
10/15/24

1

Programmazione avanzata a.a. 2024-25
A. De Bonis

82

I metodi statici e i metodi di classe
• Un metodo di una classe normalmente riceve un’istanza della classe

come primo argomento
• A volte però i programmi necessitano di elaborare dati associati alle

classi e non alle loro istanze.
– Ad esempio tenere traccia del numero di istanze della classe create

• Per questi scopi potrebbe essere sufficiente scrivere funzioni esterne
alla classe perché queste funzioni possono accedere agli attributi della
classe attraverso il nome della classe stessa.

• Per associare meglio la funzione alla classe e per fare in modo che la
funzione venga ereditata dalle sottoclassi ed eventualmente ridefinita
in esse, è meglio codificare le funzioni all’interno delle classi

• Abbiamo però bisogno di metodi che non si aspettano di ricevere self
come argomento e quindi funzionano indipendentemente dal fatto che
esistano istanze della classe

Programmazione Avanzata a.a. 2024-25
A. De Bonis 83

83

10/15/24

2

I metodi statici e i metodi di classe
Python permette di definire
• Metodi statici. I metodi statici non ricevono self come argomento

sia nel caso in cui vengano invocati su una classe, sia nel caso in
cui vengano invocati su un’istanza della classe. Di solito tengono
traccia di informazioni che riguardano tutte le istanze piuttosto
che fornire funzionalità per le singole istanze

• Metodi di classe. I metodi di classe ricevono un oggetto classe
come primo argomento invece che un’istanza, sia che vengano
invocati su una classe, sia nel caso in cui vengano invocati su
un’istanza della classe. Questi metodi possono accedere ai dati
della classe attraverso il loro argomento cls (corrisponde
all’argomento self dei metodi ”di istanza”)

Programmazione Avanzata a.a. 2024-25
A. De Bonis 84

84

I metodi statici e i metodi di classe
• la funzione printNumIstances (non è né un metodo di classe né

un metodo statico) non utilizza informazioni delle istanze ma solo
informazioni della classe

• Vogliamo quindi invocarla senza far riferimento ad una
particolare istanza
– creare un’istanza solo per invocare la funzione farebbe aumentare il

numero di istanze

Programmazione Avanzata a.a. 2024-25
A. De Bonis 85

In other words, Python 2.X class methods always require an instance to be passed in,
whether they are called through an instance or a class. By contrast, in Python 3.X we
are required to pass an instance to a method only if the method expects one—methods
that do not include an instance argument can be called through the class without pass-
ing an instance. That is, 3.X allows simple functions in a class, as long as they do not
expect and are not passed an instance argument. The net effect is that:

• In Python 2.X, we must always declare a method as static in order to call it without
an instance, whether it is called through a class or an instance.

• In Python 3.X, we need not declare such methods as static if they will be called
through a class only, but we must do so in order to call them through an instance.

To illustrate, suppose we want to use class attributes to count how many instances are
generated from a class. The following file, spam.py, makes a first attempt—its class has
a counter stored as a class attribute, a constructor that bumps up the counter by one
each time a new instance is created, and a method that displays the counter’s value.
Remember, class attributes are shared by all instances. Therefore, storing the counter
in the class object itself ensures that it effectively spans all instances:

class Spam:
 numInstances = 0
 def __init__(self):
 Spam.numInstances = Spam.numInstances + 1
 def printNumInstances():
 print("Number of instances created: %s" % Spam.numInstances)

The printNumInstances method is designed to process class data, not instance data—
it’s about all the instances, not any one in particular. Because of that, we want to be
able to call it without having to pass an instance. Indeed, we don’t want to make an
instance to fetch the number of instances, because this would change the number of
instances we’re trying to fetch! In other words, we want a self-less “static” method.

Whether this code’s printNumInstances works or not, though, depends on which
Python you use, and which way you call the method—through the class or through an
instance. In 2.X, calls to a self-less method function through both the class and in-
stances fail (as usual, I’ve omitted some error text here for space):

C:\code> c:\python27\python
>>> from spam import Spam
>>> a = Spam() # Cannot call unbound class methods in 2.X
>>> b = Spam() # Methods expect a self object by default
>>> c = Spam()

>>> Spam.printNumInstances()
TypeError: unbound method printNumInstances() must be called with Spam instance
as first argument (got nothing instead)
>>> a.printNumInstances()
TypeError: printNumInstances() takes no arguments (1 given)

The problem here is that unbound instance methods aren’t exactly the same as simple
functions in 2.X. Even though there are no arguments in the def header, the method

1026 | Chapter 32:ಗAdvanced Class Topics

www.it-ebooks.info

spam.py

85

10/15/24

3

I metodi statici e i metodi di classe
• In Python 3.X è possibile invocare funzioni senza l’argomento self se le

invochiamo attraverso la classe e non attraverso un’istanza

Programmazione Avanzata a.a. 2024-25
A. De Bonis 86

still expects an instance to be passed in when it’s called, because the function is asso-
ciated with a class. In Python 3.X, calls to self-less methods made through classes
work, but calls from instances fail:

C:\code> c:\python33\python
>>> from spam import Spam
>>> a = Spam() # Can call functions in class in 3.X
>>> b = Spam() # Calls through instances still pass a self
>>> c = Spam()

>>> Spam.printNumInstances() # Differs in 3.X
Number of instances created: 3
>>> a.printNumInstances()
TypeError: printNumInstances() takes 0 positional arguments but 1 was given

That is, calls to instance-less methods like printNumInstances made through the class
fail in Python 2.X but work in Python 3.X. On the other hand, calls made through an
instance fail in both Pythons, because an instance is automatically passed to a method
that does not have an argument to receive it:

Spam.printNumInstances() # Fails in 2.X, works in 3.X
instance.printNumInstances() # Fails in both 2.X and 3.X (unless static)

If you’re able to use 3.X and stick with calling self-less methods through classes only,
you already have a static method feature. However, to allow self-less methods to be
called through classes in 2.X and through instances in both 2.X and 3.X, you need to
either adopt other designs or be able to somehow mark such methods as special. Let’s
look at both options in turn.

Static Method Alternatives
Short of marking a self-less method as special, you can sometimes achieve similar
results with different coding structures. For example, if you just want to call functions
that access class members without an instance, perhaps the simplest idea is to use
normal functions outside the class, not class methods. This way, an instance isn’t ex-
pected in the call. The following mutation of spam.py illustrates, and works the same
in Python 3.X and 2.X:

def printNumInstances():
 print("Number of instances created: %s" % Spam.numInstances)

class Spam:
 numInstances = 0
 def __init__(self):
 Spam.numInstances = Spam.numInstances + 1

C:\code> c:\python33\python
>>> import spam
>>> a = spam.Spam()
>>> b = spam.Spam()
>>> c = spam.Spam()
>>> spam.printNumInstances() # But function may be too far removed

Static and Class Methods | 1027

www.it-ebooks.info

86

I metodi statici e i metodi di classe

• I metodi statici si definiscono invocando la
funzione built-in staticmethod

• I metodi di classe si definiscono invocando la
funzione built-in classmethod

Programmazione Avanzata a.a. 2024-25
A. De Bonis 87

87

10/15/24

4

I metodi statici e i metodi di classe

Programmazione Avanzata a.a. 2024-25
A. De Bonis 88

classes with static and class methods, neither of which requires an instance argument
to be passed in when invoked. To designate such methods, classes call the built-in
functions staticmethod and classmethod, as hinted in the earlier discussion of new-style
classes. Both mark a function object as special—that is, as requiring no instance if static
and requiring a class argument if a class method. For example, in the file bothme-
thods.py (which unifies 2.X and 3.X printing with lists, though displays still vary slightly
for 2.X classic classes):

File bothmethods.py

class Methods:
 def imeth(self, x): # Normal instance method: passed a self
 print([self, x])

 def smeth(x): # Static: no instance passed
 print([x])

 def cmeth(cls, x): # Class: gets class, not instance
 print([cls, x])

 smeth = staticmethod(smeth) # Make smeth a static method (or @: ahead)
 cmeth = classmethod(cmeth) # Make cmeth a class method (or @: ahead)

Notice how the last two assignments in this code simply reassign (a.k.a. rebind) the
method names smeth and cmeth. Attributes are created and changed by any assignment
in a class statement, so these final assignments simply overwrite the assignments made
earlier by the defs. As we’ll see in a few moments, the special @ syntax works here as
an alternative to this just as it does for properties—but makes little sense unless you
first understand the assignment form here that it automates.

Technically, Python now supports three kinds of class-related methods, with differing
argument protocols:

• Instance methods, passed a self instance object (the default)

• Static methods, passed no extra object (via staticmethod)

• Class methods, passed a class object (via classmethod, and inherent in metaclasses)

Moreover, Python 3.X extends this model by also allowing simple functions in a class
to serve the role of static methods without extra protocol, when called through a class
object only. Despite its name, the bothmethods.py module illustrates all three method
types, so let’s expand on these in turn.

Instance methods are the normal and default case that we’ve seen in this book. An
instance method must always be called with an instance object. When you call it
through an instance, Python passes the instance to the first (leftmost) argument auto-
matically; when you call it through a class, you must pass along the instance manually:

>>> from bothmethods import Methods # Normal instance methods
>>> obj = Methods() # Callable through instance or class
>>> obj.imeth(1)
[<bothmethods.Methods object at 0x0000000002A15710>, 1]

Static and Class Methods | 1029

www.it-ebooks.info

>>> Methods.imeth(obj, 2)
[<bothmethods.Methods object at 0x0000000002A15710>, 2]

Static methods, by contrast, are called without an instance argument. Unlike simple
functions outside a class, their names are local to the scopes of the classes in which they
are defined, and they may be looked up by inheritance. Instance-less functions can be
called through a class normally in Python 3.X, but never by default in 2.X. Using the
staticmethod built-in allows such methods to also be called through an instance in 3.X
and through both a class and an instance in Python 2.X (that is, the first of the following
works in 3.X without staticmethod, but the second does not):

>>> Methods.smeth(3) # Static method: call through class
[3] # No instance passed or expected
>>> obj.smeth(4) # Static method: call through instance
[4] # Instance not passed

Class methods are similar, but Python automatically passes the class (not an instance)
in to a class method’s first (leftmost) argument, whether it is called through a class or
an instance:

>>> Methods.cmeth(5) # Class method: call through class
[<class 'bothmethods.Methods'>, 5] # Becomes cmeth(Methods, 5)
>>> obj.cmeth(6) # Class method: call through instance
[<class 'bothmethods.Methods'>, 6] # Becomes cmeth(Methods, 6)

In Chapter 40, we’ll also find that metaclass methods—a unique, advanced, and tech-
nically distinct method type—behave similarly to the explicitly-declared class methods
we’re exploring here.

Counting Instances with Static Methods
Now, given these built-ins, here is the static method equivalent of this section’s in-
stance-counting example—it marks the method as special, so it will never be passed
an instance automatically:

class Spam:
 numInstances = 0 # Use static method for class data
 def __init__(self):
 Spam.numInstances += 1
 def printNumInstances():
 print("Number of instances: %s" % Spam.numInstances)
 printNumInstances = staticmethod(printNumInstances)

Using the static method built-in, our code now allows the self-less method to be called
through the class or any instance of it, in both Python 2.X and 3.X:

>>> from spam_static import Spam
>>> a = Spam()
>>> b = Spam()
>>> c = Spam()
>>> Spam.printNumInstances() # Call as simple function
Number of instances: 3

1030 | Chapter 32:ಗAdvanced Class Topics

www.it-ebooks.info

>>> Methods.imeth(obj, 2)
[<bothmethods.Methods object at 0x0000000002A15710>, 2]

Static methods, by contrast, are called without an instance argument. Unlike simple
functions outside a class, their names are local to the scopes of the classes in which they
are defined, and they may be looked up by inheritance. Instance-less functions can be
called through a class normally in Python 3.X, but never by default in 2.X. Using the
staticmethod built-in allows such methods to also be called through an instance in 3.X
and through both a class and an instance in Python 2.X (that is, the first of the following
works in 3.X without staticmethod, but the second does not):

>>> Methods.smeth(3) # Static method: call through class
[3] # No instance passed or expected
>>> obj.smeth(4) # Static method: call through instance
[4] # Instance not passed

Class methods are similar, but Python automatically passes the class (not an instance)
in to a class method’s first (leftmost) argument, whether it is called through a class or
an instance:

>>> Methods.cmeth(5) # Class method: call through class
[<class 'bothmethods.Methods'>, 5] # Becomes cmeth(Methods, 5)
>>> obj.cmeth(6) # Class method: call through instance
[<class 'bothmethods.Methods'>, 6] # Becomes cmeth(Methods, 6)

In Chapter 40, we’ll also find that metaclass methods—a unique, advanced, and tech-
nically distinct method type—behave similarly to the explicitly-declared class methods
we’re exploring here.

Counting Instances with Static Methods
Now, given these built-ins, here is the static method equivalent of this section’s in-
stance-counting example—it marks the method as special, so it will never be passed
an instance automatically:

class Spam:
 numInstances = 0 # Use static method for class data
 def __init__(self):
 Spam.numInstances += 1
 def printNumInstances():
 print("Number of instances: %s" % Spam.numInstances)
 printNumInstances = staticmethod(printNumInstances)

Using the static method built-in, our code now allows the self-less method to be called
through the class or any instance of it, in both Python 2.X and 3.X:

>>> from spam_static import Spam
>>> a = Spam()
>>> b = Spam()
>>> c = Spam()
>>> Spam.printNumInstances() # Call as simple function
Number of instances: 3

1030 | Chapter 32:ಗAdvanced Class Topics

www.it-ebooks.info

88

Metodo statico che conta le istanze

Programmazione Avanzata a.a. 2024-25
A. De Bonis 89

>>> Methods.imeth(obj, 2)
[<bothmethods.Methods object at 0x0000000002A15710>, 2]

Static methods, by contrast, are called without an instance argument. Unlike simple
functions outside a class, their names are local to the scopes of the classes in which they
are defined, and they may be looked up by inheritance. Instance-less functions can be
called through a class normally in Python 3.X, but never by default in 2.X. Using the
staticmethod built-in allows such methods to also be called through an instance in 3.X
and through both a class and an instance in Python 2.X (that is, the first of the following
works in 3.X without staticmethod, but the second does not):

>>> Methods.smeth(3) # Static method: call through class
[3] # No instance passed or expected
>>> obj.smeth(4) # Static method: call through instance
[4] # Instance not passed

Class methods are similar, but Python automatically passes the class (not an instance)
in to a class method’s first (leftmost) argument, whether it is called through a class or
an instance:

>>> Methods.cmeth(5) # Class method: call through class
[<class 'bothmethods.Methods'>, 5] # Becomes cmeth(Methods, 5)
>>> obj.cmeth(6) # Class method: call through instance
[<class 'bothmethods.Methods'>, 6] # Becomes cmeth(Methods, 6)

In Chapter 40, we’ll also find that metaclass methods—a unique, advanced, and tech-
nically distinct method type—behave similarly to the explicitly-declared class methods
we’re exploring here.

Counting Instances with Static Methods
Now, given these built-ins, here is the static method equivalent of this section’s in-
stance-counting example—it marks the method as special, so it will never be passed
an instance automatically:

class Spam:
 numInstances = 0 # Use static method for class data
 def __init__(self):
 Spam.numInstances += 1
 def printNumInstances():
 print("Number of instances: %s" % Spam.numInstances)
 printNumInstances = staticmethod(printNumInstances)

Using the static method built-in, our code now allows the self-less method to be called
through the class or any instance of it, in both Python 2.X and 3.X:

>>> from spam_static import Spam
>>> a = Spam()
>>> b = Spam()
>>> c = Spam()
>>> Spam.printNumInstances() # Call as simple function
Number of instances: 3

1030 | Chapter 32:ಗAdvanced Class Topics

www.it-ebooks.info

>>> Methods.imeth(obj, 2)
[<bothmethods.Methods object at 0x0000000002A15710>, 2]

Static methods, by contrast, are called without an instance argument. Unlike simple
functions outside a class, their names are local to the scopes of the classes in which they
are defined, and they may be looked up by inheritance. Instance-less functions can be
called through a class normally in Python 3.X, but never by default in 2.X. Using the
staticmethod built-in allows such methods to also be called through an instance in 3.X
and through both a class and an instance in Python 2.X (that is, the first of the following
works in 3.X without staticmethod, but the second does not):

>>> Methods.smeth(3) # Static method: call through class
[3] # No instance passed or expected
>>> obj.smeth(4) # Static method: call through instance
[4] # Instance not passed

Class methods are similar, but Python automatically passes the class (not an instance)
in to a class method’s first (leftmost) argument, whether it is called through a class or
an instance:

>>> Methods.cmeth(5) # Class method: call through class
[<class 'bothmethods.Methods'>, 5] # Becomes cmeth(Methods, 5)
>>> obj.cmeth(6) # Class method: call through instance
[<class 'bothmethods.Methods'>, 6] # Becomes cmeth(Methods, 6)

In Chapter 40, we’ll also find that metaclass methods—a unique, advanced, and tech-
nically distinct method type—behave similarly to the explicitly-declared class methods
we’re exploring here.

Counting Instances with Static Methods
Now, given these built-ins, here is the static method equivalent of this section’s in-
stance-counting example—it marks the method as special, so it will never be passed
an instance automatically:

class Spam:
 numInstances = 0 # Use static method for class data
 def __init__(self):
 Spam.numInstances += 1
 def printNumInstances():
 print("Number of instances: %s" % Spam.numInstances)
 printNumInstances = staticmethod(printNumInstances)

Using the static method built-in, our code now allows the self-less method to be called
through the class or any instance of it, in both Python 2.X and 3.X:

>>> from spam_static import Spam
>>> a = Spam()
>>> b = Spam()
>>> c = Spam()
>>> Spam.printNumInstances() # Call as simple function
Number of instances: 3

1030 | Chapter 32:ಗAdvanced Class Topics

www.it-ebooks.info

>>> a.printNumInstances() # Instance argument not passed
Number of instances: 3

Compared to simply moving printNumInstances outside the class, as prescribed earlier,
this version requires an extra staticmethod call (or an @ line we’ll see ahead). However,
it also localizes the function name in the class scope (so it won’t clash with other names
in the module); moves the function code closer to where it is used (inside the class
statement); and allows subclasses to customize the static method with inheritance—a
more convenient and powerful approach than importing functions from the files in
which superclasses are coded. The following subclass and new testing session illustrate
(be sure to start a new session after changing files, so that your from imports load the
latest version of the file):

class Sub(Spam):
 def printNumInstances(): # Override a static method
 print("Extra stuff...") # But call back to original
 Spam.printNumInstances()
 printNumInstances = staticmethod(printNumInstances)

>>> from spam_static import Spam, Sub
>>> a = Sub()
>>> b = Sub()
>>> a.printNumInstances() # Call from subclass instance
Extra stuff...
Number of instances: 2
>>> Sub.printNumInstances() # Call from subclass itself
Extra stuff...
Number of instances: 2
>>> Spam.printNumInstances() # Call original version
Number of instances: 2

Moreover, classes can inherit the static method without redefining it—it is run without
an instance, regardless of where it is defined in a class tree:

>>> class Other(Spam): pass # Inherit static method verbatim

>>> c = Other()
>>> c.printNumInstances()
Number of instances: 3

Notice how this also bumps up the superclass’s instance counter, because its construc-
tor is inherited and run—a behavior that begins to encroach on the next section’s sub-
ject.

Counting Instances with Class Methods
Interestingly, a class method can do similar work here—the following has the same
behavior as the static method version listed earlier, but it uses a class method that
receives the instance’s class in its first argument. Rather than hardcoding the class
name, the class method uses the automatically passed class object generically:

Static and Class Methods | 1031

www.it-ebooks.info

spam_static.py

89

10/15/24

5

Metodo statico che conta le istanze

Programmazione Avanzata a.a. 2024-25
A. De Bonis 90

>>> a.printNumInstances() # Instance argument not passed
Number of instances: 3

Compared to simply moving printNumInstances outside the class, as prescribed earlier,
this version requires an extra staticmethod call (or an @ line we’ll see ahead). However,
it also localizes the function name in the class scope (so it won’t clash with other names
in the module); moves the function code closer to where it is used (inside the class
statement); and allows subclasses to customize the static method with inheritance—a
more convenient and powerful approach than importing functions from the files in
which superclasses are coded. The following subclass and new testing session illustrate
(be sure to start a new session after changing files, so that your from imports load the
latest version of the file):

class Sub(Spam):
 def printNumInstances(): # Override a static method
 print("Extra stuff...") # But call back to original
 Spam.printNumInstances()
 printNumInstances = staticmethod(printNumInstances)

>>> from spam_static import Spam, Sub
>>> a = Sub()
>>> b = Sub()
>>> a.printNumInstances() # Call from subclass instance
Extra stuff...
Number of instances: 2
>>> Sub.printNumInstances() # Call from subclass itself
Extra stuff...
Number of instances: 2
>>> Spam.printNumInstances() # Call original version
Number of instances: 2

Moreover, classes can inherit the static method without redefining it—it is run without
an instance, regardless of where it is defined in a class tree:

>>> class Other(Spam): pass # Inherit static method verbatim

>>> c = Other()
>>> c.printNumInstances()
Number of instances: 3

Notice how this also bumps up the superclass’s instance counter, because its construc-
tor is inherited and run—a behavior that begins to encroach on the next section’s sub-
ject.

Counting Instances with Class Methods
Interestingly, a class method can do similar work here—the following has the same
behavior as the static method version listed earlier, but it uses a class method that
receives the instance’s class in its first argument. Rather than hardcoding the class
name, the class method uses the automatically passed class object generically:

Static and Class Methods | 1031

www.it-ebooks.info

spam_static.py

>>> a.printNumInstances() # Instance argument not passed
Number of instances: 3

Compared to simply moving printNumInstances outside the class, as prescribed earlier,
this version requires an extra staticmethod call (or an @ line we’ll see ahead). However,
it also localizes the function name in the class scope (so it won’t clash with other names
in the module); moves the function code closer to where it is used (inside the class
statement); and allows subclasses to customize the static method with inheritance—a
more convenient and powerful approach than importing functions from the files in
which superclasses are coded. The following subclass and new testing session illustrate
(be sure to start a new session after changing files, so that your from imports load the
latest version of the file):

class Sub(Spam):
 def printNumInstances(): # Override a static method
 print("Extra stuff...") # But call back to original
 Spam.printNumInstances()
 printNumInstances = staticmethod(printNumInstances)

>>> from spam_static import Spam, Sub
>>> a = Sub()
>>> b = Sub()
>>> a.printNumInstances() # Call from subclass instance
Extra stuff...
Number of instances: 2
>>> Sub.printNumInstances() # Call from subclass itself
Extra stuff...
Number of instances: 2
>>> Spam.printNumInstances() # Call original version
Number of instances: 2

Moreover, classes can inherit the static method without redefining it—it is run without
an instance, regardless of where it is defined in a class tree:

>>> class Other(Spam): pass # Inherit static method verbatim

>>> c = Other()
>>> c.printNumInstances()
Number of instances: 3

Notice how this also bumps up the superclass’s instance counter, because its construc-
tor is inherited and run—a behavior that begins to encroach on the next section’s sub-
ject.

Counting Instances with Class Methods
Interestingly, a class method can do similar work here—the following has the same
behavior as the static method version listed earlier, but it uses a class method that
receives the instance’s class in its first argument. Rather than hardcoding the class
name, the class method uses the automatically passed class object generically:

Static and Class Methods | 1031

www.it-ebooks.info

90

Metodo di classe che conta le istanze

Programmazione Avanzata a.a. 2024-25
A. De Bonis 91

class Spam:
 numInstances = 0 # Use class method instead of static
 def __init__(self):
 Spam.numInstances += 1
 def printNumInstances(cls):
 print("Number of instances: %s" % cls.numInstances)
 printNumInstances = classmethod(printNumInstances)

This class is used in the same way as the prior versions, but its printNumInstances
method receives the Spam class, not the instance, when called from both the class and
an instance:

>>> from spam_class import Spam
>>> a, b = Spam(), Spam()
>>> a.printNumInstances() # Passes class to first argument
Number of instances: 2
>>> Spam.printNumInstances() # Also passes class to first argument
Number of instances: 2

When using class methods, though, keep in mind that they receive the most specific
(i.e., lowest) class of the call’s subject. This has some subtle implications when trying
to update class data through the passed-in class. For example, if in module
spam_class.py we subclass to customize as before, augment Spam.printNumInstances to
also display its cls argument, and start a new testing session:

class Spam:
 numInstances = 0 # Trace class passed in
 def __init__(self):
 Spam.numInstances += 1
 def printNumInstances(cls):
 print("Number of instances: %s %s" % (cls.numInstances, cls))
 printNumInstances = classmethod(printNumInstances)

class Sub(Spam):
 def printNumInstances(cls): # Override a class method
 print("Extra stuff...", cls) # But call back to original
 Spam.printNumInstances()
 printNumInstances = classmethod(printNumInstances)

class Other(Spam): pass # Inherit class method verbatim

The lowest class is passed in whenever a class method is run, even for subclasses that
have no class methods of their own:

>>> from spam_class import Spam, Sub, Other
>>> x = Sub()
>>> y = Spam()
>>> x.printNumInstances() # Call from subclass instance
Extra stuff... <class 'spam_class.Sub'>
Number of instances: 2 <class 'spam_class.Spam'>
>>> Sub.printNumInstances() # Call from subclass itself
Extra stuff... <class 'spam_class.Sub'>
Number of instances: 2 <class 'spam_class.Spam'>
>>> y.printNumInstances() # Call from superclass instance
Number of instances: 2 <class 'spam_class.Spam'>

1032 | Chapter 32:ಗAdvanced Class Topics

www.it-ebooks.info

class Spam:
 numInstances = 0 # Use class method instead of static
 def __init__(self):
 Spam.numInstances += 1
 def printNumInstances(cls):
 print("Number of instances: %s" % cls.numInstances)
 printNumInstances = classmethod(printNumInstances)

This class is used in the same way as the prior versions, but its printNumInstances
method receives the Spam class, not the instance, when called from both the class and
an instance:

>>> from spam_class import Spam
>>> a, b = Spam(), Spam()
>>> a.printNumInstances() # Passes class to first argument
Number of instances: 2
>>> Spam.printNumInstances() # Also passes class to first argument
Number of instances: 2

When using class methods, though, keep in mind that they receive the most specific
(i.e., lowest) class of the call’s subject. This has some subtle implications when trying
to update class data through the passed-in class. For example, if in module
spam_class.py we subclass to customize as before, augment Spam.printNumInstances to
also display its cls argument, and start a new testing session:

class Spam:
 numInstances = 0 # Trace class passed in
 def __init__(self):
 Spam.numInstances += 1
 def printNumInstances(cls):
 print("Number of instances: %s %s" % (cls.numInstances, cls))
 printNumInstances = classmethod(printNumInstances)

class Sub(Spam):
 def printNumInstances(cls): # Override a class method
 print("Extra stuff...", cls) # But call back to original
 Spam.printNumInstances()
 printNumInstances = classmethod(printNumInstances)

class Other(Spam): pass # Inherit class method verbatim

The lowest class is passed in whenever a class method is run, even for subclasses that
have no class methods of their own:

>>> from spam_class import Spam, Sub, Other
>>> x = Sub()
>>> y = Spam()
>>> x.printNumInstances() # Call from subclass instance
Extra stuff... <class 'spam_class.Sub'>
Number of instances: 2 <class 'spam_class.Spam'>
>>> Sub.printNumInstances() # Call from subclass itself
Extra stuff... <class 'spam_class.Sub'>
Number of instances: 2 <class 'spam_class.Spam'>
>>> y.printNumInstances() # Call from superclass instance
Number of instances: 2 <class 'spam_class.Spam'>

1032 | Chapter 32:ಗAdvanced Class Topics

www.it-ebooks.info

spam_class.py

91

10/15/24

6

Metodo di classe che conta le istanze

Programmazione Avanzata a.a. 2024-25
A. De Bonis 92

class Spam:
 numInstances = 0 # Use class method instead of static
 def __init__(self):
 Spam.numInstances += 1
 def printNumInstances(cls):
 print("Number of instances: %s" % cls.numInstances)
 printNumInstances = classmethod(printNumInstances)

This class is used in the same way as the prior versions, but its printNumInstances
method receives the Spam class, not the instance, when called from both the class and
an instance:

>>> from spam_class import Spam
>>> a, b = Spam(), Spam()
>>> a.printNumInstances() # Passes class to first argument
Number of instances: 2
>>> Spam.printNumInstances() # Also passes class to first argument
Number of instances: 2

When using class methods, though, keep in mind that they receive the most specific
(i.e., lowest) class of the call’s subject. This has some subtle implications when trying
to update class data through the passed-in class. For example, if in module
spam_class.py we subclass to customize as before, augment Spam.printNumInstances to
also display its cls argument, and start a new testing session:

class Spam:
 numInstances = 0 # Trace class passed in
 def __init__(self):
 Spam.numInstances += 1
 def printNumInstances(cls):
 print("Number of instances: %s %s" % (cls.numInstances, cls))
 printNumInstances = classmethod(printNumInstances)

class Sub(Spam):
 def printNumInstances(cls): # Override a class method
 print("Extra stuff...", cls) # But call back to original
 Spam.printNumInstances()
 printNumInstances = classmethod(printNumInstances)

class Other(Spam): pass # Inherit class method verbatim

The lowest class is passed in whenever a class method is run, even for subclasses that
have no class methods of their own:

>>> from spam_class import Spam, Sub, Other
>>> x = Sub()
>>> y = Spam()
>>> x.printNumInstances() # Call from subclass instance
Extra stuff... <class 'spam_class.Sub'>
Number of instances: 2 <class 'spam_class.Spam'>
>>> Sub.printNumInstances() # Call from subclass itself
Extra stuff... <class 'spam_class.Sub'>
Number of instances: 2 <class 'spam_class.Spam'>
>>> y.printNumInstances() # Call from superclass instance
Number of instances: 2 <class 'spam_class.Spam'>

1032 | Chapter 32:ಗAdvanced Class Topics

www.it-ebooks.info

Attenzione: Quando si usano i metodi di classe essi
ricevono la classe più in basso dell’oggetto attraverso il
quale viene invocato il metodo

92

Metodo di classe che conta le istanze

Programmazione Avanzata a.a. 2024-25
A. De Bonis 93

spam_class.py

class Spam:
 numInstances = 0 # Use class method instead of static
 def __init__(self):
 Spam.numInstances += 1
 def printNumInstances(cls):
 print("Number of instances: %s" % cls.numInstances)
 printNumInstances = classmethod(printNumInstances)

This class is used in the same way as the prior versions, but its printNumInstances
method receives the Spam class, not the instance, when called from both the class and
an instance:

>>> from spam_class import Spam
>>> a, b = Spam(), Spam()
>>> a.printNumInstances() # Passes class to first argument
Number of instances: 2
>>> Spam.printNumInstances() # Also passes class to first argument
Number of instances: 2

When using class methods, though, keep in mind that they receive the most specific
(i.e., lowest) class of the call’s subject. This has some subtle implications when trying
to update class data through the passed-in class. For example, if in module
spam_class.py we subclass to customize as before, augment Spam.printNumInstances to
also display its cls argument, and start a new testing session:

class Spam:
 numInstances = 0 # Trace class passed in
 def __init__(self):
 Spam.numInstances += 1
 def printNumInstances(cls):
 print("Number of instances: %s %s" % (cls.numInstances, cls))
 printNumInstances = classmethod(printNumInstances)

class Sub(Spam):
 def printNumInstances(cls): # Override a class method
 print("Extra stuff...", cls) # But call back to original
 Spam.printNumInstances()
 printNumInstances = classmethod(printNumInstances)

class Other(Spam): pass # Inherit class method verbatim

The lowest class is passed in whenever a class method is run, even for subclasses that
have no class methods of their own:

>>> from spam_class import Spam, Sub, Other
>>> x = Sub()
>>> y = Spam()
>>> x.printNumInstances() # Call from subclass instance
Extra stuff... <class 'spam_class.Sub'>
Number of instances: 2 <class 'spam_class.Spam'>
>>> Sub.printNumInstances() # Call from subclass itself
Extra stuff... <class 'spam_class.Sub'>
Number of instances: 2 <class 'spam_class.Spam'>
>>> y.printNumInstances() # Call from superclass instance
Number of instances: 2 <class 'spam_class.Spam'>

1032 | Chapter 32:ಗAdvanced Class Topics

www.it-ebooks.info

93

10/15/24

7

Metodo di classe che conta le istanze

Programmazione Avanzata a.a. 2024-25
A. De Bonis 94

class Spam:
 numInstances = 0 # Use class method instead of static
 def __init__(self):
 Spam.numInstances += 1
 def printNumInstances(cls):
 print("Number of instances: %s" % cls.numInstances)
 printNumInstances = classmethod(printNumInstances)

This class is used in the same way as the prior versions, but its printNumInstances
method receives the Spam class, not the instance, when called from both the class and
an instance:

>>> from spam_class import Spam
>>> a, b = Spam(), Spam()
>>> a.printNumInstances() # Passes class to first argument
Number of instances: 2
>>> Spam.printNumInstances() # Also passes class to first argument
Number of instances: 2

When using class methods, though, keep in mind that they receive the most specific
(i.e., lowest) class of the call’s subject. This has some subtle implications when trying
to update class data through the passed-in class. For example, if in module
spam_class.py we subclass to customize as before, augment Spam.printNumInstances to
also display its cls argument, and start a new testing session:

class Spam:
 numInstances = 0 # Trace class passed in
 def __init__(self):
 Spam.numInstances += 1
 def printNumInstances(cls):
 print("Number of instances: %s %s" % (cls.numInstances, cls))
 printNumInstances = classmethod(printNumInstances)

class Sub(Spam):
 def printNumInstances(cls): # Override a class method
 print("Extra stuff...", cls) # But call back to original
 Spam.printNumInstances()
 printNumInstances = classmethod(printNumInstances)

class Other(Spam): pass # Inherit class method verbatim

The lowest class is passed in whenever a class method is run, even for subclasses that
have no class methods of their own:

>>> from spam_class import Spam, Sub, Other
>>> x = Sub()
>>> y = Spam()
>>> x.printNumInstances() # Call from subclass instance
Extra stuff... <class 'spam_class.Sub'>
Number of instances: 2 <class 'spam_class.Spam'>
>>> Sub.printNumInstances() # Call from subclass itself
Extra stuff... <class 'spam_class.Sub'>
Number of instances: 2 <class 'spam_class.Spam'>
>>> y.printNumInstances() # Call from superclass instance
Number of instances: 2 <class 'spam_class.Spam'>

1032 | Chapter 32:ಗAdvanced Class Topics

www.it-ebooks.info

In the first call here, a class method call is made through an instance of the Sub subclass,
and Python passes the lowest class, Sub, to the class method. All is well in this case—
since Sub’s redefinition of the method calls the Spam superclass’s version explicitly, the
superclass method in Spam receives its own class in its first argument. But watch what
happens for an object that inherits the class method verbatim:

>>> z = Other() # Call from lower sub's instance
>>> z.printNumInstances()
Number of instances: 3 <class 'spam_class.Other'>

This last call here passes Other to Spam’s class method. This works in this example
because fetching the counter finds it in Spam by inheritance. If this method tried to
assign to the passed class’s data, though, it would update Other, not Spam! In this specific
case, Spam is probably better off hardcoding its own class name to update its data if it
means to count instances of all its subclasses too, rather than relying on the passed-in
class argument.

Counting instances per class with class methods
In fact, because class methods always receive the lowest class in an instance’s tree:

• Static methods and explicit class names may be a better solution for processing
data local to a class.

• Class methods may be better suited to processing data that may differ for each class
in a hierarchy.

Code that needs to manage per-class instance counters, for example, might be best off
leveraging class methods. In the following, the top-level superclass uses a class method
to manage state information that varies for and is stored on each class in the tree—
similar in spirit to the way instance methods manage state information that varies per
class instance:

class Spam:
 numInstances = 0
 def count(cls): # Per-class instance counters
 cls.numInstances += 1 # cls is lowest class above instance
 def __init__(self):
 self.count() # Passes self.__class__ to count
 count = classmethod(count)

class Sub(Spam):
 numInstances = 0
 def __init__(self): # Redefines __init__
 Spam.__init__(self)

class Other(Spam): # Inherits __init__
 numInstances = 0

>>> from spam_class2 import Spam, Sub, Other
>>> x = Spam()
>>> y1, y2 = Sub(), Sub()

Static and Class Methods | 1033

www.it-ebooks.info

94

Metodo di classe invocato attraverso le
sottoclassi

Programmazione Avanzata a.a. 2024-25
A. De Bonis 95

le sottoclassi hanno la propria variabile numInstances

In the first call here, a class method call is made through an instance of the Sub subclass,
and Python passes the lowest class, Sub, to the class method. All is well in this case—
since Sub’s redefinition of the method calls the Spam superclass’s version explicitly, the
superclass method in Spam receives its own class in its first argument. But watch what
happens for an object that inherits the class method verbatim:

>>> z = Other() # Call from lower sub's instance
>>> z.printNumInstances()
Number of instances: 3 <class 'spam_class.Other'>

This last call here passes Other to Spam’s class method. This works in this example
because fetching the counter finds it in Spam by inheritance. If this method tried to
assign to the passed class’s data, though, it would update Other, not Spam! In this specific
case, Spam is probably better off hardcoding its own class name to update its data if it
means to count instances of all its subclasses too, rather than relying on the passed-in
class argument.

Counting instances per class with class methods
In fact, because class methods always receive the lowest class in an instance’s tree:

• Static methods and explicit class names may be a better solution for processing
data local to a class.

• Class methods may be better suited to processing data that may differ for each class
in a hierarchy.

Code that needs to manage per-class instance counters, for example, might be best off
leveraging class methods. In the following, the top-level superclass uses a class method
to manage state information that varies for and is stored on each class in the tree—
similar in spirit to the way instance methods manage state information that varies per
class instance:

class Spam:
 numInstances = 0
 def count(cls): # Per-class instance counters
 cls.numInstances += 1 # cls is lowest class above instance
 def __init__(self):
 self.count() # Passes self.__class__ to count
 count = classmethod(count)

class Sub(Spam):
 numInstances = 0
 def __init__(self): # Redefines __init__
 Spam.__init__(self)

class Other(Spam): # Inherits __init__
 numInstances = 0

>>> from spam_class2 import Spam, Sub, Other
>>> x = Spam()
>>> y1, y2 = Sub(), Sub()

Static and Class Methods | 1033

www.it-ebooks.info

spam_class2.py

95

10/15/24

8

Metodo di classe invocato attraverso
le sottoclassi

Programmazione Avanzata a.a. 2024-25
A. De Bonis 96

In the first call here, a class method call is made through an instance of the Sub subclass,
and Python passes the lowest class, Sub, to the class method. All is well in this case—
since Sub’s redefinition of the method calls the Spam superclass’s version explicitly, the
superclass method in Spam receives its own class in its first argument. But watch what
happens for an object that inherits the class method verbatim:

>>> z = Other() # Call from lower sub's instance
>>> z.printNumInstances()
Number of instances: 3 <class 'spam_class.Other'>

This last call here passes Other to Spam’s class method. This works in this example
because fetching the counter finds it in Spam by inheritance. If this method tried to
assign to the passed class’s data, though, it would update Other, not Spam! In this specific
case, Spam is probably better off hardcoding its own class name to update its data if it
means to count instances of all its subclasses too, rather than relying on the passed-in
class argument.

Counting instances per class with class methods
In fact, because class methods always receive the lowest class in an instance’s tree:

• Static methods and explicit class names may be a better solution for processing
data local to a class.

• Class methods may be better suited to processing data that may differ for each class
in a hierarchy.

Code that needs to manage per-class instance counters, for example, might be best off
leveraging class methods. In the following, the top-level superclass uses a class method
to manage state information that varies for and is stored on each class in the tree—
similar in spirit to the way instance methods manage state information that varies per
class instance:

class Spam:
 numInstances = 0
 def count(cls): # Per-class instance counters
 cls.numInstances += 1 # cls is lowest class above instance
 def __init__(self):
 self.count() # Passes self.__class__ to count
 count = classmethod(count)

class Sub(Spam):
 numInstances = 0
 def __init__(self): # Redefines __init__
 Spam.__init__(self)

class Other(Spam): # Inherits __init__
 numInstances = 0

>>> from spam_class2 import Spam, Sub, Other
>>> x = Spam()
>>> y1, y2 = Sub(), Sub()

Static and Class Methods | 1033

www.it-ebooks.info

>>> z1, z2, z3 = Other(), Other(), Other()
>>> x.numInstances, y1.numInstances, z1.numInstances # Per-class data!
(1, 2, 3)
>>> Spam.numInstances, Sub.numInstances, Other.numInstances
(1, 2, 3)

Static and class methods have additional advanced roles, which we will finesse here;
see other resources for more use cases. In recent Python versions, though, the static
and class method designations have become even simpler with the advent of function
decoration syntax—a way to apply one function to another that has roles well beyond
the static method use case that was its initial motivation. This syntax also allows us to
augment classes in Python 2.X and 3.X—to initialize data like the numInstances counter
in the last example, for instance. The next section explains how.

For a postscript on Python’s method types, be sure to watch for coverage
of metaclass methods in Chapter 40—because these are designed to pro-
cess a class that is an instance of a metaclass, they turn out to be very
similar to the class methods defined here, but require no classmethod
declaration, and apply only to the shadowy metaclass realm.

Decorators and Metaclasses: Part 1
Because the staticmethod and classmethod call technique described in the prior section
initially seemed obscure to some observers, a device was eventually added to make the
operation simpler. Python decorators—similar to the notion and syntax of annotations
in Java—both addressed this specific need and provided a general tool for adding logic
that manages both functions and classes, or later calls to them.

This is called a “decoration,” but in more concrete terms is really just a way to run extra
processing steps at function and class definition time with explicit syntax. It comes in
two flavors:

• Function decorators—the initial entry in this set, added in Python 2.4—augment
function definitions. They specify special operation modes for both simple func-
tions and classes’ methods by wrapping them in an extra layer of logic implemented
as another function, usually called a metafunction.

• Class decorators—a later extension, added in Python 2.6 and 3.0—augment class
definitions. They do the same for classes, adding support for management of whole
objects and their interfaces. Though perhaps simpler, they often overlap in roles
with metaclasses.

Function decorators turn out to be very general tools: they are useful for adding many
types of logic to functions besides the static and class method use cases. For instance,
they may be used to augment functions with code that logs calls made to them, checks
the types of passed arguments during debugging, and so on. Function decorators can
be used to manage either functions themselves or later calls to them. In the latter mode,

1034 | Chapter 32:ಗAdvanced Class Topics

www.it-ebooks.info

96

Alternativa per definire metodi statici e
metodi di classe

• I metodi statici e i metodi di classe possono
essere definiti usando i seguenti decoratori
– @staticmethod
– @classmethod

Programmazione Avanzata a.a. 2024-25
A. De Bonis 97

class Spam:
 numInstances = 0
 def __init__(self):
 Spam.numInstances = Spam.numInstances + 1

 @staticmethod
 def printNumInstances():
 print("Number of instances created: %s" % Spam.numInstances)

>>> from spam_static_deco import Spam
>>> a = Spam()
>>> b = Spam()
>>> c = Spam()
>>> Spam.printNumInstances() # Calls from classes and instances work
Number of instances created: 3
>>> a.printNumInstances()
Number of instances created: 3

Because they also accept and return functions, the classmethod and property built-in
functions may be used as decorators in the same way—as in the following mutation of
the prior bothmethods.py:

File bothmethods_decorators.py

class Methods(object): # object needed in 2.X for property setters
 def imeth(self, x): # Normal instance method: passed a self
 print([self, x])

 @staticmethod
 def smeth(x): # Static: no instance passed
 print([x])

 @classmethod
 def cmeth(cls, x): # Class: gets class, not instance
 print([cls, x])

 @property # Property: computed on fetch
 def name(self):
 return 'Bob ' + self.__class__.__name__

>>> from bothmethods_decorators import Methods
>>> obj = Methods()
>>> obj.imeth(1)
[<bothmethods_decorators.Methods object at 0x0000000002A256A0>, 1]
>>> obj.smeth(2)
[2]
>>> obj.cmeth(3)
[<class 'bothmethods_decorators.Methods'>, 3]
>>> obj.name
'Bob Methods'

Keep in mind that staticmethod and its kin here are still built-in functions; they may
be used in decoration syntax, just because they take a function as an argument and
return a callable to which the original function name can be rebound. In fact, any such

1036 | Chapter 32:ಗAdvanced Class Topics

www.it-ebooks.info

97

10/15/24

9

Cenni sui decoratori di funzioni
• Specificano comportamenti speciali per le funzioni e i metodi

delle classi.
• Creano intorno alla funzione un livello extra di logica

implementato da un’altra funzione chiamata metafunzione
(funzione che gestisce un’altra funzione)

• Da un punto di vista sintattico, un decoratore di funzione è
una sorta di dichiarazione riguardante la funzione che viene
avviene durante l’esecuzione del programma. Un decoratore è
specificato su una linea che precede lo statement def e
consiste del simbolo @ seguito da una metafunzione

• Il decoratore di funzione può restituire la funzione originale
così come è oppure restituire un nuovo oggetto che fa in
modo che la funzione originale venga invocata indirettamente
dopo aver eseguito il codice della metafunzione

Programmazione Avanzata a.a. 2024-25
A. De Bonis 98

98

Cenni sui decoratori di funzioni

Programmazione Avanzata a.a. 2024-25
A. De Bonis 99

function decorators are similar to the delegation design pattern we explored in Chap-
ter 31, but they are designed to augment a specific function or method call, not an entire
object interface.

Python provides a few built-in function decorators for operations such as marking static
and class methods and defining properties (as sketched earlier, the property built-in
works as a decorator automatically), but programmers can also code arbitrary decora-
tors of their own. Although they are not strictly tied to classes, user-defined function
decorators often are coded as classes to save the original functions for later dispatch,
along with other data as state information.

This proved such a useful hook that it was extended in Python 2.6, 2.7, and 3.X—class
decorators bring augmentation to classes too, and are more directly tied to the class
model. Like their function cohorts, class decorators may manage classes themselves or
later instance creation calls, and often employ delegation in the latter mode. As we’ll
find, their roles also often overlap with metaclasses; when they do, the newer class
decorators may offer a more lightweight way to achieve the same goals.

Function Decorator Basics
Syntactically, a function decorator is a sort of runtime declaration about the function
that follows. A function decorator is coded on a line by itself just before the def state-
ment that defines a function or method. It consists of the @ symbol, followed by what
we call a metafunction—a function (or other callable object) that manages another
function. Static methods since Python 2.4, for example, may be coded with decorator
syntax like this:

class C:
 @staticmethod # Function decoration syntax
 def meth():
 ...

Internally, this syntax has the same effect as the following—passing the function
through the decorator and assigning the result back to the original name:

class C:
 def meth():
 ...
 meth = staticmethod(meth) # Name rebinding equivalent

Decoration rebinds the method name to the decorator’s result. The net effect is that
calling the method function’s name later actually triggers the result of its staticme
thod decorator first. Because a decorator can return any sort of object, this allows the
decorator to insert a layer of logic to be run on every call. The decorator function is free
to return either the original function itself, or a new proxy object that saves the original
function passed to the decorator to be invoked indirectly after the extra logic layer runs.

With this addition, here’s a better way to code our static method example from the
prior section in either Python 2.X or 3.X:

Decorators and Metaclasses: Part 1 | 1035

www.it-ebooks.info

è equivalente a

function decorators are similar to the delegation design pattern we explored in Chap-
ter 31, but they are designed to augment a specific function or method call, not an entire
object interface.

Python provides a few built-in function decorators for operations such as marking static
and class methods and defining properties (as sketched earlier, the property built-in
works as a decorator automatically), but programmers can also code arbitrary decora-
tors of their own. Although they are not strictly tied to classes, user-defined function
decorators often are coded as classes to save the original functions for later dispatch,
along with other data as state information.

This proved such a useful hook that it was extended in Python 2.6, 2.7, and 3.X—class
decorators bring augmentation to classes too, and are more directly tied to the class
model. Like their function cohorts, class decorators may manage classes themselves or
later instance creation calls, and often employ delegation in the latter mode. As we’ll
find, their roles also often overlap with metaclasses; when they do, the newer class
decorators may offer a more lightweight way to achieve the same goals.

Function Decorator Basics
Syntactically, a function decorator is a sort of runtime declaration about the function
that follows. A function decorator is coded on a line by itself just before the def state-
ment that defines a function or method. It consists of the @ symbol, followed by what
we call a metafunction—a function (or other callable object) that manages another
function. Static methods since Python 2.4, for example, may be coded with decorator
syntax like this:

class C:
 @staticmethod # Function decoration syntax
 def meth():
 ...

Internally, this syntax has the same effect as the following—passing the function
through the decorator and assigning the result back to the original name:

class C:
 def meth():
 ...
 meth = staticmethod(meth) # Name rebinding equivalent

Decoration rebinds the method name to the decorator’s result. The net effect is that
calling the method function’s name later actually triggers the result of its staticme
thod decorator first. Because a decorator can return any sort of object, this allows the
decorator to insert a layer of logic to be run on every call. The decorator function is free
to return either the original function itself, or a new proxy object that saves the original
function passed to the decorator to be invoked indirectly after the extra logic layer runs.

With this addition, here’s a better way to code our static method example from the
prior section in either Python 2.X or 3.X:

Decorators and Metaclasses: Part 1 | 1035

www.it-ebooks.info

99

10/15/24

10

__slots__
• In Python ogni istanza di una classe ha un dizionario

(__dict__) che memorizza gli attributi
• Considerando MyClass ed una sua istanza var_c,

provate ad eseguire
– print(MyClass.__dict__)
– print(var_c.__dict__)

• Spreco di spazio se la classe ha pochi attributi
– Problema aggravato se si creano tante istanze della classe

• Si può sovrascrivere il comportamento di default
definendo __slots__ quando si definisce una classe

Programmazione Avanzata a.a. 2024-25
A. De Bonis 100

100

__slots__
• A __slots__ si assegna una sequenza di variabili

di istanza ed è riservato, in ogni istanza della
classe, solo lo spazio sufficiente a memorizzare
un valore per ogni variabile
– __dict__ non sarà più creato
– non sono più possibili assegnamenti dinamici
• superabile con __slots__ = . . . , '__dict__'

Programmazione Avanzata a.a. 2024-25
A. De Bonis 101

101

10/15/24

11

__slots__
>>> class MyNewClass:
... __slots__='L'
... def __init__(self,*args):
... self.L=args
...
>>> var_cn=MyNewClass(1,2,3)
>>> var_cn.L
(1, 2, 3)
>>> var_cn.L=[4,5]
>>> var_cn.L
[4, 5]

Programmazione Avanzata a.a. 2024-25
A. De Bonis 102

>>> var_cn.X=3
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'MyNewClass' object has no
attribute 'X'
>>> var_cn.__slots__
'L'
>>> var_cn.__dict__
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'MyNewClass' object has no
attribute '__dict__'
>>> MyNewClass.__slots__
'L'continua nel riquadro a

destra

102

Riferimenti
• The Python Tutorial

https://docs.python.org/3/tutorial/
• M.T. Goodrich, R. Tamassia, M.H. Goldwasser

Data Structures and Algorithms in Python
Capitolo 2, Object-Oriented Programming

• Studiare anche le sezioni
– 2.3.3 Multidimensional Vector Class
– 2.3.5 Range Class
– 2.4.2 Hierarchy of Numeric Progressions

Programmazione Avanzata a.a. 2024-25
A. De Bonis 103

103

