Implementare model-checkers
con fixed-point calculus
(fondamenti tool Getafix)

Implementing a model-checker

In standard programming languages (e.g., C or Java) it is a complex
task

— memory management

— caching management

— variable ordering (BDD)

A typical model checker spans over thousand lines of code

Small changes in the algorithms may require redesigning large
portions of code
— usually hard to try new ideas

Topics

A framework to implement model-checking algorithms for Boolean
programs (tool GETAFIX)

Efficient

— competitive with mature model-checkers
Easy

— to implement and debug

— to experiment with variants

Amenable to “theory people”
— high level formalism (fixed-point calculus)
— hide details unrelated to the algorithmic aspects of solutions

How model-checkers look in our formalism

/°Checks whether an error state in Boolean program\

mu bool Reachable(Module s_mod, PrCount s_{ is reachable.
s mod< s pc,s pc < s CL,s CL ~+s_ENTH
((exists Module t_mod, PrCountt_pc, Localt_

(target(t_mod,t_pc) & Reachable(t_mod,| ® Entire model checking algorithm in 1~2 pages !

|(enforce(s_mod,s CL,s CG) & (
(s_mod=0 & s_pc=0) * Symbolic algorithm that uses BDDs
| (s_pc=0 & CopyLocals(s_mod,s ENTR)
& (exists Module t_mod, PrCount t_pc, L

((Reachable(t_mod,t pc,t CL,t CG,t|

& CopyGlobals(s_mod, t CG, s_EI

* Competitive with mature model-checkers

| (exists PrCountt_pc, Localt_CL, Globalt_CG.
((Reachable(s_mod,t_pc,t CL,t CG,s ENT
&(programint(s_mod,t_pc,s_pc,t CL,s C

| (exists PrCountt_pc, Global t CG, Module u
(exists Localt _CL. ((Reachable(s_mod

& SkipCall(s_mod,t_pc,s_pc)) & progra

& SetReturnTS(s_mod,u_mod,t_pc,u_p

& (exists Local u_CL, Global u_CG.

((Reachable(u_mod,u_pc,u_CL,u_CG,u

& SetReturnUS(s_mod,u_mod,t_pc,u_p

)

(exists Module s_mod, PrCounts_pc, Local s__
(target(s_mod,s_pc) & Reachable(s_m

Why fixed-point calculus?

e Natural formalism in verification

— Most symbolic model-checking algorithms essentially compute fixed-points

— Ex: compute the least X s.t X = Start [IX [1Succ(X)
(forward reachability)

e Right primitives
— easy encoding of model-checking algorithms
— sufficiently low-level to express algorithmic details

Fixed-point calculus

Quantified Boolean logic

First-order logic over the Boolean domain

BoolExp B::= T | F| Ri(x, .., x) | —B]
BAB| BVB | 3x.(B) |Vx.(B)

Variables interpreted over the Boolean domain {T, F}
Relations interpreted as k-ary tuples of {T,F}

Some relations defined by pgms

e Internal(u,v)

function f

e Call(u,v)

function f

e Return(u,v,z)
function f

e
e
-
e
-

] N return

£ R

Fixed-points >

Consider the complete lattice (2°, L)
Consider a functi . 29 S
onsider a function f:2° — 2 \{@p

e X[2%is a fixed point of f é
it f(X)=X U

* A fixed point X of f is the least fixed point
if for every fixed point Y, YLIx

Tarski-Knaster theorem

Thm.

Let L be a complete lattice and letf: L — L be a
monotonic function.

Then the set of fixed points of fIn L is also a
complete lattice.

(The theorem was shown just for the powerset
lattice earlier by Tarski)

Tarski theorem applied to (2>, [J)

Consider a function f : 25 5 29 thatis monotonic, i.e.:
X U Ythen f(X) L f(Y)

Consider the sequence

X, =L

Xy =1 (Xq)

X, =f(X,) ...

This eventually converges to the least-fixed point

(and hence always exists).

Es.: Reachability in non-rec programs

Reach(pc, x)
= (pc=0 A Init(x))
V 3pc’y. (Reach(pc’, y) A Internal(pc’,y, pc,x))

Declarative: Reach is the smallest set that contains the
initial state and is closed under internal image.
Operational/Algorithmic:

Start with the empty relation; keep applying Reach to the
current definition till the least fixed-point is reached

Note: Init and Internal are relations that are defined by the
program being checked. Algorithm uses these relations.

A fixed-point calculus

System of equations
f; (x4, ..., X,) = PosBoolExp using f,,... f,,
£,y -, ¥o) = PosBoolExp using f,,... f,.

fm (24, ..., 2,) = PosBoolExp using f,,... f,,

Positive Boolean expression: relations do not occur within an odd
number of negations

A positive Boolean expression defines a monotonic function.
Least fixed-point of all these relations f,,... f,, exists.

Computation of the least fixed-points

Least fixed-point of f,,..., f,, can be computed by an algorithm that starts
with the empty relation, and computes iteratively till a fixed-point is
reached

Let f=B be an equation of a system Eqg

e

Evaluate(f,Eq) : « Evaluate gives operational semantics
SetS:=/[J to our algorithms
while (S does not _ ayen when general (non positive)
- Eq":=Eq \ 3 Boolean expressions are used
- Eq”:=Eq’ [f - (in this case we are in charge to ensure
- Letf, ...f, o convergence)

- S:=evaluatio

N

/

/

return S

Recursive Boolean programs

(sequential) Boolean programs

Nondeterministic procedural programs
Has conditionals, iteration, recursive function calls
Variables range over the Boolean domain {True, False}

And specific statements for:
— function invariants (enforce)
— assertions (assume)
— constrained assignments (constrain)

A Boolean program

main () { Nondeterminism: bool f(bool x) {
bool a,b; “b is either T or F” bool Y,
a.=T: y = *;

}

=7 while (y) {

while (b) { y:= f(X)
a.= f(b);)
=2 constrain (!(a && b’)); return y:

})
it (c) {

ERR: skip Constrained assignment
} “bis F” or “ais F”

Checking recursive Boolean programs

d R
= AN)
return
\ caliy) from f)
C — N
(Entry,Entry) f(x) w
~ y

Summaries: (Entry, State)
meaning the state is reachable from the entry of the function (perhaps
using calls to other functions)

Writing the algorithm

Summary(u,v) =

(Entry(u.pc) A u=v A Init(u.pc)) (W

u X—>YV

A

V 3Ix.(Summary(u, x) A\ Internal(x, v))
V 3x, y.(Summary(x, y) A\ Call(y, u) Au=v)

V 3x, y, z.(Summary(u, x)A Call(x, y)
A Summary(y, z) A Exit(z.pc) A Return(x, z, v))

Writing the algorithm

Summary(u,v) =

(Entry(u.pc) A u=v A Init(u.pc)) . Y
lcall
V 3x.(Summary(u, x) N Internal(x, v))
u
V 3x, y.(Summary(x, y) A Call(y, u) A u=v) (u’ u)

V 3x, y, z.(Summary(u, x)A Call(x, y)
A Summary(y, z) A Exit(z.pc) A Return(x, z, v))

Writing the algorithm

Summary(u,v) = ///\, \\
(Entry(u.pc) A u=v A Init(u.pc)) v

V 3x.(Summary(u, x) A Internal(x, v)) ret

u X Y
call //_\’
Yy Z
V 3x, y.(Summary(x, y) A\ Call(y, u) N u=v)

V 3x, y, z.(Summary(u, x)A\ Call(x, y)
A Summary(y, z) A Exit(z.pc) A Return(x, z, v))

Actual code

mu bool Reachable(Module s_mod, PrCounts_pc, Local s CL, Global s CG, Local s ENTRY_CL, Global
s_ENTRY_CGQG)
s mod< s pc,s pc <s CL,s CL ~+s ENTRY CL,s CL < s CG,s CG ~+s ENTRY_CG /*BDD ordering */
((exists Module t mod, PrCountt_pc, Localt CL, Globalt CG, Localt ENTRY_CL, Global t ENTRY_CG.

(target(t_mod,t_pc) & Reachable(t_mod,t pc,t CLt CG,t ENTRY_CL,t ENTRY_CG)))

|(enforce(s_mod,s CL,s CG) & (
(s mod=0& s pc=0)
| (s_pc=0 & CopyLocals(s_mod,s ENTRY_CL,s CL)

((Reachable(t_ mod,t pc,t CL,t CG,t ENTRY,

& (exists Module t_mod, PrCountt_pc, Localt CL, Gt='——== H—EMEAM AL AL EMTER e aa
& CopyGlobals(s_mod,t CG,s ENTRY

Code is executed according to
| (exists PrCount t_pc, Local t_CL, Global t_CG. : _ . .
((Reachable(s_mod,t_pc,t CL,t CG,s_ ENTRY_CL tthlXEd pOlnt algorlthm
&(programint(s_mod,t_pc,s_pc,t_CL,s_CLt_CG{ - pracketing is respected in the

| (exists PrCountt_pc, Global t CG, Module u_maod, evaluations
(exists Localt CL. ((Reachable(s_mod,t_pc,t |
& SkipCall(s_mod,t_pc,s_pc)) & programCali(s
& SetReturnTS(s_mod,u_mod,t pc,u pc,t CL, ;
& (oxists Local u L Global u_CG. Proper bracketing can reduce the

((Reachable(u_mod,u_pc,u CL,u CG,u_ENTR number of variables in the
& SetReturnUS(s_mod,u_mod,t pc,u_pc,u CL . .
): intermediate BDDs

(exists Module s _mod, PrCounts_pc, Local s_CL, Glq

Correctness of the algorithm

Let P be a recursive Boolean program

For each pair (u,v) which is added to Summary
— u is either an initial state or a reachable entry

— vis either u or (u,x) is in Summary and v is reachable from x by an internal
move or by a call which returns

(only reachable states are added to Summary)
Each reachable state is eventually added to Summary
Theorem.

A state v is reachable in P if and only if
[lan entry u such that Summary(u,v)

A simpler summary-based algorithm

e Modify Summary such that

— clause dFx, y.(Summary(x, y) A Call(y, u) A u=v) is deleted
— clause (Entry(u.pc) A u=v A Init(u.pc)) is replaced by
(Entry(u.pc) A\ u=v)

e Still answers reachability

 May also compute unreachable states

An optimized algorithm

Summary from Relevant summary
previous iterations

Frontier

Frontier: Newly discovered summaries in the last round

Relevant. Summaries whose program counter value is
Involved in the frontier

ldea: Compute only on the relevant summaries.

An optimized algorithm

Why not computing simply on Frontier?
— BDDs for Frontier can be larger than reachable set

— Relevant is a restriction of the reachable set to a particular set of program
counters

New Frontier is computed into two steps:
— Newl: image-closure of Relevant on internal transitions

— New2: image of Relevant on calling a module or skipping the call using a
summary

Handling call and return transitions is expensive compared to internal
transitions

Programs contain many more internal than other transitions

Writing the optimized algorithm

Summary(1,u,v) denote the computed summaries (u,v)

Summary(0,u,v) denote the summaries (u,v) computed before the
last round

— (u,v) isin Frontier if Summary(1,u,v) and not Summary(0O,u,v)

Transitive closure on internal transitions:
Newl(u, v) = (Summary(1, u, v) A Relevant(v.pc))
V(3x.(Newl(u, x) N Programint(x, v)))

Writing the optimized algorithm

New2(u, v) = (3x.(Relevant(x.pc) A Summary(1, u, x) A Call(x, v)))
V (3x, y, z.(Summary(u, x)
A IntoCall(x, y) A Summary(y, z)
N\ Exit(z.pc) A Return(x, z, v)
A (Relevant(x.pc) V Relevant(z.pc))))

e Compute calls and returns on relevant program counters

 Note: either the caller or the exit are required to be relevant to
jump from a caller to a matching return

Writing the optimized algorithm

Summary(fr, u, v) = (fr=1 A Entry(u.pc) A u=v A Init(u.pc))

V Summary(1, u, v)

V (fr=1 A (Newl(u, v)V New2(u, v)))
e Updates the already computed summaries with the current Frontier
e Adds new summaries as Frontier

Relevant(pc)=3u, v.(Summary(1, u, v)

AN —7Summary(0, u, v) A v.pc=pc)

Problem

 Relevant does not grow monotonically!

e Tarski-Knaster theorem does not apply

 Convergence of the algorithm is up to you

— assume the algorithmic semantics to compute the least
fixed-point

Concurrent Boolean programs

Concurrent Boolean programs

* A fixed number of recursive Boolean programs P, ..., P
(running in parallel)

n

e each program has its own local variables
— local to the program

e communication is through shared variables

[shared vars]

S

loc

loc

Concurrent Boolean programs

* Global states (l,g)
— g is a valuation of shared variables f Pl PZ \

(shared state)
— lis local state 7 (F",50)
 Semantics by interleaving: (hs) - ra,sy)
— computations as sequences of (I, s) A7
execution contexts Voo
— only one P, is active in each context .
— either the active P, moves (/ocal |
behavior)

— or control switches to another \ /
component (context-switch) ' '

Reachability of concurrent Boolean prgms

Given a concurrent Boolean program and a particular
position of a component,

is that position reachable?

Problem is UNDECIDABLE !

(two recursive Boolean programs sharing finitely many
Boolean variables can simulate a Turing machine)

Bounded context-switching

Fix k.
Is an error reachable within k context-switches?

e [Qadeer-Rehof, TACAS'O5]: Decidable.

- Proof uses tuples of automata that capture stack
contents of processes

- Each such automaton is grown as for sequential
programs [Schwoon, PhdThesis 2000][Esparza-
Schoown, CAV'01]

* Most concurrency-related bugs often show up within
few contexts [Musuvathi-Qadeer, PLDI'07]

A computation up to 4 context-switches

my=l, m=l; t=t;
(10,90) (1,91 (1,.9,) (15,93) (14,94)
—p t, — t, — t, — t, — t,
(14,941) (15,92) (M2,95) (M3,9.4) (My4,95)

t,,...,t, = active component in each context (colors identify
components)

lo,--,1, = local states at the beginning of each context
m,,...,m, = local states at the end of each context

a re-activated component restarts from the last visited local state
(when last context-switched out)

g,,-.-.84 = Shared states at context-switches

Towards a summary relation

(10:90) (11,94) (12,92) (13,93) (14,94)
— f, —> f, —> , —> t, —> ¢,
(14,91) (15,9,) (M,,g5) (M3,9,) (m,,0s)

e Consider a summary (u,v) as for sequential prgms
— add summaries within the same context is fine

e Suppose v=(m,,g,), we want to add a consistent summary (u’,v’)
where v'=(l,,8,)

e We can add (u’,v’) if we know that according to a global run
matching g,,...,8s and t,...,tc
— (u,v) was added in context 2 and
— (u,v”),v”’=(l;,g,), was added in contex 1

A summary relation

e Summary tuples are of the form:
(U, v, ecs, cs, {8iki1,.k » ikizo,.k)

meaning that there is a global computation which

— visits an entry state u in context ecs and then v in context
CS

— uand v are in the same function of program t_=t
(u,v) isa summary edge)

— uses cs context-switches
— executes t; at each context i

(and

ecs

— shared state at the i-th context-switch is g,

Fixed-point formulation

e Let G={gi}i=1,__k , 1= {ti}i=0,..k

* Reach(u, v, ecs,cs, G, T)= @, NP, ND_ NP, et
V¢15t—switch \% d)switch

&, = (cs= ecs=0 A Entry(u.pc) A u=v A Init(t, u.pc))

¢... =3x. (Reach(u, x, ecs, cs, G, T)
A Programint(x, v))

b, =%y, ecs. (Reach(x, y, ecs, cs, G, T) A
Call(y, u) A ecs =cs A u=v)

Fixed-point formulation

D =3X Y, Z, CS..
(Reach(u, x, ecs, cs’, G, T)
A Call (x, y)\ Reachl(y, z, cs’, cs, G,T)
N\ Exit(z.pc) A\ Return(x, z, v) A cs’<cs

) T TN
Ve \\ \

/
\
//\’ v Caller’s cs must

be less than the
cs at return

u X v
call / T 9 y
N
y Z

Fixed-point formulation

D1ct—cwitch = X, Y, €S, ecs”.
(Reach(x, y, ecs’, cs, G, T)
A (cs=cs’+1) A First (t.., cs, T)
A (v.Global =g_, =y.Global)

A (u=v) A (ecs =cs) A Init(t_,, v.pc)

v=(l,,9)
—> —_ t, —De t —> —> e
y=(1,,9)

Fixed-point formulation

¢switch =
(3x, y, cs, ecs.
(Reach(x, y, ecs, cs, G, T) A\ (cs=cs+1)
A —7First(t_., cs, t)
N (v.Global = g_. = y.Global)))
A (Fz, cs”.(Reach(u, z, ecs, cs”, G, T) N\ (cs’’<cs)
A Consecutive(cs”, ¢s,T) A z.Local =v.Local))

v=(1,9)
—> —> —> t, =0 t. —> e
z=(1,9,) y=(l,,9)

Parameterized Boolean programs

Parameterized Boolean programs

A fixed number of recursive Boolean programs P,,..., P,

A fixed number of shared variables

Each P; can be executed on possibly unboundedly many
threads

Each computation has a fixed number of threads
— threads are not created dynamically

Interesting class of programs (e.g., device drivers)

Parameterized Boolean programs

Infinite number of states:
— each thread is possibly recursive
— number of threads is unbounded

Reachability is clearly undecidable

What about reachability within a bounded number of
context-switches?

Decidable!

Round-robin scheduling of threads

e Fix a round-robin scheduling

e A computation can be seen as
T To

Round

m_

o
.
- -

-
.
-
-
-

-

-

-
-
-
-
-
-

S

.

.

.
-
-

.
-
-

.

.

.

.

.

S
-
-
.
-

.

.

.
.
.
-

.

.

.

it
.
.
.
.
.
.
.
.
.
.
.
.
.

| |
| e = e
- Tt B e =

> 92om

Linear Interface

e Let G=(g,,...,8,) and H=(h,...,h,)

e (G,H) is a k-linear interface if:

T T

] h
Jd1 1
—_ > sannas —_— >
Jdo h2
é) IIIIII é é
' h
/SN > e o

* G is the input and H is the output

Linear Interfaces compose

e Let (G,H) and (G’,H’) be linear interfaces s.t. H=G'.
Then, (G,H’)is alinear interface.

A summary relation for parametrized
prgms

* Let G=(g,,...,8,) and H=(h,,...,h,)
e EagerLI(i, A, G,H) means that

— (G,H) is a linear interface over threads Ty,..,T

m
of] hy .
— > —> > e \ is a local state
do h2

e | is current round

. D T * (A, h;) current state

A fixed point-algorithm
EagerLI(i, A, G,H) = starts each context
(i=1 A Locallnit(A) A g, =h,)
V(i>1Ag =h AEagerLl(i-1, A, G, H))
V <local reachability> Z exp|0res each context

v (4G, N’. EagerLI(i, N’ ,G,G’) A EagerLI(i, A ,G’,H))

™~ composes linear interfaces

Theorem.

Eagerll is the set of all the linear interfaces of lenght k for the
considered parameterized Boolean program

A fixed point-algorithm

Reach(\,g) = dG,H, i. (SharedInit(g,) A EagerLI(i,A,G,H) A g=h,

A(i=1 v G N. (i>1 A EagerLI(i-1, A’ ,H,G’) A Wrap(G,G’))))

Theorem.
(A,9) Is reachable in P if and only if
Reach(A,Q)

A lazy fixed-point algorithm

e Reach(A,g) explores also unreachable states
— May be inefficient in practice

 \We want to compute linear interfaces by exploring
only reachable states

e Formula is more involved, we need more relations

Relations

.
_L _L
e ThrdL(i, A, G,H): 9 h,

Relations

 WantRightLI(i, G,H) means that there exists a run

Tq , Tj Tj_|_1 T

m
SN O N s I e I Ny KUY
gq ------ — e L LLLLY —
— 1 .0 (G |
hi-_l>
g_>_) ?T)
[i

e (G,H) is a right linear interface of size i-1
e (G’,G) is a linear interface of size i over a single thread

Fixed-point formulation
WantRightLI(i, G, H) =

3G’ A (ThrdLI(i, A, G', G) A RightLI{i - 1, G, H)
A existence of a global run as before
(WantRightLI(i, G’, H)
V (Sharedlnit(g';)AWrap(G’, H))))

T RLI
h
91E 01 R h1 i
—QIL) g? > _?—)
9:i-1E Oi-1 Nia |
g Ji S
A

Fixed-point formulation
RightLI(i, G, H) =
3\, (ThrdLI(1, A, G, H)
v dH’. (ThrdLI(1, A, G, H’) A RightLI(i,H’,H)))

A (i =1V WantRightLI(i, G, H))

T, oo T Tt Tm
—_— e LLLLLL % &) — EEEEEE — 1
g_> e S LLLLY — —_— — EEEEEE —_—
925 | [0 o
—_— — Ll gg ﬂ) > sanuns —
h—
gé e LLLLL ﬁ e

Fixed-point formulation

ThrdLI(i, A, G,H) = (starts each context
(i=1 A Locallnit(A) A g, = h, In first round)

A (Sharedlnit(g,) V 3G, A’ ThrdLI(1, \', G, G)))

V(i>1Ag=hAThrdl(i-1,A G H) (ensures lazy exploration for
A AH’. (RightLI(i - 1, H,H’) the first round)
A ((Sharedinit(g,) A Wrap(G,H’))
vV WantnghtLI(l G, H'))))

Correctness

e Observe:
— ThrdLl captures the actual exploration of program states

— RightLl and WantRightLlI: “service relations” for ensuring laziness and
guide context-switching

 Context-bounded reachability is answered by
checking

di A, G, H. (1<i<k)
A ThrdLl(i, A, G, H) A Target(A)

Concluding......

Getafix

A framework for writing model-checking
algorithms using fixed-point formulae.

Model-checking Algorithm
written succinctly
as a fixed-point formula

GETAFIX ‘l'

Translates Boolean program
to various relations

(internal, call, return, entry, exit...) YES
Boolean /

Program Removes dead code, useless'vars,
Computes a sane BDD ordering. NO

Symbolically executes algorithm on
Bool pgm using BDDs
and clever heuristics (Mucke)

Limitation:
No counterexamples

Summary based approach

e BEBOP computes procedure summaries for Boolean
programs [Ball-Rajamani, SPIN’O0]

e First version of MOPED, an automaton accepting
reachable stack configurations is constructed [Esparza-
Schoown, CAV’'01]

— incrementally adds summary edges to the automaton until
saturation

e Summaries for recursive state machines can be computed
by DATALOG rules [Alur et al., TOPLAS’05]

Bounded context-switching

[Quadeer,Wu, PLDI’0O4]: introduce bounded-context switch
reachability (only 2 context-switches addressed)

Algorithm [Qadeer-Rehof, TACAS'05] is complex and was
implemented in [Suwimonteerabuth-Esparza-Schwoon,SPIN’08]

[Suwimonteerabuth-Esparza-Schwoon,SPIN’08] implement
algorithm of [Qadeer-Rehof, TACAS’05] and a new (simpler)

version

Algorithms presented in this lecture:
— concurrent programs [La Torre-Madhusudan-Parlato, PLDI'09]

— parameterized programs [La Torre-Madhusudan-Parlato,
CAV’10]

Bounded context-switching
(concurrent-to-sequential)

Only the local state of one component program is kept at
each time

— multiple copies of shared variables

[Lal-Reps,CAV’08]: translation to sequential reachability which
vields eager state exploration

[Lahiri-Qadeer-Rakamaric, CAV09]: use this translation for
deductive verification of C programs

[La Torre-Madhusudan-Parlato, CAV’09]: translation achieving
lazy state exploration

— preserves invariants of the concurrent program

We also have eager and lazy translations for parameterized
programs [La Torre-Madhusudan-Parlato, 2010 unpublished]

