Algoritmi e Strutture Dati - classe 3	7 Febbraio 2007
Appello	Università di Salerno

Cognome: Nome: Matricola:

Rispondere alle domande usando lo spazio designato. NON USARE ALTRI FOGLI.

Spazio riservato alla correzione						
1	2	3	4	5	6	Tot/100
/17	/17	/16	/16	/17	/17	/100

1. 17 punti

Si consideri un albero rosso-nero in cui per ogni nodo x è definito anche il campo size[x] contenente il numero di elementi nel sottoalbero radicato in x.

- a) Descrivere un algoritmo che modifichi Left-Rotate in modo da mantenere correttamente l'informazione contenuta nel campo size[x] di ogni nodo x, anche dopo la rotazione.
- b) Analizzare la complessità di tempo dell'algoritmo proposto.

2. 17 punti

Un ABR pesato è un albero binario di ricerca in cui per ogni nodo x è definito anche il campo size[x] contenente il numero di elementi nel sottoalbero radicato in x.

- a) Descrivere e analizzare un algoritmo che dati un ABR pesato con n elementi e un intero i con $1 \le i \le n$, restituisca l'i-esimo elemento più piccolo (l'i-esima statistica).
- b) In quali casi si presentano il caso pessimo e quello ottimo?

3. 16 punti

Si determini il codice di Huffman ottimo per l'insieme di caratteri $C = \{a, b, c, d, e, g\}$ con le seguenti frequenze f[a] = 21, f[b] = 8, f[c] = 31, f[d] = 22, f[e] = 16, f[g] = 2 ottenuto utilizzando l'algoritmo Huffman studiato. Si disegni l'albero risultante e si indichi la stringa associata ad ogni carattere di C.

4. 16 punti

Dati due vettori di interi positivi (a_1, a_2, \dots, a_n) , (b_1, b_2, \dots, b_n) e un intero S, si consideri la seguente funzione c(i, j) definita per ogni $0 \le i \le n$ e $0 \le j \le S$ da:

$$c(i,0) = 0$$
 per ogni $0 \le i \le n$;

$$c(0,j)=j$$
 per ogni $0\leq j\leq S;$

$$c(i,j) = \max\{c(i-1,j-a_i) + b_i, c(i-1,j)\}\ \text{se } j-a_i \ge 0, \ 1 \le i \le n \ \text{e } 1 \le j \le S$$

$$c(i,j) = c(i-1,j)$$
 altrimenti.

- a) Scrivere lo pseudocodice di un algoritmo di programmazione dinamica per il calcolo di c(n, S).
- b) Analizzare la complessita' di tempo e di spazio dell'algoritmo proposto. Giustificare la risposta.

5. 17 punti

Si consideri la seguente relazione di ricorrenza:

$$T(n) = 2T(2n/3) + n^2$$
, con $T(1) = 1$.

- a) Si risolva la relazione di ricorrenza col teorema dell'esperto (Master Theorem)
- b) Si verifichi la soluzione trovata col metodo della sostituzione.

6. 17 punti

Un insieme indipendente in un grafo G=(V,E) e' un sottoinsieme $V'\subseteq V$ tale che $\forall u,v\in V'$ l'arco (u,v) **non** appartiene ad E $((u,v)\not\in E)$. Si consideri il problema di determinare in un grafo il sottoinsieme indipendente di cardinalita' massima.

- a) Si definisca il linguaggio Insieme-Indip associato.
- b) Si dimostri che il linguaggio Insieme-Indip e' in NP.

PAGINA PER APPUNTI O 'BRUTTA COPIA'

PAGINA PER APPUNTI O 'BRUTTA COPIA'