
30/10/23

1

Programmazione Avanzata
Design Pa*ern: Chain of Responsability

Programmazione Avanzata a.a. 2023-24
A. De Bonis

1

Il Pa1ern Chain of Responsibility

Programmazione Avanzata a.a. 2023-24
A. De Bonis

• Il Pa&ern Chain of Responsibility è un design pa&ern comportamentale ed è
u;lizzato per separare il codice che effe&ua una richiesta da quello che elabora
la richiesta.

• Invece di avere una funzione che invoca dire&amente un’altra funzione, la
prima funzione invia la richiesta ad una catena di des;natari.
• Il primo des;natario può o elaborare la richiesta o passare la richiesta al

prossimo des;natario nella catena; il secondo des;natario si comporta allo
stesso modo del primo e così via fino a che non viene raggiunto l’ul;mo
des;natario che può decidere se scartare la richiesta o lanciare
un’eccezione.

2

30/10/23

2

Il Pa1ern Chain of Responsibility: esempio

Programmazione Avanzata a.a. 2023-24
A. De Bonis

ptg11539634

74 Chapter 3. Behavioral Design Patterns in Python

The behavioral patternsare concernedwith how things get done; that is,with al-
gorithmsand object interactions. They provide powerfulways of thinking about
and organizing computations,and like a few of the patterns seen in the previous
two chapters, some of them are supported directly by built-in Python syntax.

The Perl programming language’s well-known motto is, “there’s more than one
way to do it”; whereas in Tim Peters’ Zen of Python, “there should be one—and
preferably only one—obvious way to do it”.! Yet, like any programming lan-
guage, there are sometimes two or more ways to do things in Python, especially
since the introduction of comprehensions (use a comprehension or a for loop)
and generators (use a generator expression or a function with a yield state-
ment). And as we will see in this chapter, Python’s support for coroutines adds a
new way to do certain things.

3.1. Chain of Responsibility Pattern

The Chain of Responsibility Pattern is designed to decouple the sender of a
request from the recipient that processes the request. So, instead of one
function directly calling another, the first function sends a request to a chain of
receivers. The first receiver in the chain either can handle the request and stop
the chain (by not passing the request on) or can pass on the request to the next
receiver in the chain. The second receiver has the same choices, and so on, until
the last one is reached (which could choose to throw the request away or to raise
an exception).

Let’s imagine that we have a user interface that receives events to be handled.
Some of the events come from the user (e.g., mouse and key events), and some
come from the system (e.g., timer events). In the following two subsections we
will look at a conventional approach to creating an event-handling chain, and
then at a pipeline-based approach using coroutines.

3.1.1. A Conventional Chain

In this subsection we will review a conventional event-handling chain where
each event has a corresponding event-handling class.

handler1 = TimerHandler(KeyHandler(MouseHandler(NullHandler())))

Here is how the chain might be set up using four separate handler classes. The
chain is illustrated in Figure 3.1. Since we throw away unhandled events, we
could have just passed None—or nothing—as the MouseHandler’s argument.

!To see the Zen of Python, enter import this at an interactive Python prompt.

www.it-ebooks.info

ptg11539634

3.1. Chain of Responsibility Pattern 75

TimerHandler KeyHandler MouseHandler NullHandler
event

handle

pass on

handle

pass on

handle

pass on

discard

Figure 3.1 An event-handling chain

The order in which we create the handlers should not matter since each one
handles events only of the type it is designed for.

while True:
 event = Event.next()

if event.kind == Event.TERMINATE:

break
 handler1.handle(event)

Events are normally handled in a loop. Here, we exit the loop and terminate
the application if there is a TERMINATE event; otherwise, we pass the event to the
event-handling chain.

handler2 = DebugHandler(handler1)

Here we have created a new handler (although we could just as easily have
assigned back to handler1). This handler must be first in the chain, since it is
used to eavesdrop on the events passing into the chain and to report them, but
not to handle them (so it passes on every event it receives).

We can now call handler2.handle(event) in our loop,and in addition to the normal
event handlers we will now have some debugging output to see the events that
are received.

class NullHandler:

def __init__(self, successor=None):
 self.__successor = successor

def handle(self, event):

if self.__successor is not None:
 self.__successor.handle(event)

This class serves as the base class for our event handlers and provides the in-
frastructure for handling events. If an instance is createdwith a successor han-
dler, then when this instance is given an event, it simply passes the event down
the chain to the successor. However, if there is no successor, we have decided to
simply discard the event. This is the standard approach in GUI (graphical user
interface) programming, although we could easily log or raise an exception for
unhandled events (e.g., if our program was a server).

www.it-ebooks.info

• Immaginiamo di avere un’interfaccia utente che riceve un evento da ges4re. Alcuni even4 provengono
dall’utente, altri dal sistema (ad esempio even4 temporizza4).

• A ciascun evento corrisponde una classe per la sua ges4one

• La seguente linea di codice mostra come creare una catena di 4 gestori (ciascun gestore è un’istanza di
una diversa classe) per ges4re even4.
• Siccome gli even4 non ges44 vengono scarta4, l’argomento di MouseHandler avrebbe potuto

essere None (o non esserci).
• L’ordine in cui inseriamo i gestori nella catena non dovrebbe essere rilevante perche’ ogni gestore

deve ges4re solo l’evento per cui è stato disegnato.

3

Il Pa1ern Chain of Responsibility: esempio

Programmazione Avanzata a.a. 2023-24
A. De Bonis

ptg11539634

3.1. Chain of Responsibility Pattern 75

TimerHandler KeyHandler MouseHandler NullHandler
event

handle

pass on

handle

pass on

handle

pass on

discard

Figure 3.1 An event-handling chain

The order in which we create the handlers should not matter since each one
handles events only of the type it is designed for.

while True:
 event = Event.next()

if event.kind == Event.TERMINATE:

break
 handler1.handle(event)

Events are normally handled in a loop. Here, we exit the loop and terminate
the application if there is a TERMINATE event; otherwise, we pass the event to the
event-handling chain.

handler2 = DebugHandler(handler1)

Here we have created a new handler (although we could just as easily have
assigned back to handler1). This handler must be first in the chain, since it is
used to eavesdrop on the events passing into the chain and to report them, but
not to handle them (so it passes on every event it receives).

We can now call handler2.handle(event) in our loop,and in addition to the normal
event handlers we will now have some debugging output to see the events that
are received.

class NullHandler:

def __init__(self, successor=None):
 self.__successor = successor

def handle(self, event):

if self.__successor is not None:
 self.__successor.handle(event)

This class serves as the base class for our event handlers and provides the in-
frastructure for handling events. If an instance is createdwith a successor han-
dler, then when this instance is given an event, it simply passes the event down
the chain to the successor. However, if there is no successor, we have decided to
simply discard the event. This is the standard approach in GUI (graphical user
interface) programming, although we could easily log or raise an exception for
unhandled events (e.g., if our program was a server).

www.it-ebooks.info

• Gli eventi sono normalmente gestiti in un loop.
• Nel codice seguente si esce dal loop e si termina l’applicazione se c’è un evento

TERMINATE; altrimenti si passa l’evento alla catena che gestisce gli eventi.

• Nel seguente codice si crea un nuovo gestore di even4.
• DebugHandler deve essere il primo gestore della catena in quanto è usato per spiare

e riportare gli even4 passa4 alla catena, non per ges4rli.
• In alterna4va, si può invocare handler2.handle(event) nel loop in alto, in modo da

avere, in aggiunta ai normali gestori di even4, un output di debugging e vedere gli
even4 ricevu4.

ptg11539634

3.1. Chain of Responsibility Pattern 75

TimerHandler KeyHandler MouseHandler NullHandler
event

handle

pass on

handle

pass on

handle

pass on

discard

Figure 3.1 An event-handling chain

The order in which we create the handlers should not matter since each one
handles events only of the type it is designed for.

while True:
 event = Event.next()

if event.kind == Event.TERMINATE:

break
 handler1.handle(event)

Events are normally handled in a loop. Here, we exit the loop and terminate
the application if there is a TERMINATE event; otherwise, we pass the event to the
event-handling chain.

handler2 = DebugHandler(handler1)

Here we have created a new handler (although we could just as easily have
assigned back to handler1). This handler must be first in the chain, since it is
used to eavesdrop on the events passing into the chain and to report them, but
not to handle them (so it passes on every event it receives).

We can now call handler2.handle(event) in our loop,and in addition to the normal
event handlers we will now have some debugging output to see the events that
are received.

class NullHandler:

def __init__(self, successor=None):
 self.__successor = successor

def handle(self, event):

if self.__successor is not None:
 self.__successor.handle(event)

This class serves as the base class for our event handlers and provides the in-
frastructure for handling events. If an instance is createdwith a successor han-
dler, then when this instance is given an event, it simply passes the event down
the chain to the successor. However, if there is no successor, we have decided to
simply discard the event. This is the standard approach in GUI (graphical user
interface) programming, although we could easily log or raise an exception for
unhandled events (e.g., if our program was a server).

www.it-ebooks.info

4

30/10/23

3

Il Pa1ern Chain of Responsibility: esempio

Programmazione Avanzata a.a. 2023-24
A. De Bonis

ptg11539634

3.1. Chain of Responsibility Pattern 75

TimerHandler KeyHandler MouseHandler NullHandler
event

handle

pass on

handle

pass on

handle

pass on

discard

Figure 3.1 An event-handling chain

The order in which we create the handlers should not matter since each one
handles events only of the type it is designed for.

while True:
 event = Event.next()

if event.kind == Event.TERMINATE:

break
 handler1.handle(event)

Events are normally handled in a loop. Here, we exit the loop and terminate
the application if there is a TERMINATE event; otherwise, we pass the event to the
event-handling chain.

handler2 = DebugHandler(handler1)

Here we have created a new handler (although we could just as easily have
assigned back to handler1). This handler must be first in the chain, since it is
used to eavesdrop on the events passing into the chain and to report them, but
not to handle them (so it passes on every event it receives).

We can now call handler2.handle(event) in our loop,and in addition to the normal
event handlers we will now have some debugging output to see the events that
are received.

class NullHandler:

def __init__(self, successor=None):
 self.__successor = successor

def handle(self, event):

if self.__successor is not None:
 self.__successor.handle(event)

This class serves as the base class for our event handlers and provides the in-
frastructure for handling events. If an instance is createdwith a successor han-
dler, then when this instance is given an event, it simply passes the event down
the chain to the successor. However, if there is no successor, we have decided to
simply discard the event. This is the standard approach in GUI (graphical user
interface) programming, although we could easily log or raise an exception for
unhandled events (e.g., if our program was a server).

www.it-ebooks.info

• NullHandler serve come classe base per i nostri gestori di even4 e fornisce
l’infrastruNura per ges4re gli even4.

• Se un’istanza è creata con un successore allora quando questa istanza riceve un
evento, esso passa semplicemente l’evento al successore.

• Se invece l’istanza non ha un successore, l’evento viene scartato.
• Questo è l’approccio standard usato nella programmazione GUI (graphical user

interface), sebbene si possa facilmente lanciare l’eccezione per even4 non ges44.

5

Il Pattern Chain of Responsibility: esempio

Programmazione Avanzata a.a. 2023-24
A. De Bonis

ptg11539634

76 Chapter 3. Behavioral Design Patterns in Python

class MouseHandler(NullHandler):

def handle(self, event):

if event.kind == Event.MOUSE:

print("Click: {}".format(event))

else:
super().handle(event)

Since we haven’t reimplemented the __init__() method, the base class one will
be used, so the self.__successor variable will be correctly created.

This handler class handles only those events that it is interested in (i.e., of type
Event.MOUSE) and passes any other kind of event on to its successor in the chain
(if there is one).

The KeyHandler and TimerHandler classes (neither of which is shown)have exactly
the same structure as the MouseHandler. These other classes only differ in which
kind of event they respond to (e.g., Event.KEYPRESS and Event.TIMER) and the
handling they perform (i.e., they print out different messages).

class DebugHandler(NullHandler):

def __init__(self, successor=None, file=sys.stdout):

super().__init__(successor)
 self.__file = file

def handle(self, event):

 self.__file.write("*DEBUG*: {}\n".format(event))

super().handle(event)

The DebugHandler class is different from the other handlers in that it never
handles any events, and it must be first in the chain. It takes a file or file-like
object to direct its reports to, and when an event occurs, it reports the event and
then passes it on.

3.1.2. A Coroutine-Based Chain

A generator is a function or method that has one or more yield expressions in-
stead of returns. Whenever a yield is reached, the value yielded is produced,and
the function or method is suspended with all its state intact. At this point the
function has yielded the processor (to the receiver of the value it has produced),
so although suspended, the function does not block. Then, when the function or
method is used again, execution resumes from the statement following the yield.
So, values are pulled from a generator by iterating over it (e.g., using for value

in generator:) or by calling next() on it.

www.it-ebooks.info

• Siccome nella classe seguente non viene reimplementato il metodo __init__(), viene usato
il metodo __init__() della classe base e di conseguenza la variabile self.__successor__
viene creata corre;amente.

• La classe MouseHandler ges?sce solo gli even? appropria? (cioè, di ?po Event.MOUSE) e
passa ogni altro ?po di evento al suo successore nella catena, se ve ne è uno.

• Le classi KeyHandler e TimerHandler (non mostrate) hanno la stessa stru;ura di
MouseHandler. Queste classi differiscono solo per il ?po di even? che ges?scono (ad
esempio, Event.KEYPRESS e Event.TIMER) e il ?po di ges?one che svolgono (cioè,
stampano messaggi differen?).

6

30/10/23

4

Il Pa1ern Chain of Responsibility:esempio

Programmazione Avanzata a.a. 2023-24
A. De Bonis

ptg11539634

76 Chapter 3. Behavioral Design Patterns in Python

class MouseHandler(NullHandler):

def handle(self, event):

if event.kind == Event.MOUSE:

print("Click: {}".format(event))

else:
super().handle(event)

Since we haven’t reimplemented the __init__() method, the base class one will
be used, so the self.__successor variable will be correctly created.

This handler class handles only those events that it is interested in (i.e., of type
Event.MOUSE) and passes any other kind of event on to its successor in the chain
(if there is one).

The KeyHandler and TimerHandler classes (neither of which is shown)have exactly
the same structure as the MouseHandler. These other classes only differ in which
kind of event they respond to (e.g., Event.KEYPRESS and Event.TIMER) and the
handling they perform (i.e., they print out different messages).

class DebugHandler(NullHandler):

def __init__(self, successor=None, file=sys.stdout):

super().__init__(successor)
 self.__file = file

def handle(self, event):

 self.__file.write("*DEBUG*: {}\n".format(event))

super().handle(event)

The DebugHandler class is different from the other handlers in that it never
handles any events, and it must be first in the chain. It takes a file or file-like
object to direct its reports to, and when an event occurs, it reports the event and
then passes it on.

3.1.2. A Coroutine-Based Chain

A generator is a function or method that has one or more yield expressions in-
stead of returns. Whenever a yield is reached, the value yielded is produced,and
the function or method is suspended with all its state intact. At this point the
function has yielded the processor (to the receiver of the value it has produced),
so although suspended, the function does not block. Then, when the function or
method is used again, execution resumes from the statement following the yield.
So, values are pulled from a generator by iterating over it (e.g., using for value

in generator:) or by calling next() on it.

www.it-ebooks.info

• La classe DebugHandler è diversa dagli altri gestori in quanto non ges?sce mai even?. Il
gestore di ?po DebugHandler deve essere il primo nella catena.

• Il metodo __init__ della classe riceve in input un file per scrivere al suo interno il report e
quando accade un evento, riporta l’evento e poi lo passa avan? nella catena.

7

Il Pa1ern Chain of Responsability: esempio
basato su corou=ne

Programmazione Avanzata a.a. 2023-24
A. De Bonis

• Un generatore è una funzione o un metodo che con?ene una o più espressioni yield invece che dei return.
• Ogni volta che viene raggiunto un yield, viene res?tuito un valore e l’esecuzione della funzione o del metodo

è sospesa con il suo stato inta;o.
• Quando il generatore è usato nuovamente, l’esecuzione riprende dallo statement successivo all’espressione

yield (maggiori de;agli sui generatori in un gruppo di slide a parte).
• Una corou?ne usa l’espressione yield allo stesso modo di un generatore ma ha un comportamento

par?colare in quanto esegue un loop infinito e comincia sospesa alla sua prima (e unica, nelle corou?ne del
nostro esempio) espressione yield, in a;esa che venga inviato un valore.

• Nel caso vi sia un’unica espessione yield, una corou?ne si comporta nel modo seguente. Se e quando viene
inviato un valore con una send, la corou?ne lo riceve come valore dell’espressione yield in cui è sospesa in
quel momento. La corou?ne riprende l’esecuzione e può poi fare qualsiasi computazione desideri nel corpo
del ciclo e quando ha finito essa cicla ancora e di nuovo sospende l’esecuzione in a;esa di un valore da parte
dell’espressione yield.

• I valori sono spin? in una corou?ne invocando il metodo send() della corou?ne.

8

30/10/23

5

Il Pa1ern Chain of Responsability: esempio
basato su corou=ne

Programmazione Avanzata a.a. 2023-24
A. De Bonis

In Python, ogni funzione o metodo che con4ene un’espressione yield è un generatore.
Un generatore può essere trasformato in una corou4ne mediante il decoratore @corou4ne e mediante l’uso
di un loop infinito.

ptg11539634

3.1. Chain of Responsibility Pattern 77

A coroutine uses the same yield expression as a generator but has different
behavior. A coroutine executes an infinite loop and starts out suspended at its
first (or only) yield expression, waiting for a value to be sent to it. If and when
a value is sent, the coroutine receives this as the value of its yield expression.
The coroutine can then do any processing it wants and when it has finished, it
loops and again becomes suspendedwaiting for a value to arrive at its next yield
expression. So, values are pushed into a coroutine by calling the coroutine’s
send() or throw() methods.

In Python,any function ormethod that containsa yield is a generator. However,
by using a @coroutine decorator, and by using an infinite loop, we can turn a
generator into a coroutine. (We discussed decorators and the @functools.wraps
decorator in the previous chapter; §2.4, 48 !.)

def coroutine(function):

 @functools.wraps(function)

def wrapper(*args, **kwargs):

 generator = function(*args, **kwargs)

next(generator)
return generator

return wrapper

Thewrapper calls the generator function just once and captures the generator it
produces in the generator variable. This generator is really the original function
with its argumentsand any local variables captured as its state. Next, thewrap-
per advances the generator—just once, using the built-in next() function—to
execute it up to its first yield expression. The generator—with its captured
state—is then returned. This returned generator function is a coroutine, ready
to receive a value at its first (or only) yield expression.

If we call a generator, it will resume execution where it left off (i.e., continue
after the last—or only—yield expression it executed). However, if we send a
value into a coroutine (using Python’s generator.send(value) syntax), this value
will be received inside the coroutine as the current yield expression’s result, and
execution will resume from that point.

Since we can both receive values from and send values to coroutines, they can
be used to create pipelines, including event-handling chains. Furthermore,
we don’t need to provide a successor infrastructure, since we can use Python’s
generator syntax instead.

pipeline = key_handler(mouse_handler(timer_handler()))

Here, we create our chain (pipeline) using a bunch of nested function calls.
Every function called is a coroutine, and each one executesup to its first (or only)

www.it-ebooks.info

• La funzione wrapper invoca func4on una sola volta e caNura il generatore prodoNo nella variabile
generator. Questo generatore non è altro che la funzione originaria con gli argomen4 e le variabili locali
caNurate nel suo stato.

• La funzione wrapper invoca poi next(generator) per arrivare alla prima espressione yield del generatore
e res4tuisce il generatore (insieme al suo stato). Questo generatore è una corou4ne pronta per ricevere
un valore alla sua prima (o unica) epressione yield.

9

Il Pa1ern Chain of Responsability: esempio
basato su corou=ne

Programmazione Avanzata a.a. 2023-24
A. De Bonis

• Siccome possiamo sia ricevere che inviare valori ad una corou;ne, possiamo
usare ques; valori per creare delle pipeline, quali le catene per ges;re gli
even;.
• Non abbiamo più bisogno di successor perché ora possiamo usare la

sintassi del generatore Python.

10

30/10/23

6

Il Pattern Chain of Responsability: esempio
basato su coroutine

Programmazione Avanzata a.a. 2023-24
A. De Bonis

ptg11539634

3.1. Chain of Responsibility Pattern 77

A coroutine uses the same yield expression as a generator but has different
behavior. A coroutine executes an infinite loop and starts out suspended at its
first (or only) yield expression, waiting for a value to be sent to it. If and when
a value is sent, the coroutine receives this as the value of its yield expression.
The coroutine can then do any processing it wants and when it has finished, it
loops and again becomes suspendedwaiting for a value to arrive at its next yield
expression. So, values are pushed into a coroutine by calling the coroutine’s
send() or throw() methods.

In Python,any function ormethod that containsa yield is a generator. However,
by using a @coroutine decorator, and by using an infinite loop, we can turn a
generator into a coroutine. (We discussed decorators and the @functools.wraps
decorator in the previous chapter; §2.4, 48 !.)

def coroutine(function):

 @functools.wraps(function)

def wrapper(*args, **kwargs):

 generator = function(*args, **kwargs)

next(generator)
return generator

return wrapper

Thewrapper calls the generator function just once and captures the generator it
produces in the generator variable. This generator is really the original function
with its argumentsand any local variables captured as its state. Next, thewrap-
per advances the generator—just once, using the built-in next() function—to
execute it up to its first yield expression. The generator—with its captured
state—is then returned. This returned generator function is a coroutine, ready
to receive a value at its first (or only) yield expression.

If we call a generator, it will resume execution where it left off (i.e., continue
after the last—or only—yield expression it executed). However, if we send a
value into a coroutine (using Python’s generator.send(value) syntax), this value
will be received inside the coroutine as the current yield expression’s result, and
execution will resume from that point.

Since we can both receive values from and send values to coroutines, they can
be used to create pipelines, including event-handling chains. Furthermore,
we don’t need to provide a successor infrastructure, since we can use Python’s
generator syntax instead.

pipeline = key_handler(mouse_handler(timer_handler()))

Here, we create our chain (pipeline) using a bunch of nested function calls.
Every function called is a coroutine, and each one executesup to its first (or only)

www.it-ebooks.info

ptg11539634

78 Chapter 3. Behavioral Design Patterns in Python

yield expression, here suspending execution, ready to be used again or sent a
value. So, the pipeline is created immediately, with no blocking.

Instead of having a null handler, we pass nothing to the last handler in the
chain. We will see how this works when we look at a typical handler coroutine
(key_handler()).

while True:
 event = Event.next()

if event.kind == Event.TERMINATE:

break
 pipeline.send(event)

Just aswith the conventional approach,once the chain is ready to handle events,
we handle them in a loop. Because each handler function is a coroutine (a
generator function), it hasa send()method. So,here, each timewehave an event
to handle, we send it into the pipeline. In this example, the value will first be
sent to the key_handler() coroutine,which will either handle the event or pass it
on. As before, the order of the handlers often doesn’t matter.

pipeline = debug_handler(pipeline)

This is the one casewhere it doesmatter which order we use for a handler. Since
the debug_handler() coroutine is intended to spy on the events and simply pass
them on, it must be the first handler in the chain. With this new pipeline in
place, we can once again loop over events, sending each one to the pipeline in
turn using pipeline.send(event).

@coroutine

def key_handler(successor=None):
while True:

 event = (yield)
if event.kind == Event.KEYPRESS:

print("Press: {}".format(event))

elif successor is not None:
 successor.send(event)

This coroutine accepts a successor coroutine to send to (or None) and begins exe-
cuting an infinite loop. The @coroutine decorator ensures that the key_handler()
is executed up to its yield expression, so when the pipeline chain is created, this
function has reached its yield expression and is blocked, waiting for the yield
to produce a (sent) value. (Of course, it is only the coroutine that is blocked, not
the program as a whole.)

Once a value is sent to this coroutine—either directly, or from another coroutine
in the pipeline—it is received as the event value. If the event is of a kind that

www.it-ebooks.info

• Come nell’approccio di prima, una volta che la catena è pronta a ges?re even?, essi vengono ges??
in un loop.

• Poiché ogni funzione è una corou?ne (una funzione generatrice) essa ha il metodo send
• Ogni volta che c’è un evento da ges?re, esso è inviato con send alla pipeline.
• Nell’esempio in alto, l’evento sarà inviato inizialmente alla corou?ne key_handler() .
• Come nell’approccio di prima , l’ordine dei gestori non è importante.

11

Il Pa1ern Chain of Responsability: esempio
basato su corou=ne

Programmazione Avanzata a.a. 2023-24
A. De Bonis

ptg11539634

78 Chapter 3. Behavioral Design Patterns in Python

yield expression, here suspending execution, ready to be used again or sent a
value. So, the pipeline is created immediately, with no blocking.

Instead of having a null handler, we pass nothing to the last handler in the
chain. We will see how this works when we look at a typical handler coroutine
(key_handler()).

while True:
 event = Event.next()

if event.kind == Event.TERMINATE:

break
 pipeline.send(event)

Just aswith the conventional approach,once the chain is ready to handle events,
we handle them in a loop. Because each handler function is a coroutine (a
generator function), it hasa send()method. So,here, each timewehave an event
to handle, we send it into the pipeline. In this example, the value will first be
sent to the key_handler() coroutine,which will either handle the event or pass it
on. As before, the order of the handlers often doesn’t matter.

pipeline = debug_handler(pipeline)

This is the one casewhere it doesmatter which order we use for a handler. Since
the debug_handler() coroutine is intended to spy on the events and simply pass
them on, it must be the first handler in the chain. With this new pipeline in
place, we can once again loop over events, sending each one to the pipeline in
turn using pipeline.send(event).

@coroutine

def key_handler(successor=None):
while True:

 event = (yield)
if event.kind == Event.KEYPRESS:

print("Press: {}".format(event))

elif successor is not None:
 successor.send(event)

This coroutine accepts a successor coroutine to send to (or None) and begins exe-
cuting an infinite loop. The @coroutine decorator ensures that the key_handler()
is executed up to its yield expression, so when the pipeline chain is created, this
function has reached its yield expression and is blocked, waiting for the yield
to produce a (sent) value. (Of course, it is only the coroutine that is blocked, not
the program as a whole.)

Once a value is sent to this coroutine—either directly, or from another coroutine
in the pipeline—it is received as the event value. If the event is of a kind that

www.it-ebooks.info
ptg11539634

3.1. Chain of Responsibility Pattern 79

this coroutine handles (i.e., of type Event.KEYPRESS), it is handled—in this exam-
ple, just printed—and not sent any further. However, if the event is not of the
right type for this coroutine, and providing that there is a successor coroutine, it
is sent on to its successor to handle. If there is no successor, and the event isn’t
handled here, it is simply discarded.

After handling, sending, or discarding an event, the coroutine returns to the top
of the while loop, and then, once again,waits for the yield to produce a value sent
into the pipeline.

The mouse_handler() and timer_handler() coroutines (neither of which is shown),
have exactly the same structure as the key_handler(); the only differences being
the type of event they handle and the messages they print.

@coroutine

def debug_handler(successor, file=sys.stdout):

while True:
 event = (yield)
 file.write("*DEBUG*: {}\n".format(event))

 successor.send(event)

The debug_handler() waits to receive an event, prints the event’s details, and
then sends it on to the next coroutine to be handled.

Although coroutines use the samemachinery as generators, they work in a very
different way. With a normal generator, we pull values out one at a time (e.g.,
for x in range(10):). But with coroutines, we push values in one at a time using
send(). This versatility means that Python can express many different kinds of
algorithm in a very clean and natural way. For example, the coroutine-based
chain shown in this subsection was implemented using far less code than the
conventional chain shown in the previous subsection.

We will see coroutines in action again when we look at the Mediator Pattern
(§3.5, ! 100).

The Chain of Responsibility Pattern can, of course, be applied in many other
contexts than those illustrated in this section. For example, we could use the
pattern to handle requests coming into a server.

3.2. Command Pattern

The Command Pattern is used to encapsulate commands as objects. This
makes it possible, for example, to build up a sequence of commands for deferred
execution or to create undoable commands. We have already seen a basic use of
the Command Pattern in the ImageProxy example (§2.7, 67 !), and in this section
we will go a step further and create classes for undoable individual commands
and for undoable macros (i.e., undoable sequences of commands).

www.it-ebooks.info

12

30/10/23

7

Esercizio

• Scrivere una funzione che prende in input una sequenza di richieste
(liste di due interi) e passa ciascuna richiesta ad una catena di gestori ciascuno dei quali è una coroutine.
• Se il primo intero della lista è nell’intervallo [0,4] allora la richiesta viene gestita dal gestore Handler_04 che stampa “Richiesta
{} gestita da Handler_04“.
• Se il primo intero della lista è nell’intervallo [5,9] allora la richiesta viene gestita da gestore Handler_59 che stampa “Richiesta {}
gestita da Handler_59“.
• Se il primo intero della lista è maggiore di 9 allora la richiesta viene gestita dal gestore Handler_gt9 che stampa “Messaggio da
Handler_gt9: non è stato possibile gestire la richiesta {}. Richiesta modificata". Dopo aver effettuato la stampa Handler_gt9
sottrae al primo intero della lista il secondo intero della lista e lo invia nuovamente ad una nuova catena di gestori.
• Se la richiesta non è una lista di due numeri o il primo intero della lista è minore di 0 la richiesta viene gestita da
Default_Handler che stampa semplicemente “Richiesta {} gestita da Default_Handler: non è stato possibile gestire la richiesta
{}”.
• Nelle suddette stampe la lista nella richiesta deve comparire al posto delle parentesi graffe.

• File di test nel team dello scorso anno

Programmazione Avanzata a.a. 2023-24
A. De Bonis

13

