Cognome e Nome: Numero di Matricola:

Spazio riservato alla correzione

1	2	3	4	5	6	7	totale
/10	/10	/10	/20	/15	/15	/12	/100
/18	/10	/10	/20	/15	/15	/12	/100

- 1. Relazioni asintotiche
 - a) Indicare quali delle seguenti affermazioni sono vere e quali sono false.

a.
$$1000n^3+100n^2=O(n^3)$$

b.
$$\sqrt{n} = \Omega(\log^3 n)$$

c. $n^{1/3} = O(n)$

c.
$$n^{1/3} = O(n)$$

d.
$$n^3-10n^2+8=O(n^2)$$

e.
$$n=: (8^{\log_2 n})$$

b) Si dimostri che se f(n)=O(h(n)) e g(n)=O(f(n)) allora f(n)+g(n)=O(h(n))

c)	Si consideri la relazione di ricorrenza: $T(n) \le c_0$ se $n \le n_0$, $T(n) \le 4$ $T(n/3) + cn^3$
	altrimenti (c e c_0 sono costanti). Si fornisca una funzione $h(n)$ tale $T(n)=O(h(n))$
	Giustificare la risposta.

2. Si dimostri che l'altezza di un albero binario completo a sinistra è $\Omega(\log n)$.

3. Si analizzi il tempo di esecuzione nel caso pessimo del seguente segmento di codice fornendo una stima asintotica per esso. Si giustifichi in modo chiaro la risposta.

```
s=0;
FOR(i=0; i<n; i=i+1){
  FOR(j=0; j<n-i; j=j+1) {
    s=s+1;
  }
FOR (k=0; k<s; k=k+1){
    stampa(k);
}</pre>
```

- 4. Divide et impera:
- a) Si descrivano in modo chiaro e schematico i passi dell'algoritmo QuickSort e dell'algoritmo Distribuzione.

b)	Si fo	rnisca	la	relazione	di	ricorrenza	che	esprime	il	tempo	di	esecuzione
	dell'al	lgoritm	o Q	uickSort e	si	dica qual è	il ten	npo di ese	cuz	zione de	ll'al	goritmo nel
	caso p	essimo										

5. Si scriva lo pseudocodice dell'algoritmo ricorsivo trova(u,x) che, dato un nodo u che è radice di un albero binario, restituisce un nodo dell'albero contenente l'elemento x. Se nell'albero non c'è alcun nodo contenente x, l'algoritmo deve restituire null.

NB: L'elemento di un generico nodo v è v.dato.

a)	In cosa consiste una tabella Hash?

6. Tabelle Hash:

b) A cosa serve e in cosa consiste il metodo dell'*indirizzamento aperto*?

c) Si scriva lo pseudocodice dall'algoritmo Inserisci(e) per tabelle hash con indirizzamento

	aperto.
d)	Si consideri una tabella hash che consiste di un bucket array di lunghezza 10 e di una funzione hash che associa a ciascuna chiave k il valore hash k mod 10 . Si disegni il bucket array della tabella sopra descritta nel caso in cui si utilizzi il metodo del indirizzamento aperto con scansione lineare (linear probing) e vengano inserite le chiavi 12, 22, 43, 208, 32, 35, 103, 25, 7, 11, in questo ordine . Il disegno deve mostrare in modo chiaro come sono disposte le chiavi.

7.

a. Si scriva lo pseudocodice di un algoritmo basato sui confronti che prende in input un array di numeri non ordinato e restituisce la coppia (min,max), dove min e max sono rispettivamente il minimo e il massimo dell'array. L'algoritmo deve eseguire meno di 2n-2 confronti nel caso pessimo. Il punteggio varierà in base al numero di confronti effettuati dall'algoritmo proposto.

b.	Si analizzi la complessità dell'algoritmo fornendo un limite superiore (non
	asintotico) che sia quanto più vicino è possibile al numero di confronti effettuati
	dall'algoritmo nel caso pessimo.

Foglio per la minuta