., Keelveedhi S.: Instantiating random oracles via UCEs. In: Advances in
Cryptology—Crypto 2013 (Part II). LNCS, vol. 8042, pp. 398–415. Springer, Berlin (2013); full ver-
sion available at http://eprint.iacr.org/2013/424.

10. BernsteinD., DuifN., LangeT., Schwabe P., YangB.-Y.: High-speed high-security signatures. J. Cryptogr.
Eng. 2, 77–89 (2012).

11. Bernstein D., Hülsing A., Lange T., Niederhagen R.: Bad directions in cryptographic hash functions,
preprint (2015); available at http://obviouscation.cr.yp.to/obviouscation-20150223.

12. Blake-Wilson S., Menezes A.: Unknown key-share attacks on the station-to-station (STS) protocol. In:
Public Key Cryptography—PKC 1999. LNCS, vol. 1560, pp. 156–170. Springer, Berlin (1999).

13. Boneh D., Boyen X.: Short signatures without random oracles. In: Advances in Cryptology—Eurocrypt
2004. LNCS, vol. 3027, pp. 56–73. Springer, Berlin (2004).

14. Boneh D., DeMillo R., Lipton R.: On the importance of checking cryptographic protocols for faults. J.
Cryptol. 14, 101–119 (2001).

15. Boneh D., Lynn B., Shacham H.: Short signatures from the Weil pairing. In: Advances in Cryptology—
Asiacrypt 2001. LNCS, vol. 2248, pp. 514–532. Springer, Berlin (2001).

16. Boneh D., Wu D., ZimmermanW.: Immunizing multilinear maps against zeroizing attacks (2014). Avail-
able at http://eprint.iacr.org/2014/930.

17. Boyen X., Mei Q., Waters B.: Direct chosen ciphertext security from identity-based techniques. In: 12th
ACMConference on Computer and Communications Security—CCS’05, pp. 320–329. ACM, New York
(2005).

18. Brickell E., Pointcheval D., Vaudenay S., Yung M.: Design validations for discrete logarithm based
signature schemes. In: Public Key Cryptography—PKC 2000. LNCS, vol. 1751, pp. 276–292. Springer,
Berlin (2000).

19. Brown D.: Generic groups, collision resistance, and ECDSA. Des. Codes Cryptogr. 35, 119–152 (2005).
20. Brown D.L.: On the provable security of ECDSA. In: Blake I., Seroussi G., Smart N. (eds.) Advances in

Elliptic Curve Cryptography, pp. 21–40. Cambridge University Press, Cambridge (2005).
21. Brown D., Gallant R.: The static Diffie–Hellman problem (2004). http://eprint.iacr.org/2004/306.
22. Buterin V.L.: Critical vulnerability found in Android wallets. http://bitcoinmagazine.com/6251/

critical-vulnerability-found-in-android-wallets/. Accessed 11 Aug 2013.
23. Camenisch J., NevenG., Shelat A.: Simulatable adaptive oblivious transfer. In: Advances in Cryptology—

Eurocrypt 2007. LNCS, vol. 4515, pp. 573–590. Springer, Berlin (2007).
24. Canetti R., Goldreich O., Halevi S.: The random oracle model, revisited. In: Proceedings of 30th Annual

Symposium Theory of Computing, pp. 209–218, ACM, New York (1998); full version available at http://
eprint.iacr.org/1998/011.

25. Chatterjee S., Karabina K., Menezes A.: Fault attacks on pairing-based protocols revisited. IEEE Trans.
Comput. (to appear); available at http://eprint.iacr.org/2014/492.

26. Chatterjee S.,MenezesA., Sarkar P.: Another look at tightness. In: SelectedAreas in Cryptography—SAC
2011. LNCS, vol. 7118. Springer, Berlin (2012); available at http://anotherlook.ca.

27. Cheon J.: Security analysis of the strongDiffie–Hellmanproblem. In:Advances inCryptology—Eurocrypt
2006. LNCS, vol. 4004, pp. 1–11. Springer, Berlin (2006).

123

http://eprint.iacr.org/2014/779
http://groups.google.com/group/sci.crypt/msg/b28aba37180dd6c6
http://groups.google.com/group/sci.crypt/msg/b28aba37180dd6c6
https://www.youtube.com/watch?v=SPVWSG7-i_E
http://eprint.iacr.org/2013/424
http://obviouscation.cr.yp.to/obviouscation-20150223
http://eprint.iacr.org/2014/930
http://eprint.iacr.org/2004/306
http://bitcoinmagazine.com/6251/critical-vulnerability-found-in-android-wallets/
http://bitcoinmagazine.com/6251/critical-vulnerability-found-in-android-wallets/
http://eprint.iacr.org/1998/011
http://eprint.iacr.org/1998/011
http://eprint.iacr.org/2014/492
http://anotherlook.ca

The random oracle model 609

28. Cheon J., Han K., Lee C., Ryu, H., Stehlé D.: Cryptanalysis of the multilinear map over the integers.
In: Advances in Cryptology—Eurocrypt 2015, Part I. LNCS, vol. 9056, pp. 3–12 . Springer, New York
(2015).

29. Coron J.-S., Lepoint T., Tibouchi M.: Practical multilinear maps over the integers. In: Advances in
Cryptology—Crypto 2013. LNCS, vol. 8042, pp. 476–493, Springer, Berlin (2013); full version available
at http://eprint.iacr.org/2013/183.

30. Coron J.-S., Lepoint T., Tibouchi M.: Cryptanalysis of two candidate fixes of multilinear maps over the
integers (2014). Available at http://eprint.iacr.org/2014/975.

31. Coron J.-S., Lepoint T., Tibouchi M.: New multilinear maps over the integers (2015). Available at http://
eprint.iacr.org/2015/162.

32. Dang Q.: Randomized hashing for digital signatures, NIST Special Pub. 800–106 (2009). http://csrc.nist.
gov/publications/nistpubs/800-106/NIST-SP-800-106.

33. Dodis Y., Oliveira R., Pietrzak K.: On the generic insecurity of the full domain hash. In: Advances in
Cryptology—Crypto 2005. LNCS, vol. 3621, pp. 449–466. Springer, Berlin (2005).

34. Fildes J.: iPhone hacker publishes secret Sony PlayStation 3 key, 6 Jan 2011. www.bbc.com/news/
technology-12116051.

35. Freire E., Hofheinz D., Paterson K., Striecks C.: Programmable hash functions in the multilinear setting.
In: Advances in Cryptology—Crypto 2013. LNCS, vol. 8042, pp. 513–530. Springer, Berlin (2013); full
version available at http://eprint.iacr.org/2013/354.

36. Gallant R.: The static Diffie–Hellman problem. In: Presented at ECC (2005). Available at http://cacr.
waterloo.ca/conferences/2005/ecc2005/gallant.

37. GennaroR., Halevi S., Rabin T.: Secure hash-and-sign signatureswithout the randomoracle. In: Advances
in Cryptology—Eurocrypt’99. LNCS, vol. 1592, pp. 123–139. Springer, Berlin (1999).

38. Gentry C.: Practical identity-based encryption without random oracles. In: Advances in Cryptology—
Eurocrypt 2006. LNCS, vol. 4004, pp. 445–464. Springer, Berlin (2006).

39. Gentry C., Halevi S., Maji H., Sahai A.: Zeroizing without zeroes: cryptanalyzing multilinear maps
without encodings of zero (2014). Available at http://eprint.iacr.org/2014/929.

40. Goldreich O.: On post-modern cryptography (2006). http://eprint.iacr.org/2006/461.
41. Goldwasser S., Tauman Kalai Y.: On the (in)security of the Fiat–Shamir paradigm. In: Proceedings of

the 44th Annual Symposium Foundations of Computer Science, pp. 102–113. IEEE (2003); full version
available at http://eprint.iacr.org/2003/034.

42. Goldwasser S., Micali S., Rivest R.: A paradoxical solution to the signature problem. In: Proceedings of
the 25th Annual IEEE Symposium on the Foundations of Computer Science, pp. 441–448 (1984).

43. Green M., Katz J., Malozemoff A., Zhou H.-S.: A unified approach to idealized model separations via
indistinguishability obfuscation (2015). Available at: http://eprint.iacr.org/2014/863.

44. Hohenberger S., Sahai A.,Waters B.: Replacing a random oracle: full domain hash from indistinguishabil-
ity obfuscation. In: Advances in Cryptology—Eurocrypt 2014. LNCS, vol. 8441, pp. 201–220. Springer,
Berlin (2014).

45. Jao D., Yoshida K.: Boneh–Boyen signatures and the strong Diffie–Hellman problem. In: Pairing-Based
Cryptography—Pairing 2009. LNCS, vol. 5671, pp. 1–16. Springer, Berlin (2009); full version available
at http://eprint.iacr.org/2009/221.

46. Koblitz N., Menezes A.: Another look at provable security. In: II Progress in Cryptology—Indocrypt
2006. LNCS, vol. 4329, pp. 148–175. Springer, Berlin (2006); available at http://anotherlook.ca.

47. Koblitz N., Menezes A.: Another look at provable security. J. Cryptol. 20, 3–37 (2007); available at http://
anotherlook.ca.

48. Koblitz N., Menezes A.: Another look at generic groups. Adv. Math. Commun. 1, 13–28 (2007); available
at http://anotherlook.ca.

49. Koblitz N., Menezes A.: The brave newworld of bodacious assumptions in cryptography, Not. Am.Math.
Soc. 57, 357–365 (2010); available at http://anotherlook.ca.

50. Koblitz N., Menezes A.: Another look at security definitions. Adv. Math. Commun. 7, 1–38 (2013);
available at http://anotherlook.ca.

51. Koblitz N., Menezes A.: Another look at security theorems for 1-key nested MACs. In: Open Problems
in Mathematics and Computational Science, pp. 69–89. Springer, Berlin (2014).

52. Lenstra A.K., Hughes J.P., Augier M., Bos J., Kleinjung T., Wachter C.: Public keys. In: Advances in
Cryptology—Crypto 2012. LNCS, vol. 7417, pp. 626–642. Springer, Berlin (2012).

53. Lysyanskaya A.: Unique signatures and verifiable random functions from the DH–DDH separation. In:
Advances in Cryptology—Crypto 2002. LNCS, vol. 2442, pp. 597–612. Springer, Berlin (2002).

54. Malone-Lee J., Smart N.: Modifications of ECDSA. In: Selected Areas in Cryptography—SAC 2003.
LNCS, vol. 2595, pp. 1–12. Springer, Berlin (2002).

55. Menezes A., vanOorschot P., Vanstone S.: Handbook of Applied Cryptography. CRC, Boca Raton (1996).

123

http://eprint.iacr.org/2013/183
http://eprint.iacr.org/2014/975
http://eprint.iacr.org/2015/162
http://eprint.iacr.org/2015/162
http://csrc.nist.gov/publications/nistpubs/800-106/NIST-SP-800-106
http://csrc.nist.gov/publications/nistpubs/800-106/NIST-SP-800-106
www.bbc.com/news/technology-12116051
www.bbc.com/news/technology-12116051
http://eprint.iacr.org/2013/354
http://cacr.waterloo.ca/conferences/2005/ecc2005/gallant
http://cacr.waterloo.ca/conferences/2005/ecc2005/gallant
http://eprint.iacr.org/2014/929
http://eprint.iacr.org/2006/461
http://eprint.iacr.org/2003/034
http://eprint.iacr.org/2014/863
http://eprint.iacr.org/2009/221
http://anotherlook.ca
http://anotherlook.ca
http://anotherlook.ca
http://anotherlook.ca
http://anotherlook.ca
http://anotherlook.ca

610 N. Koblitz, A. J. Menezes

56. Neven G., Smart N., Warinschi B.: Hash function requirements for Schnorr signatures. J. Math. Cryptol.
3, 69–87 (2009).

57. Nielsen J.B.: Separating random oracle proofs from complexity theoretic proofs: the non-committing
encryption case. In: Advances in Cryptology—Crypto 2002. LNCS, vol. 2442, pp. 111–126. Springer,
Berlin (2002).

58. Nguyen P., Shparlinski I.: The insecurity of the elliptic curve digital signature algorithm with partially
known nonces. Des. Codes Cryptogr. 30, 201–217 (2003).

59. Page D., Vercauteren F.: A fault attack on pairing-based cryptography. IEEE Trans. Comput. 55, 1075–
1080 (2006).

60. Paillier P., VergnaudD.: Discrete-log-based signatures may not be equivalent to discrete log. In: Advances
in Cryptology—Asiacrypt 2005. LNCS, vol. 3788, pp. 1–20. Springer, Berlin (2005).

61. Perlroth N., Larson J., Shane S.: N.S.A. able to foil basic safeguards of privacy on web. The New York
Times, 5 Sept 2013.

62. Pointcheval D., Stern J.: Security proofs for signature schemes. In: Advances in Cryptology—
Eurocrypt’96. LNCS, vol. 1070, pp. 387–398. Springer, Berlin (1996).

63. Pointcheval D., Stern J.: Security arguments for digital signatures and blind signatures. J. Cryptol. 13,
361–396 (2000).

64. Pornin T.: Deterministic usage of the digital signature algorithm (DSA) and elliptic curve digital signature
algorithm (ECDSA), RFC 6979, IETF, August (2013).

65. RamchenK.,Waters, B.: Fully secure and fast signing fromobfuscation. In: Proceedings ofACMCCS’14,
pp. 659–673. ACM, New York (2014).

66. Schnorr C.P.: Efficient signature generation for smart cards. J. Cryptol. 4, 161–174 (1991).
67. Seurin Y.: On the exact security of Schnorr-type signatures in the random oracle model. In: Advances in

Cryptology—Eurocrypt 2012. LNCS, vol. 7237, pp. 554–571. Springer, Berlin (2012).
68. Whelan C., Scott M.: The importance of the final exponentiation in pairings when considering fault

attacks. In: Pairing-Based Cryptography—Pairing 2007. LNCS, vol. 4575, pp. 225–246. Springer, Berlin
(2007).

69. Wigley J.: Removing need for rng in signatures (1997). http://groups.google.com/group/sci.cryp/msg/
a6da45bcc8939a89.

70. Zimmerman J.: How to obfuscate programs directly. In: Advances in Cryptology—Eurocrypt 2015, Part
II. LNCS, vol. 9057, pp. 439–467. Springer, Berlin (2015).

123

http://groups.google.com/group/sci.cryp/msg/a6da45bcc8939a89
http://groups.google.com/group/sci.cryp/msg/a6da45bcc8939a89

	The random oracle model: a twenty-year retrospective
	Abstract
	1 Introduction
	2 The bronze serpent controversy
	3 Gennaro--Halevi--Rabin signatures
	3.1 The duplicate signature key selection (DSKS) attack

	4 Boneh--Boyen signatures
	5 Fault attacks on pairing-based protocols
	6 Full domain hash
	6.1 Some concerns
	6.1.1 Image of the hash function has skewed distribution
	6.1.2 The hash function is partially invertible if the RSA secret key is revealed
	6.1.3 A user's hash function must be certified
	6.1.4 The scheme is highly vulnerable to DSKS attacks
	6.1.5 The hash function is prohibitively inefficient
	6.1.6 All of the obfuscation constructions are very complicated

	6.2 KISS

	7 The value of random oracles: the example of ECDSA
	7.1 ECDSA and ECDSA*
	7.2 Security reductions
	7.3 A further modification of ECDSA
	7.4 Schnorr signatures

	Acknowledgments
	References

