Algoritmi e Strutture Dati - classe 3	22 Gennaio 2007
Appello	Università di Salerno

Cognome: Nome: Matricola:

Rispondere alle domande usando lo spazio designato. NON USARE ALTRI FOGLI.

Indicare l'eventuale preferenza per la data dell'orale:

Prima del 7 febbraio	Dopo il 7 febbraio

Spazio riservato alla correzione

1	2	3	4	5	6	Tot/100
/18	/16	/16	/17	/16	/17	/100

1. 18 punti

Si consideri un albero rosso-nero in cui per ogni nodo x e' definito anche il campo height[x] contenente la sua altezza.

- a) Descrivere un algoritmo che modifichi Left-Rotate in modo da mantenere correttamente l'informazione contenuta nel campo height[x] di ogni nodo x, anche dopo la rotazione.
- b) Analizzare la complessita' di tempo dell'algoritmo proposto.

2. 16 punti

Disegnare la tavola hash risultante dall'inserimento in ordine delle chiavi 15, 28, 6, 1, 5, 9, 24, 4, 23, 18, 30, 2 tramite la procedura Chained-Hash-Insert che risolve le collisioni mediante il concatenamento. Si supponga che la tavola hash abbia 9 celle e che la funzione hash sia h(k) = (2k+1) mod 9.

3. 16 punti

Si determini il codice di Huffman ottimo per l'insieme di caratteri $C = \{a, b, c, d, e, g\}$ con le seguenti frequenze f[a] = 12, f[b] = 15, f[c] = 7, f[d] = 22, f[e] = 17, f[g] = 27 ottenuto utilizzando l'algoritmo HUFFMAN studiato. Si disegni l'albero risultante e si indichi la stringa associata ad ogni carattere di C.

4. 17 punti

I numeri di Tribonacci sono cosi' definiti:

$$R(0) = 0$$

$$R(1) = 0$$

$$R(2) = 1$$

$$R(n) = R(n-1) + R(n-2) + R(n-3)$$
 se $n \ge 3$.

- a) Scrivere lo pseudocodice di un algoritmo di programmazione dinamica per il calcolo dell'n-esimo numero di Tribonacci R(n).
- b) Analizzare la complessita' di tempo e di spazio dell'algoritmo proposto.
- c) E' possibile realizzare l'algoritmo con spazio O(1)? Giustificare la risposta.

5. 16 punti

Si consideri l'algoritmo Select per la selezione dell'i-esimo elemento piu' piccolo, tramite la partizione intorno all'elemento x, mediana delle mediane.

Dimostrare che, se $n \ge 140$, allora al piu' 3n/4 elementi sono maggiori o uguali ad x e al piu' 3n/4 elementi sono minori o uguali ad x.

- 6. 17 punti Si consideri l'algoritmo January-Sort ottenuto modificando l'algoritmo Quick-Sort, in modo che il partizionamento sia effettuato intorno all'elemento x, mediana delle mediane, definito nell'algoritmo Select.
 - a) Descrivere i passi dell'algoritmo.
 - b) Utilizzando (eventualmente) il risultato dell'esercizio 5 (anche se non dimostrato), scrivere una relazione di ricorrenza soddisfatta dal tempo di esecuzione dell'algoritmo JANUARY-SORT.
 - c) Risolvere la relazione di ricorrenza fornita al punto a).
 - d) January-Sort e' un algoritmo di ordinamento ottimale? Giustificare la risposta.

PAGINA PER APPUNTI O 'BRUTTA COPIA'

PAGINA PER APPUNTI O 'BRUTTA COPIA'