
Analysis of Concurrent Programs 

via Sequentializations

Salvatore La Torre

Dipartimento di Informatica 
Università degli Studi di Salerno



Concurrent (shared-memory) Programs

• Formed of sequential programs  P1 , . . . , Pn
(each possibly with recursive function calls)

• Each program Pi can read and write shared vars

• We assume sequential consistency 
(writes are immediately visible to all the other programs)

• An execution is an interleaving of the executions of each 
program Pi 

P1 P2 Pn

shared vars

…
loc loc loc



A concurrent execution (n=3)

• Programs are round-Robin  scheduled 
in several rounds
– round: formed of a context of 

each program

– context: portion of run of a Pi

– context-switch: active thread 
changes (global state is passed on 
to the next scheduled thread) 

– context-switching back to a 
thread resumes its local state

(l1,s1)

P1

(l1,s3)

P2
(l2,s1)

P3

(l3,s2)

(l4,s2)

(l5,s3)



• Code-to-code translation from a multithreaded program to an 
“equivalent” sequential one 

Conc.
program

Sequentialization

Seq.
program

T1 T2 Tm

shared vars

…
loc  loc loc



Why sequentializing?

• Re-use of existing tools (delegate the analysis to the 
backend tool)

• Fast prototyping (designers can concentrate only
concurrency features)

• Can work with different backends

Sequentialization

Tool 1

Tool m

Concurrent 
Program

Seq. Program 
(Tool 1)

Seq. Program 
(Tool m)

Analysis tools for 
sequential programs



Is this practical?

• Sequentializations inject control code in the 
original program
– this can cause some overhead
– performances of different translations may

differ depending on the backend technology

• In the software verification competition
(concurrency category) held at TACAS 2014, 
gold and silver medal went to tools
using sequentializations
– Lazy-CSeq and MU-CSeq

(will be described in the talk of June 5) 



Some general observations

• Sequentialization is always possible using unbounded
resources
– Sequential program keeps the call-stacks and just 

exectutes threads in time-sharing for any scheduling

• Efficient sequentialization yields an under-approximation of 
the concurrent programs
– use prioritized search strategies (e.g., bounded context-

switching [Qadeer-Rehof, TACAS’05])

• Full coverage of the state space in very few cases
– e.g., program abstractions with only two threads sharing

only locks acquired/released under contextual locking
[Chadha-Madhusudan-Viswanathan,TACAS’12] 



Outline

• First sequentialization

• Bounded context-switching

– Eager approach

– Lazy approach

• More sequentializations

• Conclusions



A first sequentialization

• KISS: Keep It Simple and Sequential
(Microsoft tool) [Quadeer-Wu, PLDI’04]

• At context-switches either:
– the active thread is terminated or 
– a not yet scheduled thread is started (by calling its

main function) 

• When a thread is terminated either:
– the thread that has called it is resumed (if any) or
– a not yet scheduled thread is started



Example (n=3)

(l1,s1)

P1

(l1,s3)

P2
(l2,s1)

P3

(l3,s2)

(l4,s2)

(l5,s3)

Scheduling 1:
1. start P1

2. start P2

3. terminate P2

4. start P3

5. terminate P3

6. resume P1

P1 P2 P3

Scheduling 2:
1. start P1

2. start P2

3. start P3

4. terminate P3

5. resume P2

6. terminate P2

7. resume P1

P1 P2 P3

Scheduling 3:
1. start P1

2. start P2

3. terminate P2

4. resume P1

5. start P3

6. terminate P3

7. resume P1



More on KISS

• Allows dynamic thread allocation in form of 
asynchronous calls

• Bounds the number of threads that have been
created but not started yet
– Scheduler starts a thread from this set 

(choosing it nondeterministically) or resumes
the last suspended thread (if any)

• Used for assertion checking



Outline

�First sequentialization

• Bounded context-switching

– Eager approach

– Lazy approach

• More sequentializations

• Conclusions



Bounded context-switching

• Switching between threads is allowed only a bounded number of 
times [Qadeer-Rehof, TACAS’05]

Under this restriction

• Analysis is an effective technique for bug detection 

– bugs of concurrent programs are likely to occur within few 
context-switches [Musuvathi-Qadeer, PLDI’07]

– Efficient sequentializations can be obtained 
1. Eager approach [Lal-Reps, CAV’08] 
2. Lazy approach  [La Torre-Madhusudan-Parlato, CAV’09]



Eager sequentialization

• [Lal-Reps, CAV’08]

Sequential program (k-rounds)

1. Guess a2,…, ak

2. Execute T1 to completion
� Computes local states l1,..,lk

and global states b1,…,bk 

(l1,b1)

T1

(l1,a2)

(l2,b2)

(l2,a3)

(l3,b3)

T2 T3



Eager sequentialization 

• [Lal-Reps, CAV’08]

Sequential program (k-rounds)

1. Guess a2,…,ak

2. Execute T1 to completion
3. Pass b1,…,bk  to T2

(l1,b1)

T1

(l1,a2)

(l2,b2)

(l2,a3)

(l3,b3)

T2 T3

b1

b2

b3



Eager sequentialization

• [Lal-Reps, CAV’08]

Sequential program (k-rounds)

1. Guess a2,…,ak

2. Execute T1 to completion
3. Pass b1,…,bk  to T2

� We can forget of locals

T1

a2

a3

T2 T3

b1

b2

b3



Eager sequentialization

• [Lal-Reps, CAV’08]

Sequential program (k-rounds)

1. Guess a2,…,ak

2. Execute T1 to completion
3. Pass b1,…,bk  to T2

4. Execute T2 to completion

T1

a2

a3

T2 T3

b1

b2

b3

c1

c2

c3



Eager sequentialization

• [Lal-Reps, CAV’08]

Sequential program (k-rounds)

1. Guess a2,…,ak

2. Execute T1 to completion
3. Pass b1,…,bk to T2

4. Execute T2 to completion
5. Pass c1,…,ck to T3

6. Execute T3 to completion
7. Computation iff di = ai+1 ∀i∈[1,k-1]

T1

a2

a3

T2 T3

b1

b2

b3

c1

c2

c3

d1

d2

d3



Translation scheme

main()

Seq1()

Input: concurrent program P1,…,Pn

Output is a sequential program consisting of:
(Seqi is the translation of Pi)

Seqn()



Eager translation (k-rounds)

• 2k-1 copies of shared vars
– r2,…,rk (store guessed

starting values)
– s1,…,sk (copies per round 

of shared vars)

• main is very simple:
guess r2,…,rk

Seq1()……
Seqn()
Checker()
Error()

• Seqi():

– code of Pi using the copy sj at
round j 

– implements round-switching by 
moving to next copy of shared
vars

– returns to main after last round

• Checker():

for i = 1 to K − 1 do

assume (si = ri+1)

• Error():  assume(goal) 



Outline

• First sequentialization

• Bounded context-switching

– Eager approach

– Lazy approach

• More sequentializations

• Conclusions



Eager seq. does not preserve assertions 

• y!=0 is an invariant of the statement x=x/y in the concurrent progr.

– but not in the sequential program

(blocked can be nondeterministically assigned to false across a 
context-switch while processing P1)

process P1: 

main() begin    

while (blocked) 

skip;

assert(y!=0);

x = x/y; 

end

process P2: 

main() begin 

x=12; 

y=2;

//unblock threads of P1

blocked=false;

end

// shared variables

bool blocked=true;

int x=0, y=0;



Lazy transformation: main idea

� Execute T1

� Context-switch: 
store s1 and abort

� Execute T2 from s1

� store s2 and abort

(l1,s1)

(l’1,s1)

(l’2,s2)

T1
(l0,s0)

T2

store s1

& abort store s2

& abort

[La Torre-Madhusudan-Parlato,  CAV’09]



Lazy transformation: main idea

� Re-execute T1 till it reaches s1
� May reach a new local 

state!
� Anyway it is correct !! 

� Restart from global s2 and 
compute s3

(l1,s1)

(l’1,s1)

(l’2,s2)

T1
(l0,s0)

T2

store s1

& abort store s2

& abort
(l’’1,s1)

store s3

& abort

(l’’1,s2)

[La Torre-Madhusudan-Parlato,  CAV’09]



Lazy transformation: main idea

� Switch to T2

� Execute till it reaches s2

� Continue computation from 
global s3

�

(l1,s1)

(l’1,s1)

(l’2,s2)

T1
(l0,s0)

T2

store s1

& abort store s2

& abort
(l’’1,s1)

store s3

& abort

(l’’’1,s2)

(l’’1,s2) (l’’’1,s3)

[La Torre-Madhusudan-Parlato,  CAV’09]



Translation scheme (as in Eager)

main()

Seq1()

Input: concurrent program P1,…,Pn

Output is a sequential program consisting of:
(Seqi is the translation of Pi)

Seqn()



Lazy translation (k-contexts)

• k copies of shared vars

– s1,…,sk (copies of shared vars to store values at 
cs)

• main has more control stms:

– No guessing

– Keeps track of the current context

– Starts a thread or its recomputation by 
assigning the values of sh. vars at first of its 
contexts



Lazy translation (k-contexts)

• Seqi():

– code of Pi interleaved
with control code

if (terminate) then return;

else

if (∗) then call contextSwitch( ); 

if (terminate) then return;

• No special handling of 
error condition

• contextSwitch() 

– when recomputing contexts:

1. matches values at cs

2. set starting values for 

next context

– when context-switching out 
the currently new computed
context

1. stores the sh vars in the 

appropriate copy

2. set terminate to true



Summarizing lazy translation

• Explores only reachable states

• Preserves invariants across the translation

• Tracks local state of one thread at any time

• Tracks values of shared variables at context switches 

(s1, s2, …, sk)

• Requires recomputation of local states



Both translations reduce bounded reachability 

to sequential reachability

Theorem:
Let C be a concurrent program, k>0 and 
pc be a program counter of C

pc is reachable in C within k context 
switches iff pc is reachable in SeqProgk(C)



Lazy vs. Eager: performace

• Tool Getafix implements both eager and lazy 
sequentialization for concurrent Boolean programs

• Lazy outperforms Eager in the experiments 

• Sample results on Windows NT Bluetooth driver

Context
switches

1-adder
1-stopper

2-adders
1-stopper

1-adder 
2-stoppers

2-adders 
2-stoppers

eager lazy eager lazy eager lazy eager lazy

1
2
3
4
5
6

N
N
N
N
N
N

0.1
0.3

43.3
73.6

930.0
-

0.1
0.2
1.4
5.5

20.2
66.8

N
N
N
Y
Y
Y

0.2
0.9

135.9
1601.0

-
-

0.1
0.8
6.3
2.6

18.0
122.9

N
N
Y
Y
Y
Y

0.1
0.7

70.1
597.2

-
-

0.1
0.9
0.4
2.9

14.0
66.1

N
N
Y
Y
Y
Y

0.2
1.6

177.6
out of mem.
out of mem.
out of mem.

0.1
2.0
0.8
7.5

66.5
535.9



Lazy vs. Eager: performace

• Getafix uses as verification engine a fixed-point logic 
solver (Mucke) 

– It stores summaries, recomputations do not cause to 
repeat exploration 

– Explore the state space lazily gives some advantages

• Experiments using BMC (Bounded Model-checking) 
backends gives the opposite result

– Eager outperforms Lazy 
[Ghafari-Hu-Rakamaric, SPIN’10]



Tools implementing LR seq.

• CSeq for Pthreads C programs
[Fischer-Inverso-Parlato, ASE’13]

• STORM + dynamic memory allocation using
maps [Lahiri-Qadeer-Rakamaric, CAV’09]

• Successors of STORM: 
– Corral [Lal-Qadeer-Lahiri, CAV’12]
– Poirot [Qadeer, ICFEM’11] 

[Emmi-Qadeer-Rakamaric, POPL’11]

Is this the end of 

the story?
NO!

‘‘Lazy Returns…’’ 
in June 5 talk



Outline

• First sequentialization

• Bounded context-switching

– Eager approach

– Lazy approach

• More sequentializations

• Conclusions



Parameterized programs

• Extend shared-memory concurrent programs 
– Computations can have an arbitrary number of 

threads

• Complex class of programs (infinite states):
– each thread can have recursive calls 
– number of threads is unbounded

• Interesting class of programs (e.g., device drivers)
– can be used to analyze programs with dynamic 

thread creation



Sequentialization of  param. progs

• Eager sequentialization can be easily 
obtained from that for concurrent 
programs: 
– each thread is executed up to 

completion (jumping across context-
switches)

– after computing a thread, 
nondeterministically (1) terminate and 
check if all the computed executions 
form a computation and (2) compute 
next thread 

– the values of shared variables at 
context-switches are passed to the 
next thread

T1 T2 T3

[La Torre-Madhusudan-Parlato,  FIT’12]



Linear interfaces

• Summarize the effects of a block of unboundedly many threads
on the shared variables

– executions arranged in rounds of round-robin scheduling

linear interface

(In,Out) 

of dim. 3

Ti Ti+1 Tj
in1

in2

in3

out1

out2

out3



Linear interface of  a run

• (In,Out) s.t.   ini+1=outi i=1,…,k-1

k=3

T1 T2 Tm
in1

in2

in3

out1

out2

out3



Lazy sequentialization

• Pseq mimics a computation of P 

– by increasing round numbers and 

– (within each round) by increasing context numbers

• nondeterministically chooses if this is the last thread in 
the round

• the linear interface (<in1>,<out1>) is stored

T1 T2in1

T4T3

out1

[La Torre-Madhusudan-Parlato, FIT’12]



Lazy sequentialization

• Second round is executed matching (<in1>,<out1>)

• Note that threads do not need to be the same we used in 
the first round and not even in the same number

• The third round is executed similarly by matching
(<in1,in2>,<out1,out2>)

T’1 T’2in1
T’3

in2=out1

a1

a2

can context switch provided that 
<a1,out1> is a linear interface

b1

b2

out1

out2

can context switch provided that 
<b1,out1> is a linear interface

context switch in last 
thread is allowed only 
with globals out1



Dynamic thread creation

• New threads can be istantiated at runtime (e.g., thread
creation, asynchronous calls) 

• Computations may have unboundedly many threads
running at the same time 

• Main idea to handle dynamic creation:
– schedule threads according to a (DFS) visit of the 

ordered thread-creation tree
– this allows to use the call stack to explore the 

pending threads

• This nicely combines with the Eager scheme



Delay-bounded scheduling

• Programs with asynchronous calls (creating tasks) 

• Each task is executed to completion (no interleaving
with other tasks)

• Sequentialization is according to a DFS scheduler of 
tasks

• When dispatched, a task can be delayed to next round
– the total number of delays in a task-creation tree

is bounded by k
– total number of explored rounds is k+1

• The beginning of each round is guessed (eager)

[Emmi-Qadeer-Rakamaric, POPL’11]



General sequentialization

• Programs with asynchronous calls

• Tasks can be interleaved with other ones

• Sequentialization based on generalization of Linear 
Interfaces
– DAGs of contexts
– Composition and compression operations

• Bound on the size of the DAGs

• Generalizes k-rounds Eager e delay bounded-
scheduling sequentialization

[Bouajjani-Emmi-Parlato, SAS’11]

aa

cc

dd

bb

ee



Scope-bounded sequentialization

• No dynamic thread creation

• k-scoped generalizes k-context analysis
– bounds the number of times a thread is

suspended/resumed between each matching call and 
returns

• Each scope is captured by a linear interface
• Sequentialization mantains a set of linear 

interfaces (one for each thread)
• Each thread contributes with many LI’s in a 

computation

• Both Eager and Lazy schemes

[La Torre-Napoli-Parlato, DLT’14] [La Torre-Parlato, FSTTCS’12]



Outline

• First sequentialization

• Bounded context-switching

– Eager approach

– Lazy approach

• More sequentializations

• Conclusions



Conclusion

• Sequentialization is an effective approach to analyze 
concurrent programs

• Main features:

– Fast prototyping

– Re-use of mature technologies (tools for sequential 
programs)

– Code-to-code translation

– Introduces some overhead (variables, control code, 
recursive calls)



Conclusion

• Presented translations:

– keep track only of the local state of the current 
thread (no cross product)

– except for KISS, use # copies of the shared variables 
depending on the bounding parameter

– thread creation is implemented with calls 

• Eager translations require guessing of values of the 
shared variables and explore unreachable states

• Lazy translations preserve the invariants and introduces 
many recursive calls (re-computations) 



Conclusions

• Experiments show:

– Exploring only reachable states impacts
positively the size of BDD’s in the Getafix
approach

– Recursive calls impacts negatively the size of 
formulas in Bounded Model-Checking backends

• Sequentialization schemes should be targeted to a 
class of backends



Talk on June 5

• Sequentializations for 
Bounded Model Checking backends

• Tool CSeq 
http://users.ecs.soton.ac.uk/gp4/cseq/cseq.html

• Based on joint work with Bernd Fischer, Omar 
Inverso, Gennaro Parlato and Ermenegildo 
Tomasco

– TACAS-SVCOMP’14, CAV’14 and on-going 
research


