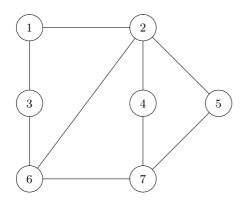
Algoritmi	26 Gennaio 2010
Appello	Università di Salerno

Cognome: Nome: Matricola:

Rispondere alle domande usando lo spazio designato. NON USARE ALTRI FOGLI. Indicare l'eventuale preferenza per il periodo dell'orale:

Prima del 19 febbraio	Dopo il 19 febbraio

Spazio riservato alla correzione


1	2	3	4	5	Tot/100
					/100

1. Utilizzando lo spazio a disposizione, descrivere le principali tecniche di progettazione di algoritmi studiate, confrontandone quelli che secondo voi sono i punti salienti.

2. Si supponga di avere due algoritmi A ed A' che risolvono il medesimo problema in tempo $T_A(n)$ e $T_{A'}(n)$ rispettivamente. Se $T_A(n) = 5n^2 + 11 \log n$ e $T_{A'}(n) = \sqrt{(n^3)logn} + n$, quale dei due algoritmi e' asintoticamente piu' efficiente in termini di tempo? E' necessario giustificare la risposta.

- 3. In una (ignota) localita' sciistica, vi sono n stazioni s_1, s_2, \dots, s_n , collegate tra loro da piste da sci. Dalla stazione s_1 , in vetta alla montagna, e' possibile arrivare alla stazione s_n a valle in vari modi. Poiche' le stazioni s_1, s_2, \dots, s_n , sono ordinate secondo la loro altezza decrescente, una pista che parte da s_i arriva in una stazione s_j , con j > i; inoltre per ogni $1 \le i < j \le n$ c'e' una pista da s_i a s_j a cui e' associato un tempo di percorrenza $t_{i,j}$. Poiche' le piste hanno diverso grado di difficolta', e' possibile che per andare da s_i a s_j , si impieghi meno tempo utilizzando piu' piste collegate che non quella diretta.
 - Si consideri il problema di determinare il tempo minimo per andare da s_1 ad s_n , avendo in input i tempi di percorrenza $t_{i,j}$,
 - a) Indicare qual e' il tempo di esecuzione di un algoritmo di "forza bruta" che risolve il problema.
 - b) Descrivere un algoritmo di programmazione dinamica per lo stesso problema. Analizzare la complessita' dell'algoritmo proposto e confrontarla con quella del punto a).

4. Sia G il grafo seguente:

- a) Eseguire la BFS su G a partire dal nodo 1, mostrando i "layers" (strati) ottenuti e l'albero BFS risultante.
- b) Dire se G e' un grafo bipartito, motivando la risposta e, in caso affermativo, fornire la partizione dei vertici per cui G e' un grafo bipartito.

5. Fornire l'esempio di un grafo e di un suo vertice, in modo che l'albero BFS abbia altezza 1, mentre l'albero DFS abbia altezza pari al numero di vertici meno 1. Giustificare la risposta.

PAGINA PER APPUNTI

PAGINA PER APPUNTI

Algoritmi e Strutture Dati - classe 3	26 Gennaio 2010
Appello	Università di Salerno

Cognome: Nome: Matricola:

Rispondere alle domande usando lo spazio designato. NON USARE ALTRI FOGLI.

Indicare l'eventuale preferenza per il periodo dell'orale:

Prima del 19 febbraio	Dopo il 19 febbraio

Spazio riservato alla correzione

1	2	3	4	5	Tot/100
					/100

1. Utilizzando lo spazio a disposizione, descrivere le principali tecniche di progettazione di algoritmi studiate, confrontandone quelli che secondo voi sono i punti salienti.

2. Si supponga di avere due algoritmi A ed A' che risolvono il medesimo problema in tempo $T_A(n)$ e $T_{A'}(n)$ rispettivamente. Se $T_A(n) = 5n^2 + 11 \log n$ e $T_{A'}(n) = \sqrt{(n^3)logn} + n$, quale dei due algoritmi e' asintoticamente piu' efficiente in termini di tempo? E' necessario giustificare la risposta.

3. In una (ignota) localita' sciistica, vi sono n stazioni s_1, s_2, \dots, s_n , collegate tra loro da piste da sci. Dalla stazione s_1 , in vetta alla montagna, e' possibile arrivare alla stazione s_n a valle in vari modi. Poiche' le stazioni s_1, s_2, \dots, s_n , sono ordinate secondo la loro altezza decrescente, una pista che parte da s_i arriva in una stazione s_j , con j > i; inoltre per ogni $1 \le i < j \le n$ c'e' una pista da s_i a s_j a cui e' associato un tempo di percorrenza $t_{i,j}$. Poiche' le piste hanno diverso grado di difficolta', e' possibile che per andare da s_i a s_j , si impieghi meno tempo utilizzando piu' piste collegate che non quella diretta.

Descrivere un algoritmo di programmazione dinamica che, presi in input i tempi di percorrenza $t_{i,j}$, determini il tempo minimo per andare da s_1 ad s_n . Analizzare la complessita' dell'algoritmo proposto.

4. Illustrare l'azione di HEAPSORT sull'array A=[18,8,10,1,2,9] in modo da evidenziare ogni aggiornamento dell'array e il risultato finale. Un heap puo' essere rappresentato sia tramite vettore che tramite albero.

5. Definire le classi P, NP e NPC, e, per ognuna di esse, mostrare un esempio di linguaggio che vi appartiene.

PAGINA PER APPUNTI O 'BRUTTA COPIA'

PAGINA PER APPUNTI O 'BRUTTA COPIA'