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Abstract. We take a critical look at the relationship between the security of cryptographic schemes in
the Random Oracle Model, and the security of the schemes that result from implementing the random
oracle by so called “cryptographic hash functions”.

The main result of this article is a negative one: There exist signature and encryption schemes that
are secure in the Random Oracle Model, but for whichany implementationof the random oracle results
in insecure schemes. In the process of devising the above schemes, we consider possible definitions
for the notion of a “good implementation” of a random oracle, pointing out limitations and challenges.
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1. Introduction

A popular methodology for designing cryptographic protocols consists of the fol-
lowing two steps. One first designs anidealsystem in which all parties (including the
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adversary) have oracle access to a truly random function, and proves the security
of this ideal system. Next, one replaces the random oracle by a “good crypto-
graphic hashing function” (such as MD5 or SHA), providing all parties (including
the adversary) with a succinct description of this function. Thus, one obtains an
implementationof the ideal system in a “real-world” where random oracles do not
exist. This methodology, explicitly formulated by Bellare and Rogaway [1993] and
hereafter referred to as therandom oracle methodology, has been used in many
works (see, e.g., Fiat and Shamir [1986], Schnorr [1991], Guillou and Quisquater
[1988], Okamoto [1992], Bellare and Rogaway [1993, 1996], Micali [2000], and
Pointcheval and Stern [1996]).

Although the random oracle methodology seems to be useful in practice, it is
unclear how to put this methodology on firm grounds. One can indeed make clear
statements regarding the security of the ideal system, but it is not clear what happens
when one replaces the random oracle by a “fully specified implementation”. What
one would have liked is a realizable construct that, when used to replace the random
oracle, maintains the security of the ideal scheme. The purpose of this work is to
point out fundamental difficulties in proceeding toward this goal.

We demonstrate that the traditional approach of providing a single robust defini-
tion that supports a wide range of applications is bound to fail. That is, one cannot
expect to see definitions such as of pseudorandom generators or functions [Yao
1982; Blum and Micali 1984; Goldreich et al. 1986], and general results of the type
saying that these can be used in any application in which parties are restricted merely
by computing resources. Specifically, we identify a specific property of the random
oracle, that seems to capture one aspect of the random oracle methodology (and in
particular seems to underline heuristics such as the Fiat–Shamir transformation of a
three-round identification scheme into a signature scheme [Fiat and Shamir 1986]).
We show that even a minimalistic formulation of this property, calledcorrelation
intractability, cannot be obtained by any “fully specified implementation”.

To demonstrate the implications of the above to the security of cryptographic sys-
tems, we show that systems whose security relies on the “correlation intractability”
of their oracle may be secure in the Random Oracle Model, and yet be insecure
when implemented using any fully specified function (or function ensemble). In
particular, we describe schemes for digital signatures and public-key encryption
that are secure in the Random Oracle Model, but for which any implementation
yields insecure schemes.

1.1. THESETTING. For the purpose of the following discussion, a cryptographic
system consists of a set of parties, which are modeled by probabilistic polynomial
time interactive Turing machines. Acryptographic application comes with a
security requirement specifying the adversary’s abilities and when the latter is con-
sidered successful. The abilities of the adversary include its computational power
(typically, an arbitrary polynomial-time machine) and the ways in which it can
interact with the other parties. Thesuccessof the adversary is defined by means of
a predetermined polynomial-time predicate of the application’s global view. (The
application’s global view consists of the initial inputs of all the parties and of the ad-
versary, their internal coin tosses, and all the messages that were exchanged among
them.) A system is consideredsecure if any adversary with the given abilities
has only a negligible probability of success (or, in some cases, only a negligible
advantage over a “trivial attack”).
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1.1.1. The Random Oracle Model.In a scheme that operates in the Random
Oracle Model, all parties (including the adversary) interact with one another as
usual interactive machines, but in addition they can make oracle queries. It is
postulated that all oracle queries, regardless of the identity of the party making
them, are answered by a single function, denotedO, that is uniformly selected
among all possible functions. The set of possible functions is determined by a length
function,`out(·), and by the security parameter of the system. Specifically, given
security parameterk we consider functions mapping{0, 1}∗ to {0, 1}`out(k). A set of
interactive oracle machines as above corresponds to anideal system for one specific
application. Security of an ideal system is defined as usual. That is, an ideal system is
considered secure if any adversary with the given abilities (including oracle access)
has only a negligible probability of success (or only a negligible advantage). Here
the probability is taken also over the choices of the random oracle.

1.1.2. Implementing an Ideal System.Since most real-world systems do not
have access to a random oracle, there is a need to “implement” the random ora-
cle aspect of the ideal systems from above. The soundness of the random oracle
methodology depends on finding a suitable notion of implementation, such that
whenever the ideal system is secure in the Random Oracle Model, the implementa-
tion will be secure in the standard model. Furthermore, the implementation should
be directly available (i.e., fully specified) to each party.1 However, all the notions
that we consider in this work fail poorly at this challenge.

Loosely speaking, by “implementing” a particular ideal system we mean using
an easy-to-evaluate functionf instead of the random oracle. That is, whenever the
ideal system queries the oracle with a valuex, the implementation instead evaluates
f (x). In this work, we examine three formalizations of this notion. First, we briefly
examine (and discard of) the notion of implementation by a single function. Then we
discuss implementation by a function ensemble, which is the notion we use through
most of the article. Finally, we discuss a more stringent notion, where the functions
in the ensemble can only be evaluated on inputs of a predetermined (short) length.

1.1.2.1. Implementation by a Single Function.This is perhaps the most “natural”
notion, in that it corresponds to the common practice of using a fixed function (e.g.,
SHA-1) to replace the oracle. Here, an ideal system (for some specific application),
5, is transformed into a real system (for the same application) by transforming
each interactive oracle machine, into a standard interactive machine in the natural
manner. That is, each oracle call is replaced by the evaluation of a fixed functionf
on the corresponding query.2

The above system is called animplementation of5 using function f. The ad-
versary, attacking this implementation, may mimic the behavior of the adversary

1One implementation that is clearly sound, is to replace the random function by a pseudorandom one,
whose seed remains secret. (Presumably, for this to work there should be an online trusted party who
knows the seed and can evaluate the function.) However, this implementation is not fully specified
(i.e., it is not directly available to the users). We stress that the random oracle methodology is typically
applied in settings where we need a fully specified implementation that the parties can evaluate on
their own.
2Formally, the functionf also takes as input the security parameterk, so that the functionf (k, ·)
maps{0, 1}∗ to {0, 1}`out(k).
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of the ideal system, by evaluatingf at arguments of its choice, but it may also do
other things. In particular, it may obtain some global insight into the structure of
the function f , and use this insight toward its vicious goals. An implementation
is calledsecure if any adversary attacking it may succeed only with negligible
probability, where the success event is defined exactly as in the ideal system (i.e., it
is defined by the same polynomial-time computable predicate of the application’s
global view).

Using this notion of an implementation, we would like to say that a functionf
is a “good implementation of a random oracle” if for any ideal system5, security
of 5 implies security of the implementation of5 using f . It is very easy to see,
however, that no (single) polynomial-time computable function can provide a good
implementation of a random oracle. Consider, for example, a candidate functionf .
Then, a (contrived) application for whichf does not provide a good implementation
consists of an oracle machine (representing an honest party) that upon receiving a
messagem, makes querym to the oracle and reveals its private input if the oracle
answers withf (m). Suppose that the adversary is deemed successful whenever the
honest party reveals its private input. Clearly, this ideal system is secure (in the
Random Oracle Model), since the random oracle will return the valuef (m) only
with negligible probability; however, its implementation usingf is certainly not
secure.

One should not be surprised by the failure of the single-function notion of imple-
mentation. Indeed, this notion fails even to be collision intractable (e.g., it definitely
fails with respect to nonuniform polynomial-size circuits), whereas a random oracle
is definitely collision-intractable, even with respect to nonuniform polynomial-size
circuits. Indeed, a collision-intractable function is typically modeled not as a single
function, but rather as a collection (or ensemble) of functions, where a function is
chosen at random from the ensemble and made public once and for all. We thus
turn our attention to possible corresponding implementations of the random oracle
by function ensembles.

1.1.2.2. Implementation by a Function Ensemble.In this setting, we have a “system
set-up” phase, in which the function is selected once and for all, and its description
is available to all parties.3 After the set-up phase, this function is used in place of
the random oracle just as above. A little more precisely, we consider a function
ensembleF = {Fk|k ∈ N}, where

Fk = { fs : {0, 1}∗→{0, 1}`out(k)}s∈{0,1}k , (1)

such that there exists a polynomial time algorithm that, on inputs andx, returns
fs(x). Just like the random oracle, the ensemble’s functions are defined for any
input length, although any user and (feasible) adversary will only invoke them on
inputs of length bounded by a polynomial in their description length,|s|. (Indeed,
protocols in the random oracle model often assume that the random oracle is defined
for all input lengths.) The implementation of an ideal system,5, by the function

3In this work, we consider examples of public key signature and encryption schemes, where the set-up
step is combined with the key-generation step of the original scheme.
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ensembleF is obtained as follows. On security parameterk, we uniformly select
s ∈ {0, 1}k, and makes available to all parties including the adversary. Given this
initialization phase, we replace each oracle call of an interactive oracle machine by
the evaluation of the functionfs on the corresponding query. The resulting system
is called animplementation of5 using function ensembleF .

Again, the adversary may mimic the behavior of the adversary in the Random
Oracle Model by evaluatingfs at arguments of its choice, but it can also use its
knowledge of the description offs in any arbitrary way. Such a real system is called
secure if any adversary attacking it has only a negligible probability of success,
where the probability is taken over the random choice ofs as well as the coins
of all the parties. As before, we would like to say that an ensembleF provides
a “good implementation of a random oracle” if for every ideal system5, if 5 is
secure then so is the implementation of5 usingF . Notice that in this case, the
contrived example from above does not work anymore, since the success event must
be independent of the random choice ofs. Nonetheless, this work implies that no
function ensemble can provide a good implementation of a random oracle.

1.1.2.3. Restricted Function Ensembles and Other Notions.Although the above no-
tions seem like the most “natural” ways of defining an implementation of the
random oracle (and they correspond to the common practice of using a so called
“cryptographic hash function” to replace the oracle), there still may be other in-
teresting notions. One such example is the notion of function ensembles that
are defined over finite domains. That is, instead of considering functions of
the form fs : {0, 1}∗ → {0, 1}`out(|s|), one may consider functions of the form
fs : {0, 1}`in(|s|) → {0, 1}`out(|s|). Furthermore, the function description (i.e.,s)
may be longer than the input and output lengths (i.e.,`in(|s|) and`out(|s|)). Note
that syntactically, such function ensembles can only “implement” a similarly-
restricted random oracle (i.e.,O : {0, 1}`in(k) → {0, 1}`out(k)). Furthermore, most
of our negative results hold also with respect to such restricted “implementations”
(see Section 5).

1.2. OUR RESULTS. The main results in this paper refer to the notion of imple-
menting a variable input-length oracle by a function ensemble (of functions with
variable input-length as in Eq. (1)). Thus, unless we explicitly say otherwise, when
we talk about implementing the Random Oracle Model by function ensembles we
refer to this notion.

1.2.1. Correlation Intractability. One property we certainly expect from a good
implementation of a random oracle, is that it should be infeasible to find inputs to
the function that stand in some “rare” relationship with the corresponding outputs.
Indeed, many applications of the random-oracle methodology (such as the Fiat–
Shamir heuristic) assume that it is infeasible to find input–output pairs that stand in a
particular relations induced by the application. Trying to formulate this property, we
may require that given the description of the function, it is hard to find a sequence of
pre-images that together with their images (under this function) satisfy some given
relation. Clearly, this can only hold for relations for which finding such sequences
is hard in the Random Oracle Model. That is,IF it is hard to find a sequence of
pre-images that together with their images under a random oracle satisfy relation
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R, THEN given the description of a “good” functionfs it should be hard to find a
sequence of pre-images that together with their images underfs satisfyR.

In most of this work, we mainly consider the task of finding asinglepre-image
that together with its image satisfies some property. (The case of relations with
larger arity is discussed in Section 5, in connection with restricted ensembles.)
Loosely speaking, a binary relation is calledevasive if when given access to a
random oracleO, it is infeasible to find a stringx so that the pair (x,O(x)) is in
the relation. (For instance, the relation{(x, 0`out(k)) : x ∈ {0, 1}∗} is evasive. The
relation {(x, 0y) : x ∈ {0, 1}∗, y ∈ {0, 1}`out(k)−1} is not.) A function ensemble
F is calledcorrelation intractable if for every evasive binary relation, given the
description of a uniformly selected functionfs ∈ Fk it is infeasible to find anx
such that (x, fs(x)) is in the relation.4 We show that

INFORMAL THEOREM 1.1. There exist no correlation intractable function
ensembles.

1.2.1.1. Restricted Correlation Intractability. The proof of the above negative result
relies on the fact that the description of the function is shorter than the input used
in the attack. Thus, we also investigate (in Section 5) the case where one restricts
the function fs to inputs whose length is less than the length ofs. We show that the
negative result can be extended to the case where the function description is shorter
than the sum of the lengths of the input and output of the function. Furthermore,
when one considers the notion of correlation intractability for relations on sequences
of inputs and outputs, then the negative result holds as long as the total length of
all the inputs and outputs is more than the length of the function description.

Our results still leave open the possibility that there exist function ensembles
that are correlation intractable with respect to input-output sequences of totala
priori boundedlength. However, such ensembles may be useful only in applications
where the number of invocations of the cryptosystem is a priori bounded (or where
the security of the system depends only on an a priori bounded partial history
of invocations).5

1.2.2. Failures of the Random Oracle Methodology.Upon formulating the ran-
dom oracle methodology, Bellare and Rogaway did warn that a proof of security in
the Random Oracle Model should not be taken as guarantee to the security of im-
plementations (in which the Random Oracle is replaced by functions such as MD5).
However, it was widely believed that a security proof in the Random Oracle Model
means that there are no “structural flaws” in the scheme. That is, it was believed
that any attack against an implementation of this scheme must take advantage of
some “specific flaws in the implementation”. A related common belief was that

4The more general notion is that of correlation intractability with respect to multiple input-output
pairs. The above notion that only talks about one pair should really be called “1-input” correlation
intractability. Still, in this article, we omit the 1-input qualifiers for ease of presentation. The fact that
the following (negative) result refers even to 1-input correlation intractability only makes it stronger.
5We note that the Fiat–Shamir heuristic for transforming interactive identification protocols into
signature schemes does not fall into the above category, since the function’s seed needs to be fixed
with the public key, and used for signing polynomially many messages, where the polynomial is not
a priori known.



The Random Oracle Methodology, Revisited 563

a proof of security in the Random Oracle Model precludes “generic attacks” that
work for any implementation. In this work, we demonstrate that these beliefs were
unfounded. Specifically, we show that

INFORMAL THEOREM 1.2. There exists encryption and signature schemes that
are secure in the Random Oracle Model, but haveNO SECURE IMPLEMENTATIONby
function ensembles. Moreover, each of these schemes has a “generic adversary”,
that when given as input the description of an implementation of the oracle, breaks
the scheme that uses this implementation.

The encryption and signature schemes presented to prove Theorem 1.2 are
“unnatural”. We do not suggest that a statement as above holds with respect to
schemes presented in the literature. Still, the lesson is that the mere fact that a
scheme is secure in the Random Oracle Model does not necessarily imply that a
particular implementation of it (in the real world) is secure, or even that this ideal
scheme hasany secure implementation at all. In fact, our techniques are quite gen-
eral and can be applied to practicallyanycryptographic application. That is, given
an ideal cryptographic applicationA, we can construct an ideal cryptographic ap-
plication A′ such thatA′ is just as secure asA (in the Random Oracle Model), but
A′ hasno secure implementation.

1.2.2.1. An Afterthought. Trying to explain our negative results, we note that the
beliefs reviewed before Theorem 1.2 seem to assume that the only “reasonable
thing” that a generic attack can do with a description of the function implement-
ing the oracle, is to invoke it on inputs of its choice. This oversight, which can
be traced to the conjectured difficulty of “reverse engineering”, ignores the com-
putational theoretic fact that a code of a program (or part of it) can be fed to
the program itself resulting in “unexpected” behavior. Indeed, this is essentially
what our “generic attacker” does. In retrospect, several subsequent works (e.g.,
Barak et al. [2001] and Barak [2001, 2002]) demonstrated that having a descrip-
tion of a function is much more powerful than just having a black-box access to
that function.

1.3. TECHNIQUES. Our proof of Theorem 1.2 uses in an essential way non-
interactive CS-proofs (in the Random Oracle Model), as defined and constructed
by Micali [2000].6 Interestingly, we only use the fact that non-interactive CS-proofs
exist in the Random Oracle Model, and do not care whether or not these ideal CS-
proofs have an implementation using function ensembles (nor if noninteractive
CS-proofs exists at all outside of the Random Oracle Model). Specifically, CS-
proofs are used to “effectively verify”any polynomial-time verifiable statement
within time that is bounded by onefixed polynomial. Furthermore, we use the
fact that the definition of CS-proofs guarantees that the complexity of generating
such proofs is polynomial in the time required for ordinary verification. See further
discussion in Section 2.2.

6The ideas underlying the construction of Micali [2000] can be traced back to the construction of
Kilian [1992] and to the Fiat–Shamir transformation [Fiat and Shamir 1986] (which is sound in the
Random Oracle Model).
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1.4. RELATED WORK.

1.4.1. Previous Work.

1.4.1.1. Correlation Intractability. Our definition of correlation-intractability is
related to a definition by Okamoto [1992]. Using our terminology, Okamoto con-
siders function ensembles for which it is infeasible to form input-output relations
with respect to a specific evasive relation [Okamoto 1992, Def. 19] (rather than all
such relations). He uses the assumption that such function ensembles exists, for a
specific evasive relation in Okamoto [1992, Thm. 20].

1.4.1.1. Special-Purpose Properties of the Random Oracle Model.First steps in the di-
rection of identifying and studying useful special-purpose properties of the Random
Oracle Model have been taken by Canetti [1997]. Specifically, Canetti considered
a property called “perfect one-wayness”, provided a definition of this property,
constructions that possess this property (under some reasonable assumptions), and
applications for which such functions suffice. Additional constructions have been
suggested by Canetti et al. [1998b]. Another context where specific properties of
the random oracle where captured and realized is the signature scheme of Gennaro
et al. [1999].

1.4.2. Subsequent Work.All works surveyed in this subsection have appeared
following the preliminary version of the current work [Canetti et al. 1998a].

1.4.2.1. Relation to Zero-Knowledge Proofs.Hada and Tanaka [1999] observed that
the existence of even restricted correlation intractable functions (in the nonuniform
model) would be enough to prove that 3-round auxiliary-input zero-knowledge
AM proof systems only exist for languages in BPP. (Recall that auxiliary-input
zero-knowledge is seemingly weaker than black-box zero-knowledge, and so the
result of Hada and Tanaka [1999] is incomparable to prior work of Goldreich and
Krawczyk [1996] that showed that constant-round auxiliary-input zero-knowledge
AM proof systems only exist for languages in BPP.)

1.4.2.2. Relation to “Magic Functions”. Following Hada and Tanaka [1999], Dwork
et al. [2003] investigated the notion of “magic functions”, which is related to our cor-
relation intractable functions. Like correlation intractability, the definition of “magic
functions” is motivated by the quest to capture the properties that are required from
the hash function in the Fiat–Shamir heuristic. Correlation intractability seems like
a general and natural property, but is not known to be either necessary or sufficient
for the Fiat–Shamir heuristic (which is a special case of the random oracle method-
ology). In contrast, “magic functions” are explicitly defined as “functions that make
the Fiat–Shamir heuristic work”. In their paper, Dwork et al. [2003] demonstrated a
relation between “magic functions” and 3-round zero-knowledge, similar to the re-
lation between correlation intractability and zero-knowledge exhibited in Hada and
Tanaka [1999]. Specifically, they showed that the existence of “magic functions”
implies the nonexistence of some kind of 3-round zero-knowledge proof systems,
as well as a weakened version of a converse theorem.
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1.4.2.3. On Obfuscating a Pseudorandom Function Ensemble.In their work regard-
ing the impossibility of code obfuscators, Barak et al. [2001] have complemented
Theorem 1.2 in the following sense. Recall that Theorem 1.2 asserts the existence
of (contrived) protocols that are secure in the idealized Random Oracle Model,
but haveno secure implementationby function ensembles. In contrast, the results
in Barak et al. [2001] imply that anatural method of obtaining adequate function
ensemblesfails to yield secure implementations forany protocolthat is secure in
the random oracle model. Specifically, the method shown to fail is applying any
“code obfuscator” (i.e., a transformation that changes the programs code without
changing its functionality) to an ensemble of pseudorandom functions (i.e., an en-
semble of functions that cannot be distinguished from a random oracle when only
given oracle access to the function [Goldreich et al. 1986]).

1.4.2.4. On the Usefulness of the Code of a Program.In continuation to the af-
terthought in Section 1.2.2, we mention that the advantage of given a program’s
code rather than merely oracle access to it has been further demonstrated in sub-
sequent works [Barak et al. 2001; Barak 2001; Barak 2002]. In particular, Barak
et al. [2001] use the code of a program in order to guide a corresponding com-
putation with encrypted intermediate results. Barak [2001, 2002] shows that the
code of an adversary can be used to generate certain simulated transcripts that are
indistinguishable from the real execution (whereas these specific transcripts cannot
be generated while only using oracle access to the adversary’s program). Needless
to say, none of these work “reverse engineers” the code in any natural sense (i.e.,
there is no attempt to “understand” or “interpret” the code). Rather, they only use
the fact that such a short code exists.

1.4.2.5. On Another Failure of the Random Oracle Methodology.As stated in
Theorem 1.2, there arespecificschemes that are secure in the Random Oracle
Model, and still have no secure implementation by function ensembles. A recent
work of Nielsen [2002] shows that there are natural cryptographic tasks that can
be securely realized in the Random Oracle Model, but cannot be securely realized
in the standard model without a random oracle. (The task considered by Nielsen is
non-committing encryption a la Canetti et al. [1996].) Note that Nielsen’s result is
more general that Theorem 1.2 in two ways. Firstly, Nielsen refers to a (natural)
taskrather than to a specific protocol that securely implements it in the Random
Oracle Model. Secondly, Nielsen rules outany implementation of the task in the
standard model, rather than only ruling out implementations resulting by replacing
oracle calls (to the random oracle) by function evaluations (for a function selected
at random in a function ensemble). Analogously, our Theorem 1.1 can be viewed as
asserting that there exists a naturaltool (i.e., correlation intractable functions) that
can be securely implemented in the Random Oracle Model but not in the standard
model.

1.5. ORGANIZATION. Section 2 presents syntax necessary for the rest of the
paper as well as review the definition of CS-proofs. Section 3 discusses the reasoning
that led us to define the correlation intractability property, and prove that even such
a minimalistic definition cannot be met by function ensembles. Section 4 presents
our main negative results—demonstrating the existence of secure ideal signature
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and encryption schemes that do not have secure implementations. In Section 5, we
extend these negative results (in some cases) to ensembles with length restrictions.
Also in that section, we discuss the margins to which we could not extend these
negative results, and hint on some other possible directions that one may explore in
the face of these negative results. In Section 6, we present three different perspectives
on the results in this paper, and discuss some directions for future research.

2. Preliminaries

We consider probability spaces defined over executions of probabilistic machines.
Typically, we consider the probability that an output generated by one machine
M1 satisfies a condition that involves the execution of a second machineM2. For
example, we denote by Pr[y ← M1(x) , |y| = |x|& M2(y) = 1] the probability
that on inputx, machineM1 outputs a string that has length|x| and is accepted by
machineM2. That is,y in the above notation represents a random variable that may
be assigned arbitrary values in{0, 1}∗, conditions are made regarding thisy, and
we consider the probability that these conditions are satisfied wheny is distributed
according toM1(x).

2.1. FUNCTION ENSEMBLES. To make the discussion in the Introduction more
precise, we explicitly associate a length function,`out : N→N, with the output of
the random oracle and its candidate implementations. We usually assume that the
length functions are super-logarithmic and polynomially bounded (i.e.,ω(logk) ≤
`out(k) ≤ poly(k)). We refer to an oracle with length function`out as aǹ out-oracle.
On security parameterk, each answer of the oracle is a string of length`out(k). A can-
didate implementation of a random̀out-oracle is aǹ out-ensemble as defined below.

Definition2.1 (Function Ensembles). Let `out : N→N be a length function.
An `out-ensemble is a sequenceF = {Fk}k∈N of families of functions,Fk = { fs :
{0, 1}∗→{0, 1}`out(k)}s∈{0,1}k , so that the following holds

Length Requirement. For everys ∈ {0, 1}k and everyx ∈ {0, 1}∗, | fs(x)| =
`out(k).

Efficiency Requirement. There exists a polynomial-time algorithm EVAL so that
for everys, x ∈ {0, 1}∗, it holds that EVAL (s, x) = fs(x).

In the sequel, we often calls thedescription or theseed of the function fs.

Remark2.2. The length of the seed in the above definition serves as a “secu-
rity parameter” and is meant to control the “quality” of the implementation. It is
important to note that althoughfs(·) is syntactically defined on every input, in a
cryptographic applications it is only used on inputs of length at most poly(|s|).
(Typically, the exact polynomial depends on the application in which this function
ensemble is used.) We stress that all results presented in this article refer to such
usage.

Remark2.3. One may even envision applications in which a more stringent
condition on the use offs holds. Specifically, one may require that the functionfs
be only applied to inputs of length at most`in(|s|), where`in : N→N is a specific
length function (e.g.,̀in(k) = 2k). We discuss the effects of making such a stringent
requirement in Section 5.
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2.2. CS PROOFS. Our construction of signature and encryption schemes that
are secure in the Random Oracle Model but not in the “real world” uses CS-proofs
as defined and constructed by Micali [2000]. Below, we briefly recall the relevant
definitions and results.

A CS-proof system consists of a prover, PRV, that is trying to convince a verifier,
VER, of the validity of an assertion of the typemachine M accepts input x within
t steps.7 A central feature of CS-proofs is that the running-time of the prover
on input x is (polynomially) related to theactual running time ofM(x) rather
than to the global upper boundt ; furthermore, the verifier’s running-time is poly-
logarithmic related tot . (These conditions are expressed in theadditional efficiency
requirementsin Definition 2.4 below.)

In our context, we use noninteractive CS-proofs that work in the Random Oracle
Model; that is, both prover and verifier have access to a common random oracle. The
prover generates an alleged proof that is examined by the verifier. A construction
for such CS-proofs was presented by Micali [2000], using ideas that can be traced
to the construction of Kilian [1992], and requires no computational assumptions.
Following is the formulation of CS-proofs, as defined by Micali.

In the formulation below, the security parameterk is presented in unary to both
parties, whereas the global time boundt is presented in unary to the prover and
in binary to the verifier. This allows the (polynomial-time) prover to run in time
polynomial int , whereas the (polynomial-time) verifier may only run in time that
is poly-logarithmic int . (Observe that it isnot requiredthat t is bounded above
by a polynomial in|x|. In fact, in our arguments, we shall use a slightly super-
polynomial functiont (i.e.,t(n) = nlogn).) Finally, we mention that both the prover
and the verifier in the definition below are required to be deterministic machines.
See some discussion in Remark 2.6 below.

Definition2.4 (Noninteractive CS Proofs in the Random Oracle Model).
A CS-proof system consists of two(deterministic) polynomial-time oracle
machines, a prover PRV and a verifier VER, operating as follows:

—On input (1k, 〈M〉, x, 1t ) and access to an oracleO, the prover computes a proof
π = PRVO(1k, 〈M〉, x, 1t ) such that|π | ≤ poly(k, |〈M〉|, |x|, log t).

—On input (1k, 〈M〉, x, t, π ), with t encoded in binary, and access toO, the verifier
decides whether to accept or reject the proofπ (i.e., VERO(1k, 〈M〉, x, t, π ) ∈
{accept, reject}).
The proof system satisfies the following conditions, where the probabilities are

taken over the random choice of the oracleO:

Perfect Completeness. For anyM, x, t such that machineM accepts the string
x within t steps, and for anyk,

Pr
O

[
π ← PRVO(1k, 〈M〉, x, 1t ),
VERO(1k, 〈M〉, x, t, π ) = accept

]
= 1.

Computational Soundness. For any polynomial time oracle machine BAD and
any inputw = (〈M〉, x, 1t ) such thatM does notacceptsx within t steps, it holds

7Whent is presented in binary, such valid assertions form a complete language for the class (deter-
ministic) exponential time.
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that

Pr
O

[
π ← BADO(1k, 〈M〉, x, 1t ),
VERO(1k, 〈M〉, x, t, π ) = accept

]
≤ poly(k+ |w|)

2k

Additional Efficiency Conditions;8 The running-time of the prover PRV on input
(1k, 〈M〉, x, 1t ) is (polynomially) related to theactualrunning time ofM(x), rather
than to the global upper boundt . That is, there exists a fixed polynomialp(·), such
that

TPRV(1
k, 〈M〉, x, 1t ) ≤ p(k,min{t, TM (x)}),

whereTA(x) denotes the running time of machineA on inputx.

Remark2.5 (Oracle Output Length). The above definition does not specify
the output length of the oracle (i.e., the length of the answers to the oracle queries). In
some cases it is convenient to identify this output length with the security parameter,
but in many case we do not follow this convention (e.g., in Proposition 2.8 below).
In any case, it is trivial to implement an oracle with one output length given an
oracle with different output length, so we allow ourselves to ignore this issue.

Remark2.6 (Deterministic Verifier). Recall that Definition 2.4 mandates that
both the prover and verifier are deterministic. Indeed this deviates from the tradition
(in this area) of allowing the verifier to be probabilistic; but Micali’s construction (in
the Random Oracle Model) happens to employ a deterministic verifier (cf. Micali
[2000]). This issue is not essential to our main results, but plays an important role
in the proof of Proposition 5.8 (due to K. Nissim). We note that when working in
the Random Oracle Model (and only caring about completeness and soundness),
one may assume without loss of generality that the prover is deterministic (because
it can obtain adequate randomness by querying the oracle). This does not hold with
respect to the verifier, since its coin tosses may need to be unknown to the prover.

THEOREM2.7 ([MICALI 2000]). There exists a noninteractive CS proof system
in the Random Oracle Model.

For the proof of our construction (Theorem 4.4), we need a different soundness
condition than the one from above. Specifically, we need to make sure that given the
machineM (and the complexity boundt), it is hard to findany pair(x, π ) such that
M does not acceptx within t steps and yet VERwill acceptπ as a valid CS-proof to
the contrary. One way to obtain this soundness property from the original one, is by
postulating that when the verifier is given a proof for an assertionw = (〈M〉, x, t),
it uses security parameterk + |w| (rather than justk). Using a straightforward
counting argument, we get:

PROPOSITION 2.8. Let (PRV,VER) be a CS proof system. Then for every poly-
nomial time oracle machineBAD, there exists a polynomial q(·), such that for every

8By the above, the running time of PRV on input (1k, 〈M〉, x, 1t ) is at most poly(k, |〈M〉|, |x|, t),
whereas the running time of VER on input (1k, 〈M〉, x, t, π ) is at most poly(k, |〈M〉|, |x|, |π |, log t).
The additional efficiency condition provides even lower running time bound for the prover. Note that
if M runs for much less time thant , the prover may not even have enough time to read its entire input.
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k it holds that

εbad(k)
def= Pr
O

 (w, π )← BADO(1k), where w= (〈M〉, x, t),
such that machine M does not accept x within t steps

and yetVERO(1k+|w|,w, π ) = accept

 ≤ q(k)

2k
.

3. Correlation Intractability

In this section, we present and discuss the difficulty of defining the intuitive re-
quirement that a function ensemble “behaves like a random oracle” even when
its description is given. We first comment that an “obvious over-reaching defini-
tion”, which amount to adopting the pseudorandom requirement of Goldreich et al.
[1986], fails poorly. That is, we cannot require that an (efficient) algorithm that is
given the description of the function cannot distinguish its input–output behavior
from the one of a random function, because the function description determines its
input-output behavior.

3.1. TOWARD A DEFINITION. Although we cannot require the value of a fully
specified function to be “random”, we may still be able to require that it has some
“unpredictability properties”. For example, we may require that, given a description
of a family and a function chosen at random from a this family, it is hard to find two
pre-images that the function maps to the same image. Indeed, this sound definition
coincides with the well-knowncollision-intractability property [Damg˚ard 1987].
Trying to generalize, we may replace the “equality of images” relation by any other
relation among the pre-images and images of the function. Namely, we would like
to say that an ensemble iscorrelation intractable if for any relation, given the
description of a randomly chosen function, it is infeasible to find a sequence of
pre-images that together with their images satisfy this relation.

This requirement, however, is still unreasonably strong since there are relations
that are easy to satisfy even in the Random Oracle Model. We therefore restrict the
above infeasibility requirement by saying that it holds only with respect to relations
that are hard to satisfy in the Random Oracle Model. That is,IF it is hard to find
a sequence of pre-images that together with their images under a random function
satisfy relationR, THEN given the description of a randomly chosen functionfs
it should be hard to find a sequence of pre-images that together with their images
under fs satisfyR.

This seems to be a minimalistic notion of correlation intractable ensemble of
functions, yet we show below that no ensemble can satisfy it. In fact, in the defi-
nition below we only consider the task of finding a single pre-image that together
with its image satisfies some property. Namely, instead of considering all possible
relations, we only consider binary ones. Since we are showing impossibility result,
this syntactic restriction only strengthens the result. (When we consider restricted
ensembles in Section 5, we will revisit the case of relations with larger arity.)

3.2. ACTUAL DEFINITIONS. We start with a formal definition of a relation that
is hard to satisfy in the random oracle model.

Definition3.1 (Evasive Binary Relations). A binary relationR is said to be
evasive with respect to length functioǹout if for any probabilistic polynomial
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time oracle machineM there is a negligible function9 negl such that

Pr
O

[x← MO(1k), and (x,O(x))∈R] = negl(k),

whereO : {0, 1}∗ → {0, 1}`out(k) is a uniformly chosen function.

A special case of evasive relations consists ofR’s for which there exists a negli-
gible function negl(·) so that for allk

sup
x∈{0,1}∗

{
Pr

y∈{0,1}`out(k)
[(x, y)∈R ]

}
= negl(k).

(All the binary relations used in the sequel falls into this category.) The reason such
an R is evasive is that any oracle machine,M , making at most poly(k) queries to a
randomO satisfies

Pr
O

[x← MO(1k), (x,O(x))∈R] ≤ poly(k) · sup
x∈{0,1}∗

{ Pr
O

[(x,O(x))∈R] }
≤ poly(k) · negl(k).

We are now ready to state our minimalistic definition of a correlation intractable
ensemble:

Definition3.2 (Correlation Intractability). Let `out : N → N be length func-
tion, and letF be aǹ out-ensemble.

—Let R⊆ {0, 1}∗ × {0, 1}∗ be a binary relation. We say thatF is correlation in-
tractable with respect to R if for every probabilistic polynomial-time machine
M there is a negligible function negl such that

Pr
s∈{0,1}k

[x← M(s), (x, fs(x)) ∈ R] = negl(k),

where the probability is taken over the choice ofs ∈ {0, 1}k and the coins ofM .
—We say thatF is correlation intractable, if it is correlation intractable with

respect to every evasive binary relation (with respect to`out).

Remark3.3. In the above definition, we quantify over all evasive binary re-
lations. A weaker notion, calledweak correlation intractability, is obtained by
quantifying only over all polynomial-time recognizable evasive binary relations
(i.e., we only consider those relationsR such that there exists a polynomial-time
algorithm that, given (x, y), decides whether or not (x, y) ∈ R). In the sequel, we
consider both notions.

3.3. CORRELATION-INTRACTABLE ENSEMBLESDO NOT EXIST

THEOREM 3.4. For any super-logarithmic length functioǹout, there exist no
correlation intractablè out-ensembles, not even in the weak sense.

Note that in case the length function is logarithmic (i.e.,`out(k) = O(logk)),
there exist no “interesting” evasive binary relations (i.e., for an evasive relationR it

9A functionµ : N→ R is negligible if for every positive polynomialp and all sufficiently largen’s,
µ(n) < 1/p(n).
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must be hard to findx ∈ {0, 1}k such that (x, y) ∈ R for somey). Thus, correlation
intractable`out-ensembles do exist in this case (of`out(k) = O(logk)), but in an
uninteresting sense.

PROOF. For any super-logarithmic̀out, letF = { fs}s∈{0,1}∗ be aǹ out-ensemble.
We define the binary relation:

RF
def=
⋃

k

{
(s, fs(s)) : s ∈ {0, 1}k} . (2)

Clearly, this relation is polynomial-time recognizable, sincefs can be computed in
polynomial time. Also, the relation is evasive (with respect to`out) since for every
x ∈ {0, 1}∗ there is at most oney ∈ {0, 1}`out(k) satisfying (x, y) ∈ RF , 10 and so

Pr
y

[(x, y) ∈ RF ] ≤ 2−`out(k) = 2−ω(logk) = negl(k) .

On the other hand, consider the machineI that computes the identity function,
I (x) = x for all x. It violates the correlation intractability requirement, since for
all k,

Pr
s∈{0,1}k

[( I (s), fs(I (s))) ∈ RF ] = Pr
s∈{0,1}k

[(s, fs(s)) ∈ RF ] = 1 .

In fact, sinceRF is polynomial-time recognizable, even the weak correlation
intractability ofF is violated.

4. Failures of the Random Oracle Methodology

This section demonstrates that the security of a cryptographic scheme in the Random
Oracle Model does not always imply its security under some specific choice of a
“good hash function” that is used to implement the random oracle. To prove this
statement we construct signature and encryption schemes that are secure in the
Random Oracle Model, yet for whichany implementationof the random oracle
(by a function ensemble) yields insecure schemes. Put in other words, although the
ideal scheme is secure, any implementation of it is necessarily insecure.

The underlying idea is to start with a secure scheme (which may or may not
use a random oracle) and modify it to get a scheme that is secure in the Random
Oracle Model, but such that its security is easily violated when trying to replace
the random oracle by any ensemble. This is done by using evasive relations as
constructed in Theorem 3.4. The modified scheme starts by trying to find a pre-
image that together with its image yields a pair in the evasive relation. In case the
attempt succeeds, the scheme does something that is clearly insecure (e.g., output
the secret key). Otherwise, the scheme behaves as the original (secure) scheme
does. The former case (i.e., finding a pair in the relation) will occur rarely in the
Random Oracle Model, thus the scheme will maintain its security there. However,
it will be easy for an adversary to make sure that the former case always occurs
under any implementation of the Random Oracle Model, thus no implementation

10Such ay exists if and only if̀ out(|x|) = `out(k).
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may be secure.11 We start with the case of a signature scheme, and present the
construction in three steps.

—In the first step, we carry out the above idea in a naive way. This allows us to
prove a weaker statement, saying that for any function ensembleF , there exists
a signature scheme that is secure in the Random Oracle Model, but is not secure
when implemented usingF .

This, by itself, means that one cannot construct a function ensemble that pro-
vides secure implementation of any cryptographic scheme that is secure in the
Random Oracle Model. But it still does not rule out the possibility (ruled out
below) that for any cryptographic scheme that is secure in the Random Oracle
Model there exists a secure implementation (via a different function ensemble).

—In the second step, we use diagonalization techniques to reverse the order of
quantifiers. Namely, we show that there exists a signature scheme that is secure in
the Random Oracle Model, but for whichanyimplementation (using any function
ensemble) results in an insecure scheme. However, the scheme constructed in
this step utilizes signing and verification procedures that run in (slightly) super-
polynomial time.

—In the third step, we use CS-proofs [Micali 2000] to get rid of the super-
polynomial running-time (of the legitimate procedures), hence obtaining a stan-
dard signature scheme that is secure in the Random Oracle Model, but has no
secure implementation. Specifically, in this step we use CS-proofs as a tool to
“diagonalize against all polynomial-time ensembles in polynomial time”. (As
noted by Silvio Micali, this technique may be useful also in other settings where
diagonalization techniques are applied.)

The reader is referred to Goldwasser et al. [1988] for basic terminology regarding
signature schemes and corresponding notions of security. As a starting point for
our constructions, we use a signature scheme, denotedS = (G, S,V), whereG is
the key-generation algorithm,S is the signing algorithm, andV is the verification
algorithm. We assume that the scheme (G, S,V) is existentially unforgeable under
adaptive chosen message attack, in the Random Oracle Model. We do not need to
rely on any computational assumptions here, since one-way functions are sufficient
for constructing secure signature schemes [Naor and Yung 1989; Rompel 1990],
and the random oracle can be used to implement one-way functions without any
assumptions.12

4.1. CONVENTIONS. In the three steps below we assume, without loss of gener-
ality, that the security parameter (i.e.,k) is implicit in the keys generated byG(1k).
Also, let us fix some length functioǹout : N→N, which would be implicit in the
discussions below (i.e., we assume that the random oracles are all`out-oracles, the
relations are evasive with respect to`out, etc.).

11On a higher level, one can think of the attack as trying to “prove to the scheme that its oracle is
actually being implemented by an ensemble.” If the scheme is convinced, it becomes insecure. Viewed
in this light, the use of evasive relations is but one example of how such “proof of implementation”
can be constructed.
12Alternatively, we could use an ‘ordinary’ signature scheme, but then our Theorem 4.4 would be
conditioned on the existence of one-way functions.
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4.2 FIRST STEP

Definition. LetS = (G, S,V) be a signature scheme (that may or may not use a
random oracle), and letRbe any binary relation that is evasive with respect to length
function`out. Then, bySR = (G, SR,VR) we denote the following modification of
S that utilizes a random̀out-oracle:

Modified signature, SOR (sk,msg)of messagemsgusing signing keysk:

1. If (msg,O(msg))∈R, output (sk,msg).
2. Otherwise, (i.e., (msg,O(msg))6∈R), outputSO(sk,msg).

Modified verification, VOR (vk,msg, σ ),. of alleged signatureσ to msg using
verification key vk:

1. If (msg,O(msg))∈R, thenaccept
2. Otherwise, outputVO(vk,msg, σ ).

The key-generation algorithm,G, is the same as in the original schemeS. Item (1)
in the signing/verification algorithms is a harmful modification to the original sig-
nature scheme. Yet, ifR is evasive, then it has little effect on the ideal system, and
the behavior of the modified scheme is “indistinguishable” from the original one.
In particular,

PROPOSITION 4.1. Suppose that R is evasive(with respect tò out) and thatS
is existentially unforgeable under a chosen message attack in the Random Oracle
Model. ThenSR is also existentially unforgeable under a chosen message attack in
the Random Oracle Model.

PROOF. The intuition is that sinceR is evasive, it is infeasible for the forger to
find a messagem so that (m,O(m)) ∈ R. Thus, a forgery of the modified scheme
must be due to Item (2), contradicting the security of the original scheme.

Formally, letAR be an adversary who mounts an adaptive chosen message attack
on SR, and whose success probability in obtaining an existential forgery (in the
Random Oracle Model) isεfrg = εfrg(k). Assume, toward contradiction, thatεfrg is
not negligible in the security parameterk.

Denote by REL the event in which during an execution ofAR, it hands out
a messagem for which (m,O(m)) ∈ R (either as a query to the signer during
the chosen message attack, or as the message for which it found a forgery at the
end), and letεrel = εrel(k) be the probability of that event. Using the hypothesis
that R is evasive, we now prove thatεrel is negligible in the security parameterk.
Suppose, to the contrary, thatεrel is not negligible. Then, we can try to efficiently
find pairs (x,O(x)) ∈ R by choosing a key-pair forS, and then implementing the
attack, playing the role of both the signer algorithm and the adversaryAR. With
probability εrel, one of AR’s messages during this attack satisfies (m,O(m)) ∈ R,
so just choosing at random one message that was used and outputting it yields a
success probability ofεrel/q (with q being the number of different messages that
are used in the attack). Ifεrel is not negligible, then neither isεrel/q, contradicting
the evasiveness ofR.

It is clear that barring the event REL, the execution ofAR against the original
schemeS would be identical to its execution againstSR. Hence, the probability that
AR succeeds in obtaining an existential forgery againstS is at leastεfrg−εrel. Since
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εrel is negligible, andεfrg is not, thenAR’s probability of obtaining an existential
forgery againstS is also not negligible, contradicting the assumed security ofS.

The modification toS enables to break the modified schemeSR when imple-
mented with a real ensembleF , in the case whereR is the relationRF from
Proposition 3.4. Indeed, as corollary to Propositions 3.4 and 4.1, we immediately
obtain:

COROLLARY 4.2. For every efficiently computablèout-ensembleF , there exists
a signature scheme that is existentially unforgeable under a chosen message attack
in the Random Oracle Model, yet when implemented withF , the resulting scheme
is totally breakable under an adaptive chosen message attack, and existentially
forgeable under a key-only attack.

PROOF. When we use an ensembleF to implement the random oracle in
the schemeSR, we obtain the following real scheme (which we denoteS ′R =
(G′, S′R,V ′R)):

G′(1k). Uniformly pick s ∈ {0, 1}k, set (sk, vk)← G fs(1k), and output
(〈sk, s〉, 〈vk, s〉).

S′R(〈sk, s〉,msg). OutputSfs
R (sk,msg).

V ′R(〈vk, s〉,msg, σ ). OutputV fs
R (vk,msg, σ ).

Consider now what happens when we use the ensembleF to implement the the
schemeSRF (recall the definition ofRF from Eq. (2)). SinceRF is evasive, then
from Proposition 4.1 we infer that theSRF is secure in the Random Oracle Model.
However, when we use the ensembleF to implement the scheme, the seeds be-
comes part of the public verification-key, and hence is known to the adversary. The
adversary can simply output the pair (s, ε), that will be accepted byV ′

RF as a valid
message-signature pair (since (s, fs(s)) ∈ RF ). Hence, the adversary achieves ex-
istential forgery (ofS ′

RF ) under key-only attack. Alternatively, the adversary can
ask the legitimate signer for a signature ons, hence obtaining the secret signing-key
(i.e., total forgery).

4.3. SECONDSTEP.

4.3.1. Enumeration. For this (and the next) subsection we need an enumera-
tion of all efficiently computable function ensembles. Such enumeration is achieved
via an enumeration of all polynomial-time algorithms (i.e., candidates for evalu-
ation algorithms of such ensembles). Several standard technicalities arise. First,
enumerating all polynomial-time algorithms is problematic since there is no sin-
gle polynomial that bounds the running time of all these algorithms. Instead, we
fix an arbitrary super-polynomial proper complexity function,13 t : N→N (e.g.,
t(n) = nlogn), and enumerate all algorithms of running-time bounded byt . The lat-
ter is done by enumerating all possible algorithms, and modifying each algorithm
by adding a time-out mechanism that terminates the execution in case more than
t(|input|) steps are taken. This modification does not effect the polynomial-time

13Recall thatt(n) is aproper complexity function(or time-constructible) if there exists a machine that
computest(n) and works in timeO(t(n)). This technical requirement is needed to ensure that the
enumeration itself is computable in timeO(t(n)).
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algorithms. Also, since we are interested in enumerating`out-ensembles, we mod-
ify each function by viewing its seed as a pair〈s, x〉 (using some standard parsing
rule) and padding or truncating its output to length`out(|s|). Again, this modification
has no effect on thèout-ensembles.

Let us denote byF i the i th function ensemble according to the above enumera-
tion, and denote byf i

s the function indexed bys from the ensembleF i . Below we
again use some standard rule for parsing a stringα as a pair〈i, s〉 and viewing it as
a description of the functionf i

s .

4.3.2. Universal Ensemble.Let U = {Uk}k∈N denote the “universal function
ensemble” that is induced by the enumeration above, namelyUk = {u〈i,s〉}〈i,s〉∈{0,1}k
andu〈i,s〉(x) = f i

s (x). There exists a machine that computes the universal ensemble
U and works in slightly super-polynomial time,t .

4.3.3. Universal Relation. Denote byRU the universal relation that is defined
with respect to the universal ensembleU similarly to the way thatRF is defined
with respect to any ensembleF . That is:

RU
def=
⋃

k

{(〈i, s〉, f i
s (〈i, s〉)) : 〈i, s〉 ∈ {0, 1}k}

Or, in other words:

(x, y) ∈ RU ⇐⇒ y = ux(x)
(i.e.,x = 〈i, s〉 andy = f i

s (x))

4.3.4. Modified Signature Scheme.Let S = (G, S,V) be a signature scheme
(as above). We then denote bySu = (G, Su,Vu) the modified signature scheme that
is derived by usingRU in place ofR in the previous construction. Specifically:

SOu (sk,msg).
def=

1. If (msg,O(msg)) ∈ RU (i.e., if msg= 〈i, s〉 andO(msg)= f i
s (msg)) then

output (sk,msg).
2. Otherwise, outputSO(sk,msg)

VOu (vk,msg, σ ).
def=

1. If (msg,O(msg)) ∈ RU thenaccept.
2. Otherwise, outputVO(vk,msg, σ ).

We note that since these signature and verification algorithms need to computeU ,
they both run in timeO(t), which is slightly super-polynomial.

PROPOSITION 4.3. Suppose thatS is existentially unforgeable under a chosen
message attack in the Random Oracle Model. ThenSu is also existentially unforge-
able under a chosen message attack in the Random Oracle Model, but implementing
it with any function ensembleyields a scheme that is totally breakable under chosen
message attack and existentially forgeable under key-only attack.

PROOF. SinceRU is evasive, then from Proposition 4.1 it follows thatSu is
secure in the Random Oracle Model. On the other hand, suppose that one tries to
replace the random oracle in the scheme by an ensembleF i (wherei be the index
in the enumeration). An adversary, given a seeds of a function inF i can then
set msg= 〈i, s〉 and output the pair (msg, ε), which would be accepted as a valid
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message-signature pair byVu. Alternatively, it can ask the signer for a signature on
this message msg, and so obtain the secret signing-key.

4.4. THIRD STEP. We now use CS-proofs to construct a new signature scheme
that works in the Random Oracle Model. This construction is similar to the one
in Section 4.3, except that instead of checking that (msg,O(msg)) ∈ RU , the
signer/verifier gets a CS-proof of that claim, and it only needs to verify the validity
of that proof. Since verifying the validity of a CS-proof can be done much more
efficiently than checking the claim “from scratch”, the signing and verifications
algorithms in the new scheme may work in polynomial time. On the other hand,
when the scheme is implemented using the function ensembleF i , supplying the
adequate CS-proof (i.e., for (msg, f i

s (msg))∈ RU ) only requires polynomial-time
(i.e., time polynomial in the time it takes to evaluatef i

s ). This yields the following:

THEOREM 4.4. There exists a signature scheme that is existentially unforge-
able under a chosen message attack in the Random Oracle Model, but such that
when implemented with any function ensemble, the resulting scheme is existentially
forgeable using key-only attack and totally breakable under chosen message attack.

We note again that unlike the “signature scheme” presented in Section 4.3, the
signature scheme presented below works in polynomial-time.

PROOF. Below we describe such a signature scheme. For this construction we
use the following ingredients.

—S = (G, S,V) is a signature scheme, operating in the Random Oracle Model,
that is existentially unforgeable under a chosen message attack.

—A fixed (and easily computable) parsing rule that interpret messages as triples of
strings msg= 〈i, s, π〉.

—The algorithms PRV and VER of a CS-proof system, as described in Section 2.2
above.

—Access to three independent random oracles. This is very easy to achieve given

access to one oracleO; specifically, by settingO′(x)
def= O(01x), O′′(x)

def=
O(10x) andO′′′(x)

def= O(11x).
Below we use oracleO′′′ for the basic schemeS, oracleO′′ for the CS-proofs,

and oracleO′ for our evasive relation. We note that ifO is an`out-oracle, then
so areO′,O′′ andO′′′.

—The universal function ensembleU from Section 4.3, with proper complexity
boundt(n) = nlogn. We denote byMU the universal machine that decides the
relationRU . That is, on input (〈i, s〉, y), machineMU invokes thei th evaluation
algorithm, and accepts iff i

s (〈i, s〉) = y.
We note thatMU works in timet in the worst case. More importantly, ifF i

is a function ensemble that can be computed in timepi (·) (where pi is some
polynomial), then for any stringss, y, on input (〈i, s〉, y), machineMU works
for only poly(|i |) · pi (|s|) many steps.14

14The point is merely that, for every fixedi , the expression poly(|i |)·pi (|s|) is bounded by a polynomial
in |s|.



The Random Oracle Methodology, Revisited 577

Using all the above, we describe an ideal signature schemeS ′u = (G, S′u,V ′u). As
usual, the key generation algorithm,G, remains unchanged. The signature and
verification algorithms proceed as follows:

S′u
O(sk,msg).

def=
(1) Parse msg as〈i, s, π〉, and setx = 〈i, s〉 andy = O′(x). Let n = |(x, y)|.
(2) Apply VERO

′′
to verify whetherπ is a valid CS-proof, with respect to the oracle

O′′ and security parameter 1n+k, for the claim that the machineMU accepts the
input (x, y) within time t(n).
(The punch line is that we do not directly check whether the machineMU
accepts the input (x, y) within time t(n), but rather only ifπ is a valid CS-
proof of this claim. Althought(n) = nlogn, this CS-proof can be verified in
polynomial time.)

(3) If π is a valid proof, then output (sk,msg).

(4) Otherwise, outputSO
′′′
(sk,msg).

V ′u
O(vk,msg, σ ).

def=
1+2. As above
3. If π is a valid proof, thenaccept
4. Otherwise, outputVO

′′′
(vk,msg, σ ).

The computation required in Item (2) of the signature and verification algorithms
can be executed in polynomial time. The reason being that (by definition) verifying
a CS-proof can be done in polynomial time, provided the statement can be decided
in at most exponential time (which is the case here since we havet(n) = O(nlogn)).
It is also easy to see that for every pair (sk, vk) output byG, and for every msg and
everyO, the stringS′u

O(sk,msg) constitutes a valid signature of msg relative to vk
and the oracleO.

To show that the scheme is secure in the Random Oracle Model, we first observe
that on security parameter 1k it is infeasible to find a stringx so that (x,O′(x)) ∈ RU ,
sinceRU is evasive. By Proposition 2.8, it is also infeasible to find (x, π ) such that
(x,O′(x)) 6∈ RU and yetπ is a valid CS-proof of the contrary relative toO′′ (with se-
curity parameter 1|x|+`out(k)+k). Thus, it is infeasible for a polynomial-time adversary
to find a message that would pass the test on Item (2) of the signature/verification al-
gorithms above, and so we infer that the modified signature is secure in the Random
Oracle Model.

We now show that for every candidate implementation,F , there exists a
polynomial-time adversary effecting total break via a chosen message attack (or,
analogously, an existential forgery via a “key only” attack). First, for each function
fs ∈ F , denotef ′s(x)

def= fs(01x), f ′′s (x)
def= fs(10x), and f ′′′s (x)

def= fs(11x). Then,
denote byF ′ the ensemble of thef ′s functions.

Suppose thatF ′ is thei th function ensemble in the enumeration mentioned above,
namelyF ′ = F i . Given a randomly chosenk-bit seeds, the adversary generates
a message msg= 〈i, s, π〉 so thatπ is a CS-proof (with respect to the adequate
security parameter) for thetrue statement thatMU accepts the input (x, y) within
t(|x| + |y|) steps, wherex = 〈i, s〉 andy = f ′s(x). Recall that the above statement
is indeed true (sincef ′s ≡ f i

s ), and hence the adversary can generate a proof for
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it in time which is polynomial in the time that it takes to computef i
s . (By the

perfect completeness property of the CS-proof system, the ability to prove correct
statements holds foranychoice of the random oracle, and in particular when it is
equal to f ′′s .) Since this adversary is specifically designed to break the scheme in
which the random oracle is implemented byF , then the indexi —which depends
only on the choice ofF—can be incorporated into the program of this adversary.

By the efficiency condition of CS-proofs, it is possible to findπ (given an or-
acle access tof ′′s ) in time polynomial in the time that it takesMU to accept the
input (x, y). SinceF i is polynomial-time computable, thenMU works on the in-
put (x, y) = (〈i, s〉, y) in polynomial time, and thus the described adversary also
operates in polynomial-time.

By construction of the modified verification algorithm,ε is a valid signature
on msg= 〈i, s, π〉, and so existential forgery is feasible a priori. Furthermore,
requesting the signer to sign the message msg yields the signing key, and thus total
forgery.

Remark4.5. It is immaterial for the above argument whether CS-proofs can be
implemented in the “real world” (i.e., without access to random oracles). Specifi-
cally, it does not matter if one can cheat when the oracle is substituted by a candidate
function ensemble, as in this case (i.e., in the real world implementation) it is suffi-
cient for the adversary to invoke the proof system on valid statements. We do rely,
however, on the perfect completeness of CS-proofs that implies that valid statements
can be proven for any possible choice of oracle used in the proof system.

4.5. ENCRYPTION. The construction presented for signature schemes can be
adapted to public-key encryption schemes in a straightforward way, yielding the
following theorem:15

THEOREM 4.6

(a) Assume that there exists a public key encryption scheme that is semantically
secure in the Random Oracle Model. Then there exists a public key encryption
scheme that is semantically secure in the Random Oracle Model but is not seman-
tically secure when implemented with any function ensemble.16

(b) Assume that there exists a public key encryption scheme that is secure under
adaptive chosen ciphertext attack in the Random Oracle Model. Then there exists
a scheme that is secure under adaptive chosen ciphertext attack in the Random
Oracle Model, but implementing it with any function ensemble yields a scheme
that is not semantically secure, and in which a chosen ciphertext attack reveals the
secret decryption key.

PROOF. In this proof, we use the same notations as in the proof of Theorem 4.4.
LetE = (G, E, D) be an encryption scheme that is semantically secure in the Ran-
dom Oracle Model, and we modify it to get another schemeE ′ = (G, E′, D′). The
key generation algorithm remains unchanged, and the encryption and decryption

15Similarly, we can adapt the argument to shared-key (aka private-key) encryption schemes. See
Remark 4.8.
16Here we refer to semantic security as defined in Goldwasser and Micali [1984], and not to the
seemingly weaker definition presented in Goldreich [1993, 1999]. Goldwasser and Micali allow the
message space to depend on the public key, whereas this is not allowed in Goldreich [1993, 1999].
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algorithms utilize a random oracleO, which is again viewed as three oraclesO′,O′′
andO′′′.

Modified Encryption, E′ek
O(msg), of plaintext msg using the public encryption-

key ek:

(1) Parse msg as〈i, s, π〉, setx = 〈i, s〉 andy = O′(x), and letn = |(x, y)|.
(2) If π is a valid CS-proof, with respect to oracleO′′ and security parameter 1n+k,

for the assertion thatMU accepts the pair (x, y) within t(n) steps, then output
(1,msg).

(3) Otherwise (i.e.,π is not such a proof), output (2, EO
′′′

ek (msg)).

Modified Decryption, D′dk
O(c), of ciphertextc using the private decryption-key

dk:

(1) If c = (1, c′), outputc′ and halt.
(2) If c = (2, c′), outputDO

′′′
dk (c′) and halt.

(3) If c = (3, c′) then parsec′ as 〈i, s, π〉, and setx = 〈i, s〉, y = O′(x), and
n = |(x, y)|. If π is a valid CS-proof, with respect to oracleO′′ and security
parameter 1n+k, for the assertion thatMU accepts the pair (x, y) within t(n)
steps, then output dk and halt.

(4) Otherwise outputε.

The efficiency of this scheme follows as before. It is also easy to see that
for every pair (ek, dk) output byG, and for every plaintext msg, the equality
D′dk

O(E′ek
O(msg))= msg holds for everyO. To show that the scheme is secure in

the Random Oracle Model, we observe again that it is infeasible to find a plaintext
that satisfies the condition in Item (2) of the encryption algorithm (respectively, a
ciphertext that satisfies the condition in Item (3) of the decryption algorithm). Thus,
the modified ideal encryption scheme (in the Random Oracle Model) inherits all
security features of the original scheme.

Similarly, to show that replacing the random oracle by any function ensemble
yields an insecure scheme, we again observe that for any such ensemble there exists
an adversary who—given the seeds—can generate a plaintext msg that satisfies
the condition in Item (2) of the encryption algorithm. Hence, such an adversary
can identify when msg is being encrypted (thus violates semantic security). This
proves Part (a) of the theorem. For Part (b), the adversary generates a ciphertext
c that meets the condition in Item (3) of the decryption algorithm, and ask for a
decryption ofc, thus obtaining the secret decryption key.

Remark4.7. As opposed to Theorem 4.4, here we need to make computational
assumptions, namely, that there exist schemes that are secure in the Random Oracle
Model. (The results of Impagliazzo and Rudich [1989] imply that it is unlikely that
such schemes are proven to exist without making any assumptions.) Clearly, any
scheme that is secure without random oracles is also secure in the Random Oracle
Model. Recall that the former exist, provided trapdoor permutations exist [Yao
1982; Goldwasser and Micali 1984].

Remark4.8. The constructions presented above can be adapted to yield many
analogous results. For example, a result analogous to Theorem 4.6 holds for
shared-key (aka private-key) encryption schemes. In this case, no computational
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assumptions are needed since secure shared-key encryption is known to exist in
the Random Oracle Model. Similarly, we can prove the existence of a CS-proof in
the Random Oracle Model that has no implementations (via any function ensem-
ble). In fact, as remarked in the Introduction, the same technique can be applied to
practically any cryptographic application.

5. Restricted Ensembles and Other Directions

Faced with the negative result of Theorem 3.4, one may explore restricted (and
yet possibly useful) versions of “an implementation of a random oracle”. One
possibility is to put more stringent constraints on the use of the ensemble in a
cryptographic scheme, and then to show that as long as the ensemble is only used
in this restricted manner, it is guaranteed to maintain some aspects of correlation
intractability.

In particular, notice that the proof of Theorem 3.4 relies heavily on the fact that
the input to fs can be as long as the seeds.17 Thus, one option would be to require
that fs be used only on inputs that are shorter thans. Specifically, require that each
function fs will only be applied to inputs of length̀in(|s|), where`in : N→N is
some prespecified function (e.g.,`in(k) = k/2). This leads to the corresponding
restricted notion of correlation intractability (which is derived from Definition 3.2):

Definition5.1 (Restricted Correlation Intractability). Let `in, `out : N→N be
length functions. A machineM is called`in-respectingif |M(s)| = `in(|s|) for all
s ∈ {0, 1}∗.
—A binary relationR is evasive with respect to (`in, `out) if for any `in-respecting

probabilistic polynomial-time oracle machineM

Pr
O

[x← MO(1k), (x,O(x))∈R] = negl(k),

whereO : {0, 1}`in(k)→ {0, 1}`out(k) is a uniformly chosen function and negl(·) is
a negligible function.

—We say that aǹout-ensembleF is (̀ in, `out)-restricted correlation intractable
(or just`in-correlation intractable, for short), if for every`in-respecting proba-
bilistic polynomial-time machineM and every evasive relationR with respect
to (̀ in, `out), it holds that

Pr
s∈{0,1}k

[x← M(s), (x, fs(x)) ∈ R] = negl(k).

Weak`in-correlation intractability is defined analogously by considering only
polynomial-time recognizableR’s.

Most of this section is dedicated to demonstrating impossibility results for re-
stricted correlation intractable ensembles, in some cases. We also highlight cases
where existence of restricted correlation intractable ensembles is left as an open
problem.

17In fact, the said proof uses an input tofs (specificallys itself) that is of the same length as the seed.
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5.1. ON THE NONEXISTENCE OF RESTRICTED CORRELATION INTRACTABLE
ENSEMBLES. The proof ideas of Theorem 3.4 can be easily applied to rule out
the existence of certain restricted correlation intractable ensembles where the seed
is too short.

PROPOSITION5.2

(a) If `in(k) ≥ k − O(logk) for infinitely many k’s, then there exists no ensemble
that is(`in, `out)-restricted correlation intractable, even in the weak sense.

(b) If `in(k) + `out(k) ≥ k + ω(logk), there exists no ensemble that is(`in, `out)-
restricted correlation intractable.

PROOF. The proof of (a) is a straightforward generalization of the proof of
Theorem 3.4. Actually, we need to consider two cases: the case`in(k) ≥ k and
the casek − O(logk) ≤ `in(k) < k. In the first case, we proceed as in the proof
of Theorem 3.4 (except that we defineRF

def= {(x, fs(x)) : s ∈ {0, 1}∗, x =
s0`in(|s|)−|s|}). In the second case, for every ensembleF , we define the relation

RF
def= {(x, fxz(x)) : x, z ∈ {0, 1}∗ , |x| = `in(|xz|)}.

We show thatRF is evasive by showing that, for everyk ∈ N andx ∈ {0, 1}`in(k),
there exist at most polynomially (ink) manyy’s such that (x, y) ∈ RF . This is the
case since (x, y) ∈ RF implies that there exists somez such that̀ in(|xz|) = |x|
andy = fxz(x). But using the case hypothesis, we have|x| = `in(|xz|) ≥ |xz| −
O(log |xz|), implying that |z| = O(log(|xz|)) and hence also|z| = O(log |x|).
Next, using the other case hypothesis (i.e.,k > `in(k) = |x|), we conclude that
|z| = O(logk). Therefore, there could be at most polynomially many suchz’s, and
so the upper bound on the number ofy’s paired withx follows. The evasiveness
of RF as well as the assertion thatRF is polynomial-time computable follow
(assuming that the functioǹin itself is polynomial-time computable). On the other
hand, consider the machineM that, on inputs, outputs thè in(|s|)-bit prefix of s.
Then, for everys ∈ {0, 1}∗, we have (M(s), fs(M(s))) ∈ RF .

For the proof of (b), assume that`in(k) < k (for all but finitely manyk’s). We
start by defining the “inverse” of thèin function

`−1
in (n)

def= min{k : `in(k) = n}
(where, in case there exists nok such that̀ in(k) = n, we definè −1

in (n) = 0). By
definition, it follows thatk ≥ `−1

in (`in(k)), for all k’s (becausek belongs to the set
{k′ : `in(k′) = `in(k)}), and that̀ in(`−1

in (n)) = n, whenever there exists somek for
whichn = `in(k). Next we define

RF
def= {(x, fxz(x)) : x, z ∈ {0, 1}∗ , |x| + |z| = `−1

in (|x|)}
This relation is well defined since, by the conditions on the lengths ofx andz, we
have`in(|xz|) = `in(`−1

in (|x|)) = |x| and so the functionfxz is indeed defined on
the inputx. In casè in(k) ≤ k − ω(logk), this relation may not be polynomial-
time recognizable. Still, it is evasive with respect to (`in, `out), since with security
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parameterk we have for everyx ∈ {0, 1}`in(k)∣∣{y ∈ {0, 1}`out(k) : (x, y) ∈ RF
}∣∣ = ∣∣{ fxz(x) : |z| = `−1

in (`in(k))− `in(k)
}

∩ {0, 1}`out(k)
∣∣ ≤ 2`

−1
in (`in(k))−`in(k) ≤ 2k−`in(k)

Using k − `in(k) ≤ `out(k) − ω(logk), we conclude that the set ofy’s paired
with x forms a negligible fraction of{0, 1}`out(k), and so thatRF is evasive.
Again, the machineM , that on inputs outputs thè in(|s|)-bit prefix of s, satisfies
(M(s), fs(M(s))) ∈ RF , for all s’s.

5.1.1. Open Problems. Proposition 5.2 still leaves open the question of ex-
istence of (̀ in, `out)-restricted correlation intractable ensembles, for the case
`in(k) + `out(k) < k + O(logk).18 We believe that it is interesting to resolve
the situation either way: Either provide negative results also for the above spe-
cial case, or provide a plausible construction. Also open is the subcase where
`in(k) + `out(k) = k + ω(logk) but one considers onlyweak(`in, `out)-restricted
correlation intractability. (Recall that Case (b) of Proposition 5.2 is proven using
relations that are not known to be polynomial-time recognizable.)

5.2. OTHERLIMITATIONS OF RESTRICTEDCORRELATIONINTRACTABLE ENSEM-
BLES. Proposition 5.2 does not rule out the existence of correlation intractable
ensembles having sufficiently long seed. This section demonstrates that even if
such ensembles exist, then they are very nonrobust constructs. Specifically, even if
the ensembleF = { fs : |s| = k}k is restricted correlation intractable with respect
to some length functions (`in, `out), the ensemble that is obtained by applying many
independent copies ofF and concatenating the results may not be. That is, for
m:N→N, define

Fm def= { f ′〈s1,...,sm(k)〉 : |s1| = · · · = |sm(k)| = k}k∈N , (3)

where, for〈x1, . . . , xm(k)〉 ∈ {0, 1}m(k)·`in(k),

f ′〈s1,...,sm(k)〉(〈x1, . . . , xm(k)〉) def= 〈 fs1(x1), . . . , fsm(k) (xm(k))〉 . (4)

Then, for sufficiently largem (e.g.,m(k) ≥ k/`in(k) will do), the “direct product”
ensembleFm is not correlation intractable (not even in the restricted sense). That is,

PROPOSITION 5.3. Let `in, `out : N→N be length functions so that`in(k) ≤ k,
and let m: N→N be a polynomially bounded function so that m(k) ≥ k/`in(k).
LetF be an arbitrary function ensemble, andFm be as defined in Eq.(3) and(4).
Then,Fm is not correlation intractable, not even in the(`m

in, `
m
out)-restricted sense,

where`m
in(m(k) · k)

def= m(k) · `in(k) and`m
out(m(k) · k)

def= m(k) · `out(k).

PROOF. We assume, for simplicity thatm(k) = k/`in(k) (and so`in(k) =
k/m(k) and`m

in(m(k) · k) = k). GivenFm as stated, we again adapt the proof of

18In fact such ensembles do exist in casek ≥ 2`in(k) · `out(k) (since the seed may be used to directly
specify all the function’s values), but we dismiss this trivial and useless case.



The Random Oracle Methodology, Revisited 583

Theorem 3.4. This time, using̀in(k) ≤ k, we define the relation

RF
m def=

⋃
k

{ (s, 〈 fs(s
′), u〉) : |s| = k, s′ is the`in(k)-prefix ofs,

|u| = (m(k)− 1) · `out(k) }
Notice that in this definition we have|s| = k

`in(k) ·`in(k) = m(k)·`in(k) = `m
in(m(k)·k),

and also| fs(s′)| + |u| = m(k) · `out(k) = `m
out(m(k) · k), so this relation is indeed

(`m
in, `

m
out)-restricted.

Again, it is easy to see thatRF is polynomial-time recognizable, and it is evasive
since every stringx ∈ {0, 1}k is coupled with at most a 2−`out(k) fraction of the
possible (m(k) · `out(k))-bit long strings, and̀out(k) = ω(logk) = ω(log(m(k) ·k)).
(Here, we use the hypothesism(k) = poly(k).)

On the other hand, consider a (real-life) adversary that given the seeds =
〈s1, . . . , sm(k)〉 ∈ {0, 1}m(k)·k for the functionf ′〈s1,...,sm(k)〉, sets the input to this function
to be equal tos1. Denoting thè in(k)-prefix ofs1 (equivalently, ofs) bys′1, it follows
that fs1(s

′
1) is a prefix of f ′〈s1,...,sm(k)〉(s1) and so (s1, f ′〈s1,...,sm(k)〉(s1)) ∈ RF . Thus, this

real-life adversary violates the (restricted) correlation intractability ofFm.

5.3. ON CORRELATIONINTRACTABILITY FOR MULTIPLE INVOCATIONS. Propo-
sition 5.2 relates only to forming rare relationships between asingleinput-output
pair. This section demonstrates that, if one generalizes the definition of correlation
intractability to consider also evasive relations over long sequences of inputs and
outputs, then the negative result in Proposition 5.2 can be extended for arbitrary`in
and`out. That is:

Definition5.4 (Multiple-Input Restricted Correlation Intractability). Let `in,
`out : N→N be length functions. We consider probabilistic polynomial-time ora-
cle machines that on input 1k have oracle access to a functionO : {0, 1}`in(k) →
{0, 1}`out(k).

—A relationRover pairs of binary sequences isevasive with respect to (`in, `out)
(or (`in, `out)-evasive)if for any probabilistic polynomial-time machineM as
above, there exists a negligible function negl such that

Pr
O

[
(x1, . . . , xm)← MO(1k) ;

|x1| = · · · = |xm| = `in(k)
and ((x1, . . . , xm), (O(x1), . . . ,O(xm))∈R

]
= negl(k).

As usual,O : {0, 1}`in(k)→ {0, 1}`out(k) is a uniformly chosen function.
—We say that aǹout-ensembleF is (̀ in, `out)-restricted multiple-input correla-

tion intractable if for every (̀ in, `out)-evasive relationR and every probabilistic
polynomial-time machineM , there exists a negligible function negl such that

Pr
s∈{0,1}k

[
(x1, . . . , xm)← M(s) ;

|x1| = · · · = |xm| = `in(k)
and ((x1, . . . , xm), ( fs(x1), . . . , fs(xm))∈R

]
= negl(k).

PROPOSITION 5.5. Let `in, `out : N→N be arbitrary length functions, with
`in(k) ≥ 2+ logk and`out(k) ≥ 1. Then there exist no(`in, `out)-restrictedmultiple-
inputcorrelation intractable function ensembles.
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PROOF. For simplicity, we consider first the case`out(k) ≥ 2. Let F be an
`out-ensemble. Adapting the proof of Theorem 3.4, we define the relation

RF
def=
⋃

k

{
((x1, . . . , xk), ( fs(x1), . . . , fs(xk))) :

xi = (i, si ), with si ∈ {0, 1}
ands= s1 . . . sk

}
.

(5)
(Notice that sincèin(k) > 1+ logk, thexi ’s are indeed in the range of the function
fs.) Clearly, this relation is polynomial-time recognizable. To see that this relation
is evasive, notice that for any fixedk-bit seeds= s1 · · · sk, we have

Pr
O

[O(i, si ) = fs(i, si ) for i = 1 · · · k] = 2−`out(k)·k.

Hence, the probability that there exists a seeds for whichO(i, si ) = fs(i, si ) holds,
for i = 1, . . . , k, is at most 2k · 2−`out(k)·k ≤ 2−k. It follows that

Pr
O

[∃x1, . . . , xk ((x1, . . . , xk), (O(x1), . . . ,O(xk))) ∈ RF ] ≤ 2−k.

However, the corresponding multiple-input restricted correlation intractability con-
dition does not hold: For anys = s1 · · · sk ∈ {0, 1}k, settingxi = (i, si ) we get
((x1, . . . , xk), ( fs(x1), . . . , fs(xk))) ∈ RF . To rule out the casèout(k) = 1, we
redefineRF so that ((x1, . . . , x2k), ( fs(x1), . . . , fs(x2k))) ∈ RF if xi = (i, si ) for
i = 1, . . . , k andxi = (i, 0) for i = k+ 1, . . . ,2k.

5.4. IMPLICATIONS FOR SIGNATURES AND ENCRYPTION. The results from
Section 5.3 can be used to extend the negative results from Theorems 4.4 and 4.6
also to the case of restricted ensembles with short seeds. These theorems and proofs
are very similar to the ones from Section 4. Here, we only state the theorem for
signatures and provide a proof sketch.

THEOREM 5.6. There exists a signature scheme that is existentially unforgeable
under a chosen message attack in the Random Oracle Model, but such that when
implemented with any restricted function ensemble with`in(k) ≥ logk + ω(1),
the resulting scheme is existentially forgeable using key-only attack and totally
breakable under chosen message attack.

PROOFSKETCH. Fix some length functions (`in, `out), with `in(k) ≥ logk+ω(1)
(and assume, for simplicity, that`out(k) ≥ 2). We follow the same three steps as
in the proof of Theorem 4.4, with the following modifications: For the first step,
the message to be signed is parsed as a vectorx = 〈x1 . . . xn〉 (with |xi | = `in(k)
when the security parameter isk) and the signer checks whether the sequence
(〈x1, . . . , xn〉, 〈O(x1), . . . ,O(xk)〉) stands in the relationRF from Eq. (5). For
the second step, we again use enumeration of ensembles (this time, however, we
enumerate (̀in, `out)-restricted ensembles). The “universal ensemble” that we need
can be defined as

RU
def=
⋃
k,m

{(〈x1 . . . xk+m〉,
〈 f i

s (x1) . . . f i
s (xk+m)〉

)
:

xj = ( j, yj ), whereyj ∈ {0, 1}, and
for j = 1, . . . ,m, yj is the j th bit of 〈i 〉
for j = 1, . . . , k, ym+ j is the j th bit of s

}
,

where〈i 〉 is the encoding of thei th ensemble,F i . Note that sincèin(k) ≥ logk+
ω(1), then for each fixedi , the input length will conform to the length restriction
eventually (i.e., for a large enough security parameter). The third step uses CS-
proofs, just as in the proof of Theorem 4.4.
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5.5. ON WEAK RESTRICTEDCORRELATION-INTRACTABLE ENSEMBLES. In all
our negative results, the evasive relation demonstrating that a certain function en-
semble is not correlation-intractable is more complex than the function ensemble
itself. A natural restriction on correlation-intractability is to require that it holds
only for relations recognizable within certain fixed polynomial-time bounds (or
some fixed space bound), and allowing the function ensemble to have a more com-
plex polynomial-time evaluation algorithm. We stress that, in both the definition of
evasiveness and correlation-intractability, the adversary that generates the inputs to
the relation is allowed arbitrary (polynomial) running time; this time may be larger
than both the time to evaluate the function ensemble and the time to evaluate the
relation. Such a restricted notion of correlation-intractability may suffice for some
applications, and it would be interesting to determine whether function ensembles
satisfying it do exist. Partial results in this direction were obtained by Nissim [1999]
and are described next:

PROPOSITION5.7 (NISSIM 1999). Let `in, `out : N→N be arbitrary length
functions, with k≥ `out(k) · (`in(k)+ω(logk)).19 Then, for every binary relation R
that is evasive with respect to(`in, `out) and recognizable in polynomial-time, there
exists a function ensembleF R = { fs} that is correlation-intractable with respect
to R; that is, for everỳ in-respecting probabilistic polynomial-time machine M it
holds that

Pr
s∈{0,1}k

[x← M(s), (x, fs(x)) ∈ R] = negl(k).

We note that the postulated construction uses a seed length that is longer than
`in+ `out. Thus, this positive result capitalizes on both restrictions discussed above
(i.e., both the length and the complexity restrictions).

PROOF. Let t = `in(k) + ω(logk). For every seeds = (s1, . . . , st ) ∈
{0, 1}t ·`out(k), we define fs : {0, 1}`in(k) → {0, 1}`out(k) so that fs1,...,st (x) equalssi
if i is the smallest integer such that (x, si ) 6∈ R. In case (x, si ) ∈ R holds for alli ’s,
we definefs1,...,st (x) arbitrarily.

Let R(x)
def= {y : (x, y) ∈ R}, andSk

def= {x ∈ {0, 1}`in(k) : |R(x)| ≤ 2`out(k)/2} (S
stands for “Small image”). SinceR is evasive, it is infeasible to find anx ∈ {0, 1}`in(k)

not inSk. Thus, for every probabilistic polynomial-timeM , Prs∈{0,1}k [M(s) 6∈ Sk] =
negl(k). On the other hand, the probability that suchM(s) outputs anx ∈ Sk so that
(x, fs(x)) ∈ R is bounded above by20

Pr
s∈{0,1}k

[∃x ∈ Sk such that (x, fs(x)) ∈ R] ≤ Pr
s∈{0,1}k

[∃x ∈ Sk ∀i (x, si ) ∈ R]

≤ |Sk| ·max
x∈Sk

{
Pr
s

[∀i (x, si ) ∈ R]
}

≤ 2`in(k) · (1/2)t = negl(k).

Combining the two cases, the proposition follows.

19Recall that (̀ in, `out)-restricted correlation-intractable ensembles exist fork ≥ 2`in(k) · `out(k); see
Footnote 18.
20For the first inequality, we use the fact that if there exists ani such that (x, si ) 6∈ R then (x, fs(x)) 6∈
R.
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Considering the notion of multiple-input correlation-intractability when restrict-
ing the complexity of the relation (and allowing the function ensemble to be more
complex), Nissim [1999] has obtained another impossibility result:

PROPOSITION5.8 ([NISSIM 1999]). There exists an evasive relation R that is
recognizable in polynomial-time so that no function ensembleF = { fs} is multiple-
input correlation-intractable with respect to R; that is, for every function ensemble
F = { fs} there exists a polynomial-time machine M such that

Pr
s

[(x1, . . . , xt )← M(s) ; ((x1, . . . , xt ), ( fs(x1), . . . , fs(xt ))∈R ] = 1.

Furthermore, for some universal polynomial p, which is independent ofF , it holds
that t < p(|x1|).

We stress that the above assertion includes even function ensembles that have
(polynomial-time) evaluation algorithms of running time greater than the time it
takes to recognizet-tuples of corresponding length in the relation. Furthermore, it
includes function ensembles having seeds of length exceeding the total length of
pairs in the relation.

PROOF SKETCH. We follow the ideas underlying the proof of Theorem 4.4.
Specifically, using the universal machineMU and the algorithms (PRV and VER) of a
CS-proof system, we consider a relationR that contains pairs of binary sequences,
so that ((x, π,q1, . . . ,qm), (y, φ,a1, . . . ,am)) ∈ R if these strings describe an
accepting execution of the CS-verifier with respect to machineMU . That is, we
require that the following conditions hold:

(1) All the stringsy, φ,a1 . . . ,am have the same length.21 Below we denote this
length by`out, |y| = |φ| = |a1| = · · · = |am| = `out.

(2) The stringπ is an alleged CS-proof for the assertion that the machineMU
accepts the input (x, y) within t(n) = nlogn steps, wheren

def= |x| + |y|.
(3) Given access to an oracle that on queriesqi returns answersai , and given

security parametern+ `out and inputw = (〈MU 〉, (x, y), t(n)), the CS verifier
VERaccepts the CS-proofπ after querying the oracle onq1 · · ·qm (in this order),
and obtaining the corresponding answersa1 · · ·am.
(Here we use the fact that the verifier is deterministic, and thus its queries are
determined by its input and the answers to previous queries.)

Recall that, by definition,m is bounded by a fixed polynomial inn. In fact, in the
construction presented in Micali [2000],m is poly-logarithmic inn. We comment
that, assuming the existence of suitable collision-intractable hash functions, one
may obtainm = 1 (cf. Naor and Nissim [1999]). In addition, one may need to
make some minor modification in the above construction.)

As in the proof of Theorem 4.4, using the computational soundness of CS-
proofs, it can be shown that the above relation is evasive. By the additional ef-
ficiency conditions of CS-proofs, it follows that the relation is recognizable in
polynomial time. On the other hand, as in the proof of Theorem 4.4, for ev-
ery function ensembleF i = { f i

s } there exists a polynomial time adversaryA,

21The stringφ is a “don’t care” value that serves as a place holder for the output of the function on
inputπ .
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that on inputs produces a sequence (x, π,q1, . . . ,qm) so that ((x, π,q1, . . . ,qm),
( f i

s (x), f i
s (π ), f i

s (q1), . . . , f i
s (qm))) ∈ R. This is done as follows: First,A sets

x = 〈i, s〉, y = f i
s (x), andn

def= |x| + |y|. Next, A constructs a CS-proof that
indeedMU accepts (x, y) within nlogn steps, and setsπ to equal this proof. (This
step takes time polynomial in the evaluation time off i

s (x).) Note that since (x, y)
is indeed accepted byMU (in less thannlogn steps), the verifier acceptπ as a proof
no matter how the oracle is determined (since perfect completeness holds). Finally,
the adversary invokes the verifier (on input consisting mainly of (x, y) andπ ), and
(by emulating the oracle) determines interactively the oracle queries and answers
of the verifier; that is, for everyj = 1, . . . ,m, the adversary determines thej th
query made by the verifier, setsqj to equal this query, and provides the verifier with
the answerf i

s (qj ).

5.6. ON THE FAILURE OF SOME SPECIfiC CONSTRUCTIONS. We conclude our
study of restricted correlation-intractable by pointing out the failure of several
natural candidates, even in the restricted case of single-invocation.

5.6.1. Pseudorandom Function Ensembles.A natural conjecture is that pseu-
dorandom functions, as defined in Goldreich et al. [1986], may yield at least some
restricted form of correlation-intractability. However, it is easy to see that this con-
jecture fails miserably. For example, for any (super-logarithmic)`in, `out : N→N
(possibly,`in(k) + `out(k) ¿ k), consider a pseudorandom function ensemble
{ fs : {0, 1}`in(|s|) → {0, 1}`out(|s|)}s∈{0,1}∗ . Then, defining f ′s(x) = 0`out(|s|) if x is
a prefix ofs, and f ′s(x) = fs(x) otherwise, yields a pseudorandom function en-
semble that is clearly not correlation-intractability (even in the restricted case of
single-invocation).22

We mention that even the pseudorandom function ensembles that results from the
construction of Goldreich et al. [1986] are not necessarily correlation-intractable.
Specifically, one can construct a pseudorandom generator such that applying to it
the construction from Goldreich et al. [1986] results in a pseudorandom function
ensemble, in which given the seed one can efficiently find an input that is mapped
to the all-zero string [Goldreich 2002]. We stress that this holds for any`in(k) =
`out(k) = ω(logk).

5.6.2. Universal and Higher Independence Hash Functions.Finally, we point
out that, in general, collections oft-wise independent hashing functions are not
correlation-intractable (even in a restricted sense). For example, consider the col-
lection of t-wise independent hash functions derived from the set of degreet − 1
polynomials over GF(2n). Specifically, for each such (degreet − 1) polynomial
p : GF(2n) → GF(2n), consider the functionf : {0, 1}n → {0, 1}n/2 that results
by letting f (x) be then/2-bit prefix of p(x). Note that this collection has seed
lengtht ·n, which is much larger than the sum of the lengths of the input and output
(i.e., n + (n/2)). Still, given the description of such a function (i.e., the polyno-
mial p) it is easy to find an input that is mapped to 0n/2 (e.g., by selecting uniformly
r ∈ {0, 1}n/2 and finding a root of the polynomialp(x)− α, whereα = 0n/2r ).

22We have assumed, for simplicity, that`in(k) ≤ k, which is the more interesting case anyhow.
Otherwise, the exceptional input forf ′s is set to bes0`in(|s|)−|s|.
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6. Conclusions

The results in this work show conclusively that the random oracle methodology
is not sound, in general, with respect to the natural notions of “implementation of
the random oracle.” Although these negative results seem to have no effect on the
security of common practical schemes that were built using this methodology, it
should serve as a warning sign.

At the same time, one can view these results as a challenge: Is it possible to
find a “reasonable notion of implementation”, relative to which one can show the
soundness of this methodology (at least, in some interesting cases)? The work of
Canetti [1997] is a first step in that direction, but more steps seem to be called
for. In particular, one could consider a more general notion of “implementation”,
as a compiler that takes a scheme that works in the Random Oracle Model and
produces a scheme that works in the standard model (i.e., without a random ora-
cle). This compiler may do more than just replace the oracle queries by function
calls. However, such a general-purpose compiler is ruled out by Nielsen’s recent
work [Nielsen 2002], which shows that there are (natural) cryptographic tasks that
can be securely realized in the Random Oracle Model but cannot be securely real-
ized in the standard model. Thus, one should focus on special-purpose compilers
(i.e., compilers that can be applied only to restricted classes of schemes and/or
tasks). Furthermore, the compiler should preserve the complexity of the original
Random Oracle Model scheme (as done by the straightforward compiler that just
replaces the oracle queries by function calls).23

Regarding the implications of our results to the current practice of the Random
Oracle Methodology, the authors have different opinions. Rather than trying to
strike a mild compromise, we prefer to present our disagreements in the most
controversial form.

6.1. RAN’S CONCLUSIONS. Real-life cryptographic applications are complex
objects. On top of the “cryptographic core,” these applications typically involve
numerous networking protocols, several other applications, user-interfaces, and in
fact also an entire operating-system. The security of an application depends on the
security of all these components operating in unison. Thus, in principle, the best
way to gain assurance in the security of a cryptographic application is to analyze it
as a single unit, bones and feathers included.

However, analyzing an entire system is prohibitively complex. Moreover, we
often feel that the “essence” of a cryptographic application can be presented in
a relatively simple way without getting into many details that, we feel, are “ex-
traneous” to the actual security. Consequently, we often makeabstractionsof a
cryptographic application by leaving many details “outside the model”. Such ab-
stractions are indeed essential tools in protocol analysis. Nonetheless, great caution
is needed when making abstractions: While sound abstractions are important and
useful, unsound abstractions can be dangerous and misleading. Thus, it is crucial to
make sure that one uses a sound abstraction, namely one that helps us distinguish
between good and bad applications.

23In fact, removing the complexity-preservation requirement may allow trivial compilers that ignore
the given Random Oracle Model scheme and just return a hard-wired scheme for the standard model.
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One popular abstraction is to treat computers in a network as interactive Turing
machines who run one specific (and relatively simple) algorithm, and assume that
delivery of messages is done simply by having one machine write values on the
tapes of another machine. We are then satisfied with defining and analyzing secu-
rity of a protocol in this abstract model. In other words, this abstraction implicitly
uses the following methodology (which I’ll call the “Interactive Turing machine
methodology”): Design and analyze a protocol in the “idealized system” (i.e., us-
ing Turing machines). Next, come up with an “implementation” of the idealized
protocol by adding the components that deal with the networking protocols, the
operating system, the user interfaces, etc. Now, “hope” that the implementation is
indeed secure.

We widely believe that this methodology is sound, in the sense that if an ideal-
ized protocol is secure then thereexistsecure implementations of it. Furthermore,
security of an idealized protocol is a good predictor for the feasibility of finding
a good implementation to it. (Of course, finding secure implementations to secure
idealized protocols is a far-from-trivial task, and there is probably no single auto-
matic method for securely implementing any idealized protocol. But this does not
undermine the soundness of the “Interactive Turing machine methodology”.)

The Random Oracle methodology is, in essence, another proposed abstraction
of cryptographic applications. It too proposes to define and analyze security of
protocols in an idealized model, then perform some transformation that is “outside
the formal model”, and now “hope” that the resulting implementation is secure. At
first, it looks like a great abstraction: It does away with specific implementation
issues of “cryptographic hash functions” and concentrates on designing protocols
assuming that an “ideal hash function” is available. Indeed, many protocols that
were designed using this methodology are remarkably simple and efficient, while
resisting all known attacks.

However, as shown in this work, and in sharp contrast to the “Interactive Turing
machine methodology,” the Random Oracle Methodology is not sound. Further-
more, it is a bad predictor to the security of implementations: Not only do thereexist
idealized protocols that have no secure implementations, the methods described in
this work can be used to turn practicallyany idealized protocol described in the
literature into a protocol that remains just as secure in the idealized model, but has
no secure implementations. This leaves us no choice but concluding that, in spite of
its apparent successes, the Random Oracle model is a bad abstraction of protocols
for the purpose of analyzing security.

6.1.1. The Loss of Reductions to Hard Problems.The above discussion should
provide sufficient motivation to be wary of security analyses in the Random Oracle
Model. Nonetheless, let me highlight the following additional disturbing aspect of
such analysis.

One of the great contributions of complexity-based modern cryptography, de-
veloped in the past quarter of a century, is the ability to base the security of many
varied protocols on a small number of well-defined and well-studied complexity
assumptions. Furthermore, typically the proof of security of a protocol provides us
with a method for transforming adversary that breaks the security of the said pro-
tocol into an adversary that refutes one of the well-studied assumptions. In light of
our inability to prove security of protocols from scratch, this methodology provides
us with the “next best” evidence for the security of protocols.
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The Random Oracle Methodology does away with these advantages. Assume
that an idealized protocolA is proven secure in the Random Oracle Model based
on, say, the Diffie–Hellman assumption, and that someone comes up with a way
to breakany implementationof A. This does not necessarily mean that it is now
possible to break Diffie–Hellman! Consequently, the reducibility of the security
of A to the hardness of Diffie–Hellman is void. This brings us back to a situation
where the security of each protocol is a “stand-alone” conjecture and is, in essence,
unrelated to the hardness of known problems.

6.1.2. Possible Alternative Directions.In spite of its shortcomings, the Random
Oracle Methodology seems to generate simple and efficient protocols against which
no attacks are known. Consequently, the Random oracle model can be regarded as
a good initial idealized setting for designing and analyzing protocols. Still, it must
be kept in mind that analysis in the random oracle model is only afirst step towards
meaningful security analysis. It does not, by itself, provide any security guarantees
for the implementations in the standard model.

One possible direction towards providing formal justification for some of the
protocols constructed using the Random Oracle methodology, is to identify useful,
special-purpose properties of the random oracle, which can be also provided by a
fully specified function (or function ensemble) and so yield secure implementations
of certain useful ideal systems. First steps in this direction were taken in Canetti
[1997], Canetti et al. [1998b], and Gennaro et al. [1999]. Hopefully, future works
will push this direction further.

6.2. ODED’S CONCLUSIONS. My starting point is that within the domain of
science, every deduction requires a rigorous justification.24 In contrast, unjustified
deductions should not be allowed; especially not in a subtle research area such
as Cryptography. Furthermore, one should refrain from making statements that
are likely to mislead the listener/reader, such as claiming a result in a restricted
model while creating the impression that it holds also in a less restricted model.
The presentation of such a result should clearly state the restrictions under which
it holds, and refrain from creating the impression that the result extends also to a
case where these restrictions are waived (unless this is indeed true (and one can
prove it)). Needless to say, it is perfectly OK to conjecture that a restricted result
extends also to a case when these restrictions are waived, but the stature of such a
statement (as a conjecture) should be clear.

The above abstract discussion directly applies to security in the Random Oracle
Model. Deducing that the security of a scheme in the Random Oracle Model means
anything about the security of its implementations, without proper justification, is
clearly wrong. This should have been clear also before the current work. It should
have also been clear that no proper justification of a deduction from security in the
Random Oracle Model to security of implementations has ever been given. The
contributions of the current work are two-fold:

(1) This work uncovers inherent difficulties in the project of providing conditions
that would allow (justifiable) deduction from security in the Random Oracle

24This does not disallow creative steps committed in the course of research, without proper justification.
Such unjustified steps are the fuel of progress. What I refer to are claims that are supposed to reflect
valid facts. Such claims should be fully justified, or offered as conjectures.
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Model to security of implementations. Such a project could have proceeded
by identifying properties that characterize proofs of security in the Random
Oracle Model, and (justifiably) deducing that the such schemes maintain their
security when implemented with ensembles satisfying these properties. The
problem with this project is that correlation intractability should have been (at
the very least) one of these properties, but (as we show) no function ensemble
can satisfy it.

(2) As stated above, deducing that the security of a scheme in the Random Ora-
cle Model means anything about the security of its implementations, without
proper justification, is clearly wrong. The current work presents concrete ex-
amples in which this unjustified deduction leads to wrong conclusions. That is,
it is shown that not only that unjustified deduction regarding the Random Or-
acle ModelMAY lead to wrong conclusions, but rather than in some cases
INDEED this unjustified deductionDOES lead to wrong conclusions. Put in
other words, if one needs a concrete demonstration of the dangers of unjus-
tified deduction when applied to the Random Oracle Model, then this work
provides it.

The Bottom-Line. It should be clear that the Random Oracle Methodology is
not sound; that is, the mere fact that a scheme is secure in the Random Oracle
Model cannot be taken as evidence (or indication) to the security of (possible)
implementations of this scheme. Does this mean that the Random Oracle Model
is useless? Not necessarily: it may be useful as a test-bed (or as a sanity check).25

Indeed, if the scheme does not perform well on the test-bed (respectively, fails the
sanity check) then it should be dumped. But one shouldnotdraw wrong conclusions
from the mere fact that a scheme performs well on the test-bed (respectively, passes
the sanity check). In summary, the Random Oracle Methodology is actually a
method for ruling outsomeinsecure designs, but this method is not “complete”
(i.e., it may fail to rule out insecure designs).26

6.3. SHAI’SCONCLUSIONS. The negative results in this work (and, in particular,
Theorems 4.4 and 4.6) leave me with an uneasy feeling: adopting the view that a
good theory should be able to explain “the real world”, I would have liked theoretical
results that explain the apparent success of the random oracle methodology in
devising useful, seemingly secure, cryptographic schemes. (Indeed, this was one of
the original motivations for this work.) Instead, in this work we show that security
of cryptographic schemes in the Random Oracle Model does not necessarily imply
security in “the real world”. Trying to resolve this apparent mismatch, one may

25This explains the fact the Random Oracle Methodology is in fact used in practice. In also explains
why many reasonable schemes, the security of which is still an open problem, are secure in the
Random Oracle Model: good suggestions should be expected to pass a sanity check.
26Would I, personally, endorse this method is a different question. My answer is very much time-
sensitive: Given the current misconceptions regarding the Random Oracle Model, I would suggest
not to include, in currently published work, proofs of security in the Random Oracle Model. My
rationale is that the dangers of misconceptions (regarding such proofs) seem to outweigh the gain of
demonstrating that the scheme passed a sanity check. I hope that, in the future, such misconceptions
will be less prevailing, at which time it would be indeed recommended to report on the result of a
sanity check.
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come up with several different explanations. Some of those are discussed below:

—The current success of this methodology is due to pure luck: All the current
schemes that are proven secure in the Random Oracle Model, happen to be
secure also in the “real world” for no reason. However, our “common sense” and
sense of aesthetics must lead us to reject such explanation.

—The current apparent success is a mirage: Some of the schemes that are proven
secure in the Random Oracle Model are not really secure, and attacks on them
may be discovered in the future.

This explanation seems a little more attractive than the previous one. After all,
a security proof in the Random Oracle Model eliminates a broad class of potential
attacks (i.e., the ones that would work also in the Random Oracle Model), and in
many cases it seems that attacks of this type are usually the ones that are easier to
find. Hence, it makes sense that if there exists a “real life” attack on a scheme that
is secure in the Random Oracle Model, it may be harder—and take longer—to
find this attack.

—Another possible explanation is that the random oracle methodology works for
the current published schemes, due to some specific features of these schemes
that we are yet to identify. That is, maybe it is possible to identify interesting
classes of schemes, for which security in the Random Oracle Model implies the
existence of a secure implementation.27

Identifying such interesting classes, and proving the above implication, is an
important—and seemingly hard—research direction. (In fact, it even seems to be
hard to identify classes of schemes for which this implication makes a reasonable
conjecture.)

As we illustrate in the introduction, we could attribute the “mismatch” between
the apparent security of the practical schemes that were devised using the random
oracle methodology and the (proven) insecurity of our contrived schemes, to our
current lack of knowledge regarding “what can be done with a code of a function”.
One can hope that improving the understanding of this point could shed light also
on the relations between the security of ideal schemes and their implementations
(i.e., let us either find new types of attacks, as per the second point above, or identify
cases where attacks are infeasible, as per the third point).

For now, however, I view the random oracle methodology as a very useful “en-
gineering tool” for devising schemes. As a practical matter, I would much rather
see today’s standards built around schemes that are proven secure in the Random
Oracle Model, than around schemes for which no such proofs exist. If nothing else,
it makes finding attacks on such schemes a whole lot harder.
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27One particularly silly example is schemes that do not use the oracle. Another more interesting
example is schemes that only use the “perfect one-way” property of the oracle; see Canetti [1997],
and Canetti et al. [1998b].
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